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Abstract

Background: Gene expression regulators identified in transcriptome profiling experiments may serve as ideal
targets for genetic manipulations in farm animals.

Results: In this study, we developed a gene expression profile of 76,000+ unique transcripts for 224 porcine
samples from 28 tissues collected from 32 animals using Super deepSAGE technology. Excellent sequencing depth
was achieved for each multiplexed library, and replicated samples from the same tissues clustered together,
demonstrating the high quality of Super deepSAGE data. Comparison with previous research indicated that our
results not only have good reproducibility but also have greatly extended the coverage of the sample types as well
as the number of genes. Clustering analysis revealed ten groups of genes showing distinct expression patterns
among these samples. Our analysis of over-represented binding motifs identified 41 regulators, and we
demonstrated a potential application of this dataset in infectious diseases and immune biology research by
identifying an LPS-dependent transcription factor, runt-related transcription factor 1 (RUNX1), in peripheral blood
mononuclear cells (PBMCs). The selected genes are specifically responsible for the transcription of toll-like receptor
2 (TLR2), lymphocyte-specific protein tyrosine kinase (LCK), and vav1 oncogene (VAV1), which belong to the T and B
cell signaling pathways.

Conclusions: The Super deepSAGE technology and tissue-differential expression profiles are valuable resources for
investigating the porcine gene expression regulation. The identified RUNX1 target genes belong to the T and B cell
signaling pathways, making them novel potential targets for the diagnosis and therapy of bacterial infections and
other immune disorders.
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Background
The domestic pig (Sus scrofa) is an important animal
farmed for meat worldwide and has been used as an alter-
native model for studying genetics, nutrition, and disease
[1–3]. The swine research community has created a large
database of the pig transcriptome [4]. The recently released

pig genome sequence (S. scrofa 10.2) [5] and associated an-
notation greatly enhance our knowledge of pig biology [6,
7]. Currently, it is estimated that the porcine genome en-
codes for ∼20,000 genes [5]. Transcriptome analysis indi-
cates that, of the total, actively transcribed genes represent
only a mere fraction of 15,000 genes in all tissues [8]. Sev-
eral research groups have created microarray transcriptome
profiling data for humans [9, 10], mouse [11, 12], and rat
tissues [13]. In the pig, several Expressed Sequence Tag
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(EST) sequencing projects, microarray platforms, long-
SAGE, and deep sequencing projects have developed gene
expression profiles across a range of tissues [8, 14, 15]. In
comparison to other model organisms, the pig transcrip-
tome data has its limitations in terms of coverage of tissues
and genes [4]. Here, we present Super deepSAGE (serial
analysis of gene expression by deep sequencing) profiling
data for pig tissues with wide gene coverage and annota-
tion. Using the K-means clustering analysis and motif bind-
ing site enrichment analysis, we have identified key
regulators for co-expressed genes. A detailed analysis of
one such identified transcription factor, RUNX1, illustrates
the impact of the data.

Results and discussion
Analysis of the complexity and diversity of super
deepSAGE data across tissues
Super deepSAGE obtained ~ 5 million reads per sample
with an average sequencing depth of 71X (total number

of genes identified by deep sequencing / total number of
aligned reads, sequencing matrix is listed in Supplemen-
tal document 1). A total of 32,213 transcripts were cov-
ered by Super deepSAGE. Rarefaction analysis of a size-
fractionated library for each tissue was performed to de-
termine the complexity and diversity of pig tissues [16].
The sequencing depth achieved using eight samples-
multiplexed deep sequencing technique (added different
linker and pooled eight samples together to a single deep
sequencing run) reached near-saturation of transcript
discovery within all size ranges. Saturation was seen very
early in Super deepSAGE sequencing data due to low
tag complexity (number of tags) in libraries (Fig. 1a-f
showed the first six deep sequencing runs). Samples
from the same sequencing run were compared using
reads from different size-fractionated libraries to further
investigate the diversity of the relationship between se-
quencing depth and transcript discovery. In all deep se-
quencing runs, tissues exhibited transcriptome diversity

Fig. 1 Rarefaction analysis of covered genes/transcripts in porcine tissues and cells Super deepSAGE library. Plot a to f shows the covered Kilo
transcripts per Kilo reads in the first six Super deepSAGE sequencing runs. The samples in each sequencing run were randomized and detailed
information is given in Table 1
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in terms of both the total number of reads and the num-
ber of transcripts discovered. For example, the muscle
tissue (MS.DI_2), saturated much sooner than the con-
ceptus (CPT.SPH_8) and fewer transcripts were discov-
ered in the first deep sequencing run (Fig. 1a). Similar
sequencing depth and diversity were obtained using
size-fractionated reads numbers from the other 22 se-
quencing run and discovered transcript numbers as out-
come measures (Supplemental Fig. SA-D).

Data quality and internal consistency control using
principal component analysis (PCA)
Principal component analysis (PCA) was used to check if
the samples clustered together according to their tissue
source [17]. Even though the samples were collected from
32 individual animals from different families, genders, and
ages (Table 1), the PCA plot confirmed that the samples
from the same tissues clustered together and were distinct
from other samples (Fig. 2). The transcripts in conceptus,
blood, and macrophages had relatively distinct expression

profiles and segregation from the rest of the samples when
plotted using the first two components of the PCA ana-
lysis (Fig. 2a). The adenohypophysis, cerebral cortex, heart,
and muscle were aggregate and separated from other sam-
ples when plotted using the third and fourth components
(Fig. 2b). The adrenal, liver, mesenteric lymph nodes, per-
ipheral blood mononuclear cell, and spleen deviated from
other samples when plotted using the fifth and sixth com-
ponents (Fig. 2c). When eliminating those samples from
the datasets and re-calculating the PCAs, the remaining
samples; fat, placenta, endometrium, kidney, lung, and
stomach grouped differently according to the tissue/cell
types (Fig. 2d-f). Tissues having similar cellular compos-
ition and biological function, like alveolar and monocyte-
derived macrophages or heart and skeletal muscles, clus-
tered closely together but were distinct from each other.

Comparison of the super deepSAGE data with previously
published microarray research
The expression profiles were compared with previously
published microarray data [8]. The processed microarray
datasets were acquired from the GEO database and nor-
malized to the Super deepSAGE data using the quantile
normalization method to make these two datasets com-
parable. There is a total of 8199 common transcripts for
seven tissues in both platforms, a total of 24,013 tran-
scripts remain undetected by the Affymetrix platform,
and a total of 4478 transcripts were undetected in Super
deepSAGE experiments (Fig. 3). Among the commonly
detected transcripts, a high correlation (r = 0.85–0.93
and p-values less than 1.0 × e− 30) was calculated between
the gene expression profiles generated by the two plat-
forms (Fig. 3). A similar dynamic range was observed in
both platforms for transcripts with a relative expression
level (log2 based and quantile normalized expression
value) between 4.0 and 9.0. Differences in expression
profiles were apparent between the two platforms as sev-
eral genes exhibiting relatively higher or lower expres-
sion values in either platform deviated from the slope
(Fig. 3). All transcripts had an expression value in the
microarray due to background hybridization or noise, re-
gardless of whether it was truly expressed or not. The
overall dynamics of the fitted curve tend to show that
the Super deepSAGE platform is a more sensitive tech-
nique than the microarray for low expression genes that
show a concaved trend at the lower ends (with relative
expression level less than 4.0 in Fig. 3). For those genes
with high expression levels, variability is high in both
Super deepSAGE and microarray platforms. In the seven
overlapped tissues between Super deepSAGE and micro-
array, the 50 highest expressed Super deepSAGE tags, 38
(76%) found corresponding probe sets in the 50 highly
expressed genes, and only three tags showed a

Table 1 Detailed information of the collected samples

Code Tissue Code Tissue

AC Adrenal
cortex

FT.BF Back fat
tissue

AM Adrenal
medulla

KID Kidney

CPT.SPH Conceptus
spherical

ADE Adenohypophysis

CPT.TUB Conceptus
tubular

MP.BMD Bone-marrow
derived
macrophage

FT.AB Abdominal
fat tissue

MS.BF Biceps femoris

MS.DI Diaphragm
muscle

EDMT Endometrium

STOM Stomach BLD Blood

CPT.FIL Conceptus
filamentous

PBMC Peripheral
blood
mononuclear
cell

MS.LD Longissimus
dorsi

HT Heart

LNG.TRA Lung
porcine
trachea

CC Cerebral
cortex

PLACT Placenta MP.MD Monocyte
derived
macrophage

LNG.BRO Lung
porcine
bronchus

MP.ALV Porcine
alveolar
macrophages

LNG.DIS Lung
porcine
distal

MLN Mesenteric
lymph
nodes

SPL Spleen LIV Liver
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statistically significant difference between Super deep-
SAGE and microarray data.

Identification of tissue-differential expression of
transcripts
A total of 4165 transcripts showed significant up or
down-regulation in at least one tissue, in comparison to
the average tag count for 27 tissues. K-means clustering
analysis was then performed by trying a different num-
ber of centers (K from 5 to 28) and several random sets
(S from 10 to 1000). An ad hoc method comparing each
tissue to the average tag count for all 27 tissues was per-
formed, and a very stringent threshold was set (fold

change > 5.0, p-value < 1.0 × 10− 6) to filter the tissues
specifically expressing transcripts. We selected K = 10
and S = 400 to produce a clustered result with a clear ex-
pression pattern (by visualization), highly reproducible
for each duplicated run (Fig. 4). The detailed clustering
information is available in Supplemental document 2.
The result indicated that Cluster 1 has the largest num-
ber of transcripts, and most of these transcripts were
expressed at a low level in tissues, except macrophages,
PBMCs, blood, and conceptus in which it was moder-
ately expressed. The conceptus expressed transcripts
were in Cluster 2, while the conceptus, macrophages,
PBMCs, and blood down-expressed transcripts were in

Fig. 2 Principal component analysis of the Super deepSAGE sequencing data. a) to d) shows the top eight principal components of all 224
samples from the 28 tissues (two principal components per each plot). Samples separated in plot a to d were removed, and PCA was re-
calculated with the remaining samples (fat, placenta, endometrium, kidney, lung, and stomach grouped). e) and f) shows the top four principal
components of all the remaining samples (two principal components per each plot)
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Fig. 3 Comparison of the expression profiles of the 18,306 common transcripts between Super deepSAGE and microarray platforms. Scatter plots
show the averages (between biological duplicates) of log2 transformed expression values of transcripts between two platforms. The relationship
between the expression profiles generated in the two platforms is depicted as a smoothing spline (red)
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Fig. 4 K-means clustering analysis of differentially expressed genes across tissues. Data adjustment (median center and normalization) was performed before
the clustering analysis. The color codes of red, white, black, and dark green represent high, average, low, and absence of expression, respectively. A detailed
view of expression pattern and internal structure of each gene cluster were constructed by hierarchical clustering and is shown in plot areas from 1–10
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Cluster 4. The macrophages, PBMCs, blood, mesenteric
lymph nodes, and spleen specific transcripts were in
Cluster 5. The genes specifically expressed in the heart
and skeletal muscles were in cluster 10. The cerebral
cortex specific genes were in Cluster 6, and liver specif-
ically expressed transcripts were in Cluster 7. The ad-
renal cortex, adrenal medulla, cerebral cortex, and
adenohypophysis specific transcripts were in Cluster 8.
Transcripts in Cluster 3 and Cluster 9 were ubiquitously
expressed in multiple tissues.

Identification of over-represented motif for tissues
specifically expressed transcripts
The CLOVER software [18] with JASPAR PWM data-
base [19] was used to identify over-represented tran-
scription factor binding motifs for each gene cluster.
The promoter regions for a transcript cluster (1000 bp
upstream from the TSS) were determined using the En-
semble Biomart tool (Sus scrofa assembly 11.1, gene 99)
[20]. The promoter regions for the transcripts detected,
with a similar GC content, were used as background.
Motifs having a p-value of ≤0.05 was significant (Table 2,
top 5 motifs). The most significantly enriched motif in
Class 1 is MZF1. TFAP2A and TFAP2C were also sig-
nificantly enriched with a raw score higher than 30. In
Class 2, there was only one significantly enriched motif,
RHOXF1. In Class 3 and 4, there were five and four mo-
tifs with p-value < 0.05 respectively, but the raw score
was lower than ten. In Class 5, there were at least five
motifs with p-value < 0.05, and three of them, RUNX1,
ASCL1, and Myod1 had a raw score higher than 30. In
Class 6, the significantly enriched motifs with the highest
score were SNAI2 and FIGLA, whereas, in Class 7, the
significantly enriched motifs with the highest score was
NR4A2. In Class 8, there was only one motif ZEB1
enriched in the promoter region of these transcripts. In
Class 9, all the enriched motifs had a raw score of less
than ten. In Class 10, the top three motifs were Ascl2,
Myog, and Tcf12.

Case report: confirmation of the regulatory roles of
RUNX1 in PBMCs in pig
In the cluster heatmap (Fig. 4), Class 1 and 5 tentatively
show (by visualization) high expression in macrophages,
PBMCs, and blood. However, the expression level of
genes in Class 1 was lower than in Class 5. Further, mes-
enteric lymph nodes and spleen specific transcripts in
Cluster 5 indicated that this class is an immunity-related
gene cluster. The top over-represented motif in Class 5 is
RUNX1, and literature search of its targets indicated that
TLR-2 (Toll-like receptor), LCK (tyrosine kinases), and
VAV1 (Rho family GTPases) play a role in T and B-cell
development and activation. These three representative

RUNX1 targets were selected for further experimental
validation.

Confirmation of the RUNX1 binding site in the promoter
region of TLR-2, LCK, and VAV1
The toll-like receptor 2 (TLR-2), lymphocyte-specific
protein tyrosine kinase (LCK), and vav1 oncogene
(VAV1) plasmid containing the 1Kb putative promoter
sequence were used in in vivo studies (wild type). To
show the regulatory effect of RUNX1, the binding site of
RUNX1 in TLR-2, LCK, and VAV1 was mutated or de-
leted. Reporter vectors constructed by the wild type, mu-
tated, or deleted promoter sequences were transfected
into the peripheral blood mononuclear cells (PBMCs),
and luciferase activity was monitored. Binding site dele-
tion significantly attenuated the expression of the down-
stream reporter luciferase activity (p < 0.05), indicating
that RUNX1 could interact with the target site and regu-
late the expression of the downstream reporter gene
(Fig. 5a-c). The mutated vectors showed significant at-
tenuation of the activity of downstream luciferase at 40,
44, and 48 h post-transfection (p < 0.05) indicating a
regulatory relationship between RUNX1 and the targets.
Another experiment was performed using mouse macro-
phage cells (RAW 264.7) to validate the hypothesis fur-
ther. Consistent with the previous results, mutation of
the RUNX1 binding sites in TLR-2, LCK, and VAV1
promoter sequence significantly attenuated the activity
of downstream luciferase at 40, 44, and 48 h post-
transfection (Fig. 5d-f). The luciferase reporter activity
after transfection with the wild-type vector was signifi-
cantly higher in macrophage cells than in the PBMC as-
says, suggesting that the endogenous RUNX1 expression
in mouse macrophage cells was higher than in PBMCs.

RNA flow cytometry analysis of RUNX1 targets in LPS and
RUNX1 inhibitor-treated PBMCs
To show the effect of RUNX1 on three targets; TLR2, LCK,
and VAV1, pig PBMCs were stimulated with LPS and/or
RUNX1 inhibitor, for 6 h, during which their TLR2, LCK,
VAV1, CD14 protein levels were monitored. Two subsets of
cells readily emerged from CD14/TLR2 analysis in PBMCs:
a CD14hi/TLR2lo (CD14high/TLR2low) and a CD14lo/TLR2lo

population (Fig. 6d). The percentage of CD14hi/TLR2lo cells
increased in LPS plus RUNX1 inhibitor-treated samples, but
the proportion of CD14lo/TLR2lo cells remained unchanged.
The percentages of TLR2hi (for both CD14hi and CD14lo)
cells increased seven-fold in LPS alone treated samples com-
pared with the non-treated controls. Four subsets of cells
readily emerged from CD14/LCK analysis in PBMCs treated
with LPS or RUNX1 inhibitor: a CD14hi/LCKlo, CD14hi/
LCKhi, CD14lo/LCKhi, and CD14lo/LCKlo population (Fig.
6e). The percentage of CD14hi/LCKhi, and CD14lo/LCKhi

cells increased in LPS plus RUNX1 inhibitor-treated
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samples, and the proportion of CD14hi/LCKlo cells was de-
creased. The percentage of CD14hi/LCKhi cells increased by
40% in LPS alone treated samples compared with the non-
treated controls. Two subsets of cells readily emerged from
CD14/VAV1 analysis in PBMCs: a CD14hi/VAV1lo and a
CD14lo/VAV1lo population (Fig. 6f). The percentage of

VAV1hi (for both CD14hi and CD14lo) cells increased four-
fold in LPS plus RUNX1 inhibitor-treated samples. The per-
centages of VAV1hi (for both CD14hi and CD14lo) cells
increased seven-fold in LPS alone treated samples compared
with the non-treated controls and is two-fold higher than in
LPS plus RUNX1 inhibitor-treated samples.

Table 2 Significantly over-represented binding motifs in the promoter region of transcripts showing a similar expression pattern
Gene cluster Jaspar ID TF name Occurrence Gene count Raw score FDR

Class 1 MA0056.1 MZF1 291 291 91.6 0

Class 1 MA0810.1 TFAP2A(var.2) 165 165 33.1 0.002

Class 1 MA0524.2 TFAP2C 149 149 32.3 0.003

Class 1 MA0811.1 TFAP2B 143 143 29.1 0.004

Class 1 MA0507.1 POU2F2 53 53 8.35 0.006

Class 2 MA0719.1 RHOXF1 142 142 6.96 0.008

Class 3 MA1105.1 GRHL2 28 28 6.99 0.003

Class 3 MA0842.1 NRL 60 60 3.67 0.006

Class 3 MA0164.1 Nr2e3 52 52 2.42 0.003

Class 3 MA0029.1 Mecom 23 23 2.25 0.009

Class 3 MA0117.2 Mafb 49 49 1.69 0.004

Class 4 MA0691.1 TFAP4 20 20 4.93 0.004

Class 4 MA0091.1 TAL1::TCF3 16 16 2.43 0.006

Class 4 MA0616.1 Hes2 19 19 0.8 0.003

Class 4 MA0089.1 MAFG::NFE2L1 21 21 −1.09 0.005

Class 5 MA0002.2 RUNX1 135 135 55.5 0

Class 5 MA1100.1 ASCL1 79 79 46.8 0.008

Class 5 MA0499.1 Myod1 59 59 31.6 0.003

Class 5 MA1124.1 ZNF24 30 30 18.6 0.002

Class 5 MA1109.1 NEUROD1 57 57 9.76 0.004

Class 6 MA0745.1 SNAI2 75 75 18.7 0.001

Class 6 MA0820.1 FIGLA 77 77 17.6 0.003

Class 6 MA0138.2 REST 6 6 7.13 0.002

Class 6 MA0665.1 MSC 36 36 6.63 0.002

Class 6 MA0691.1 TFAP4 30 30 5.79 0.003

Class 7 MA0160.1 NR4A2 59 59 15.5 0

Class 7 MA0693.2 VDR 31 31 4.29 0.004

Class 7 MA0017.2 NR2F1 27 27 4.12 0.009

Class 7 MA1142.1 FOSL1::JUND 38 38 3.25 0.001

Class 7 MA0059.1 MAX::MYC 16 16 1.48 0.008

Class 8 MA0103.3 ZEB1 21 21 10.9 0.002

Class 9 MA0084.1 SRY 22 22 9.59 0.01

Class 9 MA0130.1 ZNF354C 35 35 9.47 0.007

Class 9 MA0463.1 Bcl6 21 21 7.12 0.007

Class 9 MA0799.1 RFX4 7 7 5.64 0.007

Class 9 MA0798.1 RFX3 7 7 5.38 0.009

Class 10 MA0816.1 Ascl2 66 66 28.6 0.009

Class 10 MA0500.1 Myog 58 58 28.5 0.01

Class 10 MA0521.1 Tcf12 57 57 27.2 0.008

Class 10 MA0665.1 MSC 36 36 9.17 0.002

Class 10 MA0108.2 TBP 57 57 4.39 0.007
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Real-time PCR analysis of RUNX1 targets in LPS and
RUNX1 inhibitor-treated PBMCs
To investigate if the expression patterns of the 33
RUNX1 target genes that have RUNX1 binding site
(from Class 5, Supplemental document 3) could be

modeled by LPS and RUNX1 inhibitor treatment
in vitro, we performed real-time PCR assays for 33 genes
after treating PBMCs (collected from a separate set of
animals) with two different doses of LPS (1 ng/mL, 10
ng/mL), and RUNX1 inhibitor (1 ng/mL, 10 ng/mL).

Fig. 5 Luciferase reporter assay of the RUNX1 targets. One wild-type promoter construct (containing the predicted RUNX1 binding site), two
mutant constructs (mutated or not containing the binding site) were investigated. The mutant construct (black) was identical to the wild-type,
except that the RUNX1 binding site was deleted or mutated. The line graphs show the luciferase activity after the reporter plasmids were
transfected into PBMCs (a-c) or macrophages (d-f). Three RUNX1 target genes have been investigated (a and d: TLR-2, b and e: LCK, c and f:
VAV1). The error bars represent the mean ± standard deviation of three duplicate sample sets
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Samples were collected six hours post-stimulation. A
total of 21 genes were induced significantly in response
to at least one dose of LPS stimulation, as expression
levels for these genes were different when compared to
non-stimulated control. A total of 10 genes were down-
regulated significantly in response to the RUNX1 inhibi-
tor treatment. Hierarchical clustering analysis was used
to determine whether the response of LPS stimulation

was similar to the patterns detected in RUNX1 inhibitor
treatment, and if any differences were observed depend-
ing on the dosage of LPS and RUNX1 inhibitor used. As
shown in Fig. 7, the genes were grouped into two large
clusters. In the upper part of the cluster (from CLEC5A
to SLA) the expression patterns of samples with RUNX1
inhibitor treatment, RUNX1 inhibitor plus LPS treat-
ment, and non-simulated controls tend to be similar.

Fig. 6 Simultaneous staining of the target gene and CD14 protein in rested and stimulated PBMCs. Plots of PBMCs that were left untreated (a) or
were stimulated with LPS plus RUNX1 inhibitor for 6 hours (b) or were stimulated with LPS only (c) and labeled with antibodies that bind to
CD14 (PE-A) and target protein (FITC-A, d-f)
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Different doses of the RUNX1 inhibitor did not affect
the samples, as observed by the overlap of respective
samples in the heatmap. The LPS treated samples were

unique and were distinct from the RUNX1 inhibitor-
treated groups and control groups. Similar to the
RUNX1 inhibitor, different doses of LPS also did not

Fig. 7 RUNX1 target gene expression in PBMCs treated with LPS or RUNX1 inhibitor. Cells were treated in vitro with two different doses of LPS (1
ng/ml, 10 ng/ml) and RUNX1 inhibitor (1 ng/ml, 10 ng/ml). Color codes of yellow, black, and blue represent expression levels of high, average,
and low, respectively, across the treatments shown
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affect the samples. The expression patterns of RUNX1
inhibitor plus LPS treatment samples tend to be similar
to controls and RUNX1 treatment only samples because
of the overlap in the heatmap. In the lower part of the
cluster (from ARHGDIB to RGS18), the expression pat-
terns of some of the samples following RUNX1 inhibitor
treatment, RUNX1 inhibitor plus LPS treatment, and
non-simulated controls tend to be similar with the LPS
treated samples. The reason for this discrepancy could
be due to variation in preparing the PBMCs and the
stimulation process which are difficult parameters to
control.

Discussion
This study created transcriptomic datasets by Super
deepSAGE using a large number of samples and a large
number of biological repeats for the same tissue, and de-
tected a large number of transcripts. To our knowledge,
our work represents the largest tissue dataset profiled in
a single study. We first analyzed the homogeneity of
transcriptional information within samples of the same
organ using PCA. Without prior information, we showed
that samples from the same organ but different donors
clustered together. This result is remarkable given the
potential variability that could have been introduced for
each sample with respect to the different animals. To
analyze of similarities and differences between the ex-
pression profiles for different tissues, we used hierarch-
ical clustering analysis. The dendrogram generated by
this analysis reflected functional relationships between
tissues. Our results also showed that gene expression
profiling can distinguish each of the tissues.
The data demonstrated that tissue-differentially expressed

genes can be distinguished to gene clusters which share
similar expression profiles and those genes were co-
regulated by common regulator genes. We found that genes
in gene clusters were always expressed in tissue-specific
manner. These findings are consistent with and strengthen
the rationale for transcription rules for mammalian that
transcription of genes turned on when and only when they
were required. The transcription factors interact with the
DNA recognition motifs, and regulate transcription of a
large number of genes, and plays an important role in the
regulation of tissue-differentially expressed genes. To inter-
pret and understand gene regulation from the Super deep-
SAGE data obtained in this study, identifying the over-
represented or under-represented motifs in the sequence
showing similar expression patterns and factors binding to
them, is necessary. Over-represented motifs were identified
to play a regulatory role in the sequences, while under-
representation indicated that the motif would have a harm-
ful dis-regulatory effect.
RNA-seq can easily provide a much larger yield, have

a large dynamic range and identify a larger number of

genes and transcripts. However, literature shows limited
number of studies using RNA-seq technology have been
accomplished that run in parallel for a wide range of
porcine tissues. The Super deepSAGE reduced cost by
multiplexing and obtained data with good quality in
terms of sequencing depth, gene coverage, and reprodu-
cibility. Few discrepancies were observed when compar-
ing Super deepSAGE data with published microarray
data. We predict two possibilities that could cause such
discrepancies: 1) the SAGE tag was derived from two or
more different transcripts, which were differentially
expressed in the samples tested, and 2) the microarray
probe set can target two or more transcripts due to se-
quence similarity. For example, the transcripts from the
same gene family will always produce the same SAGE
tag (attributable to the lower resolution power of Super
deepSAGE) and preferred to hybridize to the same
microarray probe set (can be minimized by design probe
sets in the non-conserved region). Regardless of the dis-
crepancies, we conclude that Super deepSAGE data is
overall compatible with the microarray data and provide
reliable gene expression profiles.
Among the transcription factors identified for tissue-

differentially expressed genes, RUNX1 is a master regu-
lator of hematopoiesis and plays a vital role in T and B
cell development. RUNX1 is critical in induction of the
immune cells, such as interleukin-2 (IL-2, [21], IL-3 [22],
colony-stimulating factor 1 receptor (CSF1R, [23], CSF2
[24], and cluster of differentiation 4 (CD4), [25]. How-
ever, its roles in LPS-mediated inflammation in PBMCs
remains unclear. In this study, regulations of TLR-2,
LCK, and VAV1 have been confirmed by flow cytometry.
TLR2 is an essential receptor for the recognition of a
variety of pathogen-associated molecular patterns
(PAMPs) from Gram-positive bacteria, including bacter-
ial lipoproteins, lipomannan, and lipoteichoic acids [26].
LCK encoded protein is a key signaling molecule in the
selection and maturation of developing T-cells [27]. The
VAV1 encoded protein is important in hematopoiesis,
playing a role in both T-cell and B-cell development and
activation [28, 29]. These results suggest that RUNX1
might be a new potential target for resolving inadequate
or uncontrolled inflammation in PBMCs.

Conclusions
Gene expression analysis is extensively applied in the
understanding of the molecular mechanisms underlying
a wide range of biological processes such as host-
pathogen interactions. Our dataset (of transcript levels
in tissues) can serve as a reference dataset for compari-
son of expression analysis to detect aberrations in tran-
script levels of various biological functions. Therefore,
the major focus of this manuscript was to demonstrate
the biological importance of these profiles. We report
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that > 40% of the measured transcripts were differentially
expressed between different tissues. We show that statis-
tically the transcripts were co-regulated by a few import-
ant transcription factors. Our study led to the
identification of key transcription factors that regulate
gene expression in PBMCs. This data will improve the
annotation of the pig genome, support biological studies
and increase the utility of the pig as a meat source and
model in medical research.

Methods
Development of super deepSAGE technology
A flowchart of the Super deepSAGE experiment is summa-
rized in Fig. 8. Dynabeads® M− 270 Amine (Thermo Fisher
Scientific, China) were coupled with –C6-SH labeled re-
verse transcription-primer with the sequence containing
the 5′-CAGCAG-3′ recognition site of EcoP15I and an
Oligo (dT) sequence at the 3′ end, intentionally designed to
complement the poly(A) sequence of mRNAs (Synthesized
by Sangon Biotech, China). The coupling procedure was
carried out as outlined in the protocol reported by Hill and
Mirkin [30] using the succinimidyl 4-(p-maleimidophenyl)
butyrate (SMPB) crosslink reagent (Thermo scientific,
Shanghai, China). Ten micrograms of mRNA were reverse-
transcribed (cDNA synthesis system, Invitrogen) with the
Oligo (dT) magnetic beads to generate single-stranded
cDNA using the manufacturer protocol. The product was

converted to double-stranded cDNA using random primers
and then digested with NlaIII (NEB, Beijing, China). The
biotin-labeled linkers (linker-5EA) with phosphorylated 5′
termini and 3′ end overhangs (5′-CATG-3′) contain the
EcoP15I recognition site were prepared by annealing com-
mercially synthesized oligonucleotides. The magnetic
beads-bound cDNA was washed and bound to linker-5EA
by T4 DNA ligase (NEB, Beijing, China). As a result, each
cDNA fragment bound to the magnetic beads was flanked
by two inverted repeats of EcoP15I recognizing sites. The
type III restriction enzyme EcoP15I cleaves the DNA down-
stream of the recognizing site (25 nt in one strand and 27
nt in the other strand) leaving a 5′ end overhang of two
bases [31, 32]. Linker-ligated cDNAs on the magnetic beads
were digested with ten units of EcoP15I under conditions
described previously [33]. The supernatant containing
biotin-labeled fragments were added to streptavidin mag-
netic beads (Promega, Beijing, China), and the biotin-
labeled fragments of the cDNA were captured. Finally, bar-
coded linkers (linker-3EA) with two random base over-
hangs at 5′ end and phosphorylated termini were prepared
and ligated to the cDNA ends by T4 DNA ligase (NEB,
Beijing, China). The resulting products were amplified by
polymerase chain reaction (PCR), and the 119 bp product
was separated by polyacrylamide gel electrophoresis
(PAGE) and recovered from the gel. The barcoded libraries
prepared from different samples were combined into a

Fig. 8 Flowchart of Super deepSAGE library construction. There are three major steps included in the protocol: a) reverse transcription with oligo
(dT) coupled magnetic beads, synthesis of the secondary chain, and digestion with NlaIII; b) add 5′ end linker and digest with EcoP15I, and c) add
3′ end linker and PCR amplification. For details see materials and methods section
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single multiplex sequencing reaction at the end of library
construction and submitted for deep sequencing. The se-
quence information of synthetic oligos, linkers, and primers
are available in Supplemental document 4.
The serial analysis of gene expression (SAGE) was first

developed by Velculescu et al. [34] and improved by
Saha et al. [35], Matsumura et al. [33], and Nielsen et al.
[36]. The traditional SAGE library construction protocol
includes multiple steps, and the separation of the linker-
tag fragment is challenging to perform, and the PAGE
purification often produces low yield. The library con-
struction protocol in this study was improved by intro-
ducing two magnetic beads: 1) Dynabeads® M− 270

Amine coupled with –C6-SH labeled Oligo (dT) reverse
transcription primer; 2) The streptavidin magnetic beads
which can capture biotin-labeled linkers (linker-5EA).
The magnetic beads used in this protocol can capture
and purify the DNA fragments and is technically less de-
manding than PAGE separation. This modification in-
creased the yield of linker-tag fragments and resulted in
the robustness of the technique. Also, the primers and
linkers were designed compatible with multiplexed deep
sequencing technology, eliminating additional sequen-
cing costs.

Animals, samples collection, and deep sequencing
Tissue samples were collected from a private slaughter
farm (Jingzhou) located in the Hubei province in China.
Following anesthesia by electric shock, specimens were ex-
cised, snap-frozen in liquid nitrogen, and kept in a deep
freezer (− 80 °C) until RNA extraction. The sample collec-
tion was approved by the Animal Care and Use Commit-
tee of Hubei Province (China, YZU-2018-0031). RNA
isolation and purification from tissues and cells was done
using the RNeasy Mini Kit (Qiagen, Shanghai, China) fol-
lowing the manufacturer’s protocols. The BioAnalyzer
2100 (Agilent) was used to assess the integrity of total
RNAs, and RIN number of less than 7.0 was eliminated
from the study. After the experiment, the animals were
slaughtered and sold. A total of 224 tissue samples across
28 different tissues were collected. The samples were col-
lected from 32 animals from a Duroc × Landrace × York-
shire (DLY) commercial crossbreed pig populations
consisting of 16 males and 16 females at weaning dates of
21 days. The endometrium, placenta, and conceptus were
collected from Landrace × Yorkshire (LY) sows of 12 days
of gestation. Bone-marrow-derived macrophages were ob-
tained by culturing bone marrow cells for 5–7 d in the
presence of CSF-1 (0.5 ng/ml), as described previously for
mouse macrophages [37]. Monocyte-derived macrophages
were prepared according to a method published by Gao Y.
et al. [38]. Monocyte-derived macrophages were cultured
from CD14+ blood monocytes and polarization towards
macrophage phenotypes was achieved by treating with M-

CSF following a protocol published by Jaguin M. et al.
[39]. The detailed sample information is summarized in
Table 1 and Supplemental document 5. A total of eight
samples (four male and four female) for each tissue were
randomly selected form the 16 animals and submitted for
deep sequencing. The computational extraction of tags
from sequence data by the program (in-house designed)
removes the two bases at the 5′ end. This ‘digital removal’
is performed to minimize the less accurate effect of two
random bases, at the 5′ end of linker-3EA, and could po-
tentially reduce the length of the tags, and affect the repre-
sentative ability of the data. However, a direct link with a
linker that has two random bases at the 5′ end forming
overhangs will 1) enhance the efficiency of the link assay,
and 2) no additional blunt ending process was needed to
be compared with traditional SAGE method. These two
bases were removed by the ‘reads filtering’ procedure,
thereby lowering the systematic bias in the data.
Libraries were constructed using the Illumina TruSeq

Small RNA Sample Prep Kit and were sequenced on an
Illumina HiSeq2000 sequencer (50 bp and single-read)
(Illumina Inc., USA) [40]. The sequencing data was fil-
tered by a quality score (poor score < 0.5) for more than
20% of all the bases and then assessed using FastQC [41].
All the data discussed in this study have been deposited to
the NCBI GEO database [42] under accession number
GSE134461. Tag sequence was extracted, counted, and
assigned for each transcript (Sus scrofa assembly 11.1,
gene 99) using the SAGE software (modified to allow ex-
traction of 19 bp tags), and then normalized for each sam-
ple by quantile normalization method [43]. For the tags
assigned to multiple transcripts, the average copy numbers
of those tags were used. The processed data is available to
the reader in Supplemental document 5. The principal
component analysis (PCA) was performed using the log2
tag counts of transcripts across all samples using statistical
analysis with R software version 3.5. The tissue-specific
transcripts were identified by comparing samples from
each tissue to the overall tag count across all samples, and
a threshold was set to fold change > 5.0, p-value < 1.0 ×
10− 6 according to a method implemented in the limma
package [44]. The limma mode used was “model.matrix(~
0+factor(c (target_tissue, other_tissue)))”. Clustering ana-
lysis was performed by first using the K-means clustering
method to separate transcripts into big groups, and then
using Hierarchical clustering to build the internal struc-
ture of the transcripts within the groups according to the
method reported by Gu et al. [45, 46]. Global-seeding pro-
cedures of BF98 [47] have been introduced into the K-
means clustering algorithm to improve the consistency
and quality of clustering results. The BF98 method
employed a bootstrap-type procedure to determine the
initial seeds for the centers. Several subsamples (recom-
mended n = 10) of the dataset were clustered using K-
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means. Each clustering operation produced a different
candidate set of centroids from which a new data set was
constructed. This dataset was clustered using K-means,
and the centroids were chosen as the initial seeds. The op-
timal BF98 clustering result on the Super deepSAGE data
was obtained by “visualization” of the result performed by
using K = 10 and the number of subsamples S = 1000 after
trying K from 5 to 28 and S from 20 to 1000. The
“visualization” method is straightforward for determining
the best parameter for the K-means clustering procedure,
but when the K reached 10, definite, compact and repre-
sentative gene clustering was formulated, and when the S
is higher than 200, consistent clustering results were pro-
duced for each duplicated clustering run.

Luciferase reporter assay
A 1Kb nucleotide promoter segment of TLR-2, LCK,
and VAV1 that included RUNX1 target sites was
inserted upstream of a firefly luciferase ORF (pGL3, Pro-
mega, Beijing, China), and luciferase activity was com-
pared to that of an analogous reporter with point
substitutions disrupting the target sites, or analogous re-
porter with the binding site deleted completely. The
logic behind the luciferase reporter assay is that dele-
tion/mutation of a RUNX1 binding site should allow the
down-regulation of its target genes, and hence the target
gene should be expressed differently between the wild
type and mutated constructs. The pGL3-Control activity
was used for the normalization of firefly luciferase activ-
ity. For the assay, the cells were plated in a 96-well plate
at 3000 cells per well. After overnight incubation, the
cells were treated with a transfection reagent mixture
consisting of 35 μL of serum-free medium, 0.3 μL of
TransFast™ Transfection Reagent (Cat. E2431), and
0.02 μg of pGL3 and pGL3-Control vector per well. After
a one-hour incubation, 100 μL of the serum-containing
medium was added to the wells. 24 to 48 h post-
transfection, EnduRen™ Live Cell Substrate (Cat. E6481)
was added at a final concentration of 60 μM, and lucifer-
ase activity was monitored.

PBMC isolation and stimulation
Peripheral blood mononuclear cells (PBMCs) were iso-
lated from whole blood collected from five animals aged
21 days using BD VacutainerVR Cell Preparation Tubes
(Becton Dickinson, Shanghai, China). The samples were
processed according to the manufacturer’s instructions
within two hours of blood collection. PBMCs were har-
vested from the tube, washed with phosphate-buffered
saline (Life Technologies), and centrifuged for 10 min at
300 g before use. To induce gene expression, PBMCs
were resuspended in RPMI-1640 medium (Life Tech-
nologies) supplemented with 10% fetal bovine serum
(Life Technologies) at 1.5 × 106 cells/mL in a 96-well V-

bottom polypropylene plate (Corning Incorporated). LPS
(Sigma-Aldrich, Shanghai, China) and RUNX1 inhibitor
(Ro 5–3335, R&D Systems, Shanghai, China) were added
at 5 ng/mL and 10 ng/mL, respectively, according to the
manufacturer’s instructions. Untreated PBMCs were
used as control samples.

Surface staining and cytometry acquisition
Phenotypic surface staining was performed in BD Phar-
mingen™ stain buffer (BSA, BD Biosciences, Shanghai,
China) for 30 min at room temperature in the dark,
using anti-CD14 PE (BD Biosciences, Shanghai, China).
Cells were washed and suspended in BD Pharmingen
stain buffer (BSA, BD Biosciences, Shanghai, China),
anti-TLR-2 FITC, anti-LCK FITC, anti-VAV1 FITC (BD
Biosciences, Shanghai, China), was then added separ-
ately, and the mixture was incubated for 20 min at room
temperature. Finally, cells were washed and acquired on
a BD LSRFortessa™ cell analyzer (BD Biosciences, Shang-
hai, China). The flow cytometry data was deposited in
the Flow Repository database [48] under accession num-
ber FR-FCM-Z268.
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