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ABSTRACT

With this study, we provide a comprehensive ref-
erence dataset of detailed miRNA expression pro-
files from seven types of human peripheral blood
cells (NK cells, B lymphocytes, cytotoxic T lympho-
cytes, T helper cells, monocytes, neutrophils and ery-
throcytes), serum, exosomes and whole blood. The
peripheral blood cells from buffy coats were typed
and sorted using FACS/MACS. The overall dataset
was generated from 450 small RNA libraries using
high-throughput sequencing. By employing a com-
prehensive bioinformatics and statistical analysis,
we show that 3′ trimming modifications as well as
composition of 3′ added non-templated nucleotides
are distributed in a lineage-specific manner––the
closer the hematopoietic progenitors are, the higher
their similarities in sequence variation of the 3′
end. Furthermore, we define the blood cell-specific
miRNA and isomiR expression patterns and iden-
tify novel cell type specific miRNA candidates. The
study provides the most comprehensive contribution
to date towards a complete miRNA catalogue of hu-
man peripheral blood, which can be used as a ref-
erence for future studies. The dataset has been de-
posited in GEO and also can be explored interactively
following this link: http://134.245.63.235/ikmb-tools/
bloodmiRs.

INTRODUCTION

MicroRNAs (miRNAs) are fundamental regulators in
many cell biological processes. They represent a class of
short (∼22 nucleotides long), non-coding RNAs that reg-
ulate gene expression at the post-transcriptional level by
predominantly targeting the 3′ UTR region of target mes-
senger RNAs (1). To date, >2500 miRNA sequences are
known in humans (miRBase v21 (2)) and it has been pre-
dicted that 30–80% of human genes are influenced by at
least one miRNA (3,4). Numerous mature miRNAs have
been implicated in a wide range of physiologic and patho-
logic processes. Since the deregulation of miRNAs has been
demonstrated in a range of diseases, including several types
of cancer (5–8) and heart disease (9), there is a significant
focus on miRNAs in biomarker research to utilize them in
the prediction and early detection of diseases.

In recent years, the long-standing theory that each
miRNA precursor (more precisely each arm of the hair-
pin molecule) produces one constant mature miRNA se-
quence, was disproved by results from high-throughput se-
quencing and subsequent bioinformatics analyses. It has
been shown that a single miRNA hairpin arm can give rise
to multiple distinct isoforms (isomiRs) that are now re-
ferred to as the mature miRNA transcripts and that can
differ in their length and sequence composition (10). The
term ‘miRNA-arm’ is used to define the set of all ma-
ture transcripts deriving from one arm (5p or 3p) of the
miRNA hairpin molecule (11). IsomiRs are categorized
into three main classes: 5′ isomiRs, 3′ isomiRs, and poly-
morphic isomiRs. Additionally, 5′ and 3′ isomiRs are sub-
classified into templated or non-templated modifications
(12). Several studies have shown that isomiR expression

*To whom correspondence should be addressed. Tel: +49 0 431 500 15110; Fax: +49 0 431 500 15168; Email: a.franke@mucosa.de
Correspondence may also be addressed to Georg Hemmrich-Stanisak. Email: g.hemmrich-stanisak@ikmb.uni-kiel.de
†These authors contributed equally to this work as first authors.

C© The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com

http://134.245.63.235/ikmb-tools/bloodmiRs


Nucleic Acids Research, 2017, Vol. 45, No. 16 9291

profiles depend on tissue type, gender, population, ethnic-
ity, disease type and subtype (13–16), and most importantly,
that isomiRs exhibit functional differences in comparison
to their archetype miRNAs (the miRNA sequences listed
in public database) (17,18). These findings provide solid ev-
idence that isomiRs have functional relevance and cannot
be dismissed as experimental artefacts.

In 2008, miRNAs were first characterized in blood and
described as circulating miRNAs (19–21). The detection
of miRNAs in circulation provided an opportunity to use
miRNAs as non-invasive biomarkers for the distinction of
biological/clinical conditions. Since then numerous studies
have reported circulating miRNAs as biomarkers for a vari-
ety of cancers and other diseases (22–24). However, the ori-
gin and especially the sequence variation of these miRNAs
has been poorly investigated. In a recent study, Pritchard
et al. (25) examined 79 solid tumor circulating miRNA
biomarkers reported in the literature and showed that 46
of 79 are highly expressed in different blood cells. This pro-
vided first insights that blood cells substantially contribute
to circulating miRNA levels, be it because of contamina-
tion by hemolysis or regular physiological processes. Since
then, only a few research projects focused on the miRNA
transcriptomes of either several or single separated blood
cell types (26–29) and even fewer focused on the miRNA se-
quence variations in distinct cell types (30,31). Yet, there is
still only scarce knowledge about the blood cell origin of cir-
culating miRNAs, their expression pattern with respect to
different cell types and especially about their sequence vari-
ations in different blood compounds. Therefore, it is impor-
tant to further study miRNA expression of different blood
cells in order to identify cell type specificity.

Because of its high availability in clinical practice, periph-
eral blood is also the most commonly collected body fluid.
The majority of non-invasive miRNA biomarker studies,
thus, currently focus on the measurement of blood miR-
NAs, although numerous other fluid compounds are also
under investigation. Methodologically, besides quantitative
PCR (qPCR) and array-based technologies, small RNA se-
quencing (sRNA-Seq) has become a popular technology
to establish miRNA-based transcriptional profiles. Inter-
pretation of results gained from those blood-based sRNA-
Seq studies, however, remains a challenging task (32–34).
Most sRNA-Seq protocols are PCR-based and depend on
adapter-ligation steps and often suffer from the limitation
that the measurement of a particular miRNA is not inde-
pendent from other miRNAs. The resulting introduction of
biases towards certain miRNAs may lead to discrepancies
in the overall abundance of sequenced miRNAs. In addition
to the above-described technological problems, blood as liq-
uid tissue has only a relatively low abundance of miRNAs
compared to solid tissues, which decreases the signal-to-
noise ratio and renders the measurement of rare miRNAs
difficult. Moreover, due to the differential miRNA expres-
sion in different blood cell types and the uneven distribution
of cell types based on different conditions, e.g. diseases, it
is difficult to distinguish between true positive, false posi-
tive but also potential false negative signals in sRNA-Seq
datasets. Finally, depending on the treatment of the sample
material, hemolysis can occur and introduce another source
for altered measurements (34).

Given the above-described difficulties, when studying
sRNA-Seq-based miRNA profiles, it is crucial to first un-
derstand how miRNAs and their isoforms are distributed
in human blood before interpreting a deregulated state,
e.g. in the context of a disease. For this purpose, a com-
prehensive reference dataset for miRNA expression in the
different components of healthy human blood (cell types,
vesicles and fluid) is urgently needed but currently only
fragmentary in the public domain. The results presented
here thus summarize our (still non-exhaustive, but substan-
tial) contribution towards such a reference dataset. We re-
port the transcriptional profiles of miRNAs and isomiRs
from seven distinct peripheral blood cell populations of 43
healthy donors using sRNA-Seq. In addition, we also ex-
amined whole blood profiles (n = 77) as well as circulat-
ing miRNAs from serum (n = 38) and blood-borne exo-
somes (n = 38). The results can be interactively browsed at
http://134.245.63.235/ikmb-tools/bloodmiRs.

MATERIALS AND METHODS

Study samples

A total of 162 blood samples from healthy volunteers (rou-
tine blood donors from transfusion medicine) were included
in this study. Of the 162 samples, 43 buffy coats remain-
ing from plasma donation were collected. Forty two serum
samples were collected into serum collection tubes (BD Va-
cutainer 366643) and 77 whole blood samples were col-
lected into PAXgene RNA blood tubes (Qiagen). All donors
signed a written informed consent form. Approval for the
study was received from the Ethics Committee of the Med-
ical Faculty, University, Kiel.

Isolation and purification of cell types

Human peripheral blood cells were isolated from leukocyte
concentrates (buffy coats) of healthy donors by Ficoll den-
sity gradient centrifugation. Briefly, buffy coats (∼50 ml)
were dissolved in 100 ml phosphate-buffered saline (PBS)
and 15 ml lymphocyte separation medium/Ficoll (d = 1.077
g/ml) were carefully added and centrifuged at 2000 rpm
for 20 min (divided in four separate 50 ml tubes, with-
out using the brake function). After centrifugation, pe-
ripheral blood mononuclear cells (PBMCs) enriched in the
interface between plasma and Ficoll were carefully gath-
ered. After washing three times with PBS (1 × 5 min, 1600
rpm; 2 × 10 min, 1000 rpm), cells were resuspended and
an aliquot counted by fluorescence-activated cell sorting
(FACS). Granulocytes and RBCs, which are not within the
PBMC fraction, were extracted separately by pipetting 1000
�l from the interface between Ficoll and red blood cells
(RBCs) or 100 �l from the bottom of the tube, respectively.

Magnetic activated cell sorting (MACS, Miltenyi Biotec,
Bergisch-Gladbach, Germany) was used to purify CD56+
(NK cell), CD19+ (B cell), CD8+ (cytotoxic T cell), CD4+
(T helper cell), CD14+ (monocyte), CD15+ (neutrophil)
and CD235a+ (erythrocyte) cell populations, following the
manufacturer’s instructions. CD14+, CD15+, CD19+ and
CD235a+ cells were isolated by positive selection, whereas
CD4+, CD8+ and CD56+ cells were isolated by negative
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selection. Purity of the individual cell populations was as-
sessed using FACS.

Total RNA isolation and sRNA-Seq

Total RNA including small RNA from sorted cell types was
extracted using the mirVana RNA Isolation Kit (Ambion).
For whole blood, we used the PAXgene Blood miRNA Kit
(Qiagen). For serum samples miRNeasy Serum and Plasma
kit (Qiagen) was used and exosomes were processed using
the Total Exosome Isolation Reagent and the Total Exo-
some RNA and Protein Isolation Kit (Life Technologies).
All isolation protocols were conducted according to the
manufacturers’ instructions, without further modifications.

Extracted total RNAs were combined with a spike-in
cocktail (except whole blood samples) as previously de-
scribed by Hafner et al. (35). The products were then sub-
jected to Illumina TruSeq Small RNA Sample Preparation
protocol to generate small RNA libraries for each sample.
Subsequently, the libraries were randomized and pooled
with six samples per lane for serum and exosomes, and 24
samples per lane for cell types and whole blood. Sequenc-
ing was conducted on an Illumina HiSeq 2500 (1 × 50 bp
SR, v3). Raw sequencing reads and quantified read-count
data have been deposited at NCBI Gene Expression Om-
nibus (GEO) (36) under the accession number GSE100467.

Data analysis

Obtained raw reads were subjected to exhaustive adapter
trimming using cutadapt v1.3 (37). Low quality 3′ ends
of reads falling below Q20 (Phred score) were discarded.
Only the quality trimmed reads that were longer than 18
bp were retained. Subsequently, the reads mapping to viral
genomes, viral miRNA precursors and human non-miRNA
short RNAs were filtered out. The remaining reads were
mapped to miRNA sequences from miRBase v21 (2) us-
ing mirAligner (38) with default parameters (1 mismatch,
3 nt in the 3′ or 5′ trimming variants and the 3 nt in 3′-
addition variants) and to spike-in sequences. As the lat-
ter were not available for all samples analysed, the respec-
tive read counts were neglected for further analysis. The
R package isomiRs (38) was used to generate counts of
miRNA-arms (read count sums of all isomiRs including
archetype miRNA which align to the same miRBase en-
try) and isomiRs. Samples with fewer than one million of
initial reads and those for which the number of expressed
miRNA reads on a logarithmic scale was falling below Q1
− 1.5 IQR were excluded from further analysis. miRNA-
arm and isomiR sequences that were expressed (expression
value ≥ 5) in at least 85% of the samples in at least one of
the cell types were normalized using DESeq2 (39). Normal-
ized counts were checked for potential confounding effects
such as age, gender, cell counts, cell purity, levels of hema-
tocrit, number of leukocytes and erythrocytes. The counts
were then subjected to pairwise comparisons between dif-
ferent cell types or combined cell type groups. The P-values
resulting from Wald tests were corrected for multiple testing
according to Benjamini and Hochberg (40). The miRNAs
with a corrected P-value ≤ 0.001 and |log2FC| > 1 were con-
sidered to be significantly differentially expressed. The miR-
NAs which were uniquely significantly upregulated in one

of the cell types when compared to every other cell type were
called as being cell type specific miRNAs. In order to de-
termine the genomic context of cell type specific miRNAs,
the Ensembl API was used to retrieve annotated features
(introns, exons and UTRs of coding and non-coding tran-
scripts) that overlapped miRNA precursors. The miRNAs
that did not intersect any transcript features were consid-
ered as intergenic. Furthermore, miRNA profiles from cell
types were qualitatively compared with those from whole
blood samples, serum and exosomes.

Statistical analyses and data processing were done in R
version 3.3.3 (41). Visualization of graphs and heatmaps
was performed with ggplot2 (42) and ComplexHeatmap
(43) packages, respectively.

Detection of novel miRNAs

In order to detect novel miRNAs, raw sequencing reads
from all samples were pooled into a single file to increase the
power of prediction (44). Subsequently, pooled data were
trimmed for adapters using cutadapt v1.3 and collapsed to
obtain unique sequences while saving the information about
read counts. The resulting data were mapped and filtered
against spike-ins, viral genomes (RefSeq (45)), viral miRNA
precursors (miRBase v21 (2)) and other human small RNAs
(rRNAs, tRNAs, snRNAs and sRNAs (Rfam (46)) using
BLASTN v2.2.30 (47). The remaining reads were mapped
to the human genome (version hg19) using Bowtie v1.1.1
(48) and only those reads that mapped to the reference
genome were passed down for novel miRNA prediction
employing miRDeep2 v2.0.07 (49) with default parameters
and as input for related species using known miRNAs from
Hominidae family (miRBase v21). In order to reduce the
number of false positively predicted miRNAs, several filter-
ing steps were applied to remove: (a) novel miRNA candi-
dates with miRDeep2 score < 1; (b) predicted precursors,
which overlapped with human coding sequences (CDS) and
non-coding RNAs (ncRNAs) (reference genome version
hg38, Ensembl (50)); (c) novel miRNA precursors which
were enriched with repetitive DNA element sequences from
Dfam (51); and d) predicted miRNAs, which had outly-
ing values based on quantiles (lower quantile = 0.01, up-
per quantile = 0.99) of GC content of known miRNA ma-
ture sequences belonging to Hominidae family (miRBase
21). Filtered novel miRNA candidates were ranked accord-
ing to their distance to the features in the early miRBase
(v1–v7) versions using novo-miRank (52).

Sample-wise quantification of candidate novel miRNAs
was performed using quantifier.pl module from mirDeep2
v2.0.07 with default parameters. Normalization and statis-
tical analysis of novel miRNA candidate count dataset was
performed as described in the previous section.

Web-page implementation

To make our results easily accessible to researchers in the
field, we implemented a web-tool for interactive browsing of
miRNA expression results of peripheral blood cell popula-
tions. It contains miRNA-arm and isomiR expression data
which can be explored by cell type or by miRNA of inter-
est. The differential expression analysis can be performed
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in real time by selecting different cell types or combined
cell type groups for pairwise comparisons. The web-tool
was implemented using shiny web application framework
for R (53), as well as R packages such as DESeq2 (39),
dplyr (54), plotly (54) and iheatmapr and is available at
http://134.245.63.235/ikmb-tools/bloodmiRs.

RESULTS

Overview of the small RNA transcriptome data

Illumina deep sequencing was conducted to profile miRNA
expression in major peripheral blood cell populations, as
well as serum, exosomes and whole blood of healthy indi-
viduals. We used magnetic activated cell sorting (MACS)
to purify blood cells (see Figure 1) from the lymphoid lin-
eage (CD56+ (NK cells), CD19+ (B cells), CD8+ (cytotoxic
T cells), CD4+ (T helper cells)) and the myeloid lineage
(CD14+ (monocytes), CD15+ (neutrophils) and CD235a+
(erythrocytes)). Purity of the sorted cells was tested using
FACS analysis. Most cell populations were rather homo-
geneous with purity over 90%. Neutrophils, however, dis-
played considerable heterogeneity with a mean sorting pu-
rity of 79% (see Supplementary Figure S1A). Overall, 298
samples were sorted; however, we failed to sort erythrocytes
for three samples, and T helper cells for one sample.

Subsequent total RNA isolation and small RNA se-
quencing of the above-mentioned cell fractions and blood
compounds resulted in approximately 2.56 billion (B) raw
sequencing reads, ranging from 212.7 thousand (K) to 32.7
million (M) reads per sample (Supplementary Figure S1B).
This wide range in the raw sequences was expected and
could occur due to individual variability (health, blood
counts etc. of the donor) and due to variability in exper-
imental factors such as different RNA isolation methods
(i.e. mirVana, PAXgene, miRNeasy etc.), and/or differ-
ent amounts of small RNAs in distinct blood compounds,
which lead to unequal adapter dimer contamination and
unequal spike-in distribution when preparing libraries (55).

Figure 1. Simplified human hematopoietic tree of different cell compounds
(modified from Häggström (69)). The miRNA expression profiles were
generated for natural killer (NK) cell (CD56+), B lymphocyte (CD19+),
cytotoxic T cell (CD8+), T helper cell (CD4+), monocyte (CD14+), neu-
trophil (CD15+) and erythrocyte (CD235a+) populations (highlighted in
red).

After the adapter and quality trimming step, we retained
91.3% (2.34B) of the initial sequencing reads, which shows
the high quality of the dataset. The bulk of those reads
were 19–24 nt length which corresponds to the length range
of mature miRNA sequences (Supplementary Figure S1C).
The filtering steps (see Methods section for details) retained
81.4% (2.09B) of the initial sequencing reads. The major-
ity of filtered reads belonged to human non-miRNA short
RNAs from Rfam database (Supplementary Figure S1D).
The remaining high quality reads were mapped to known
miRNA (miRBase v21) and spike-in sequences (see Mate-
rials and Methods section for details). The overall compo-
sition of the initial reads per sample in distinct blood com-
pounds is presented in Supplementary Figure S1E. Quan-
tification of filtered reads yielded 719.4M sequences to be
mapped to 2106 unique known miRNA sequences from
miRBase v21. As expected, the lowest numbers of miRNA
counts were observed in transcriptionally non-active blood
compounds such as RBCs, exosomes and serum (Supple-
mentary Figure S1F). However, low miRNA read counts
were also observed in neutrophils (CD15+) which was prob-
ably due to the lower cell sorting purity. After applying our
QC threshold, 19 low read and/or outlying samples were re-
moved, leaving 431 samples for downstream analysis. On av-
erage, we mapped 540 unique miRNA species per peripheral
blood cell type, 162, 267 and 645 unique miRNA species
per exosomes, serum and whole blood, respectively (Sup-
plementary Figure S1F).

Sequencing and mapping statistics for all libraries used in
this study can be found in Supplementary Table S1.

Anucleate blood harbors a substantial miRNA repertoire

Triggered by earlier reports about miRNAs being also
present in RBCs (25, 27), we first qualitatively character-
ized the RBC miRNA content. Only miRNAs having at
least five reads in at least 85% of the samples were consid-
ered in our analysis. Surprisingly, as anucleate cells should
not be transcriptionally active, we identified 271 miRNA
species within RBCs––several of them with considerable
read counts (>1000/sample, see also Figure 2). In addition,
we generated miRNA data from serum samples (n = 38) and
exosomal vesicle preparations for 38 samples (34 of which
are paired samples) of healthy donors, which resulted in an-
other 90 and 51 miRNA species, respectively. When com-
paring the miRNA content of RBCs to those of serum and
exosomes, we found a considerable overlap between all three
fractions pointing towards a common miRNA repertoire
of those blood compounds. We found 38 miRNA species
present commonly in serum, exosomes and RBCs, whereas
19 miRNA species were found to be uniquely present in
serum, 2 and 21 miRNA species in exosomes and RBCs, re-
spectively (Figure 2). In total, we were thus able to detect 93
unique miRNA species outside the transcriptionally active
cellular components of healthy human blood.

Sequence variation analysis reveals lineage specific 3′ end
modification patterns of isomiRs

The growing evidence of constitutive variability in miRNA
biogenesis across human tissues encouraged us to exam-
ine the sequence variation patterns of mature miRNAs
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Figure 2. The presence of miRNAs in erythrocytes (RBCs), exosomes and serum. The barplot shows the log2 transformed median read counts of the most
abundant miRNAs in RBCs. The heatmap represents presence (blue) or absence (red) of miRNAs in specific blood compounds. Only the miRNAs which
were detected (expression value > 5) in at least 85% of the samples in at least one of the blood compound were considered as being present.

within different peripheral blood compounds. Accordingly,
we used mirAligner to identify trimming variations at
the 5′ and 3′ ends, nucleotide (nt) substitutions and non-
templated 3′ additions in miRNA sequences. In order to
avoid sequencing errors, we consider a mismatch as a real
substitution, when the fraction of reads having that sub-
stitution was >2% within the mapped reads to a certain
miRNA sequence. Additionally, we only kept those substi-
tutions which mapped uniquely to one miRNA molecule.

By comparing miRNA sequences obtained from our
dataset to the archetype sequences deposited in miRBase,
we identified sequence variations in 69.0% (1454/2106) of
detected miRNAs. The most common miRNA sequence
variation types were non-templated 3′ addition and 3′
trimming, which were observed in 77.0% (27539/35769)
and in 75.6% (27032/35769) of isomiR sequences, respec-
tively. Conversely, 5′ trimming (33.6%, 12025/35769) and
nt-substitutions (6.2%, 2229/35 769) within the mature
miRNA sequence were the least common variants. About
one third (33.9%, 755/2229) of nt-substitutions occurred in
the seed sites of miRNAs. More than one type of sequence
variation was observed in 74.0% (26482/35769) of isomiRs.

To get deeper insights into isomiR variation preferences,
we looked at variation distributions in our investigated
blood compounds. The unique miRNA sequences having
5′ trimming variations were similarly distributed across the
blood compounds, except that in neutrophils (CD15+),
serum and exosomes this variation at position –1 with re-
spect to reference sequences was more prevalent than in
other cell types (Figure 3A). Surprisingly, 3′ trimming dis-
tributions showed clear lineage-specific patterns across the
cell types. The frequency of unique sequences having 3′
trimming modification at positions –3 and –2 was higher
in lymphoid than in myeloid lineage, whereas from posi-
tion –1 to 3 it changed, and unique sequences having 3′-
trimming variation became more abundant in the myeloid
lineage. Meanwhile, the 3′ trimming distributions in serum
and exosomes showed similar patterns, and in most of the
positions were distinct from RBCs and whole blood sam-
ples (Figure 3B). The nt-substitutions were distributed sim-
ilarly across the blood compounds, except for serum at po-
sitions 1 and 4 and for exosomes from position 12 to 14. In-
terestingly, the overall distribution of substitutions within

miRNA sequences revealed a consistent pattern of posi-
tions in which nucleotides are less frequently substituted,
pointing toward the nucleotides which are the most im-
portant in the base-pairing during miRNA–target inter-
action, i.e. the ones within the seed site (2–8 nt) of miR-
NAs (Figure 3C). The fractions of unique sequences hav-
ing 3′ non-templated nucleotides were similar in neutrophils
(CD15+), RBCs, serum and exosomes. Unique sequences
having this modification were highly frequent at position 1
and vice versa at position 2 of the above-mentioned com-
pounds when compared to all the others (Figure 3D).

We were interested to further explore whether the anu-
cleate compounds such as RBCs, serum and exosomes
could also share the similar composition of the added nu-
cleotides, therefore we decided to look at the non-templated
3′ additions more closely. Remarkably, the composition of
3′ added nucleotides, the same as 3′ trimming preference,
was lineage-specific. The composition of non-templated nu-
cleotide additions clustered into three distinct groups, cor-
responding to myeloid lineage, lymphoid lineage and non-
cellular blood compounds, including serum and exosomes
(Figure 4). These results suggest that most of the RBC-
miRNAs probably originate from RBCs (or their progeni-
tors) and that the majority of miRNAs found in serum and
exosomes are not the products of hemolysis.

Differential expression analysis identifies blood cell specific
miRNA transcription signatures

To determine whether miRNA expression profiles (precisely
miRNA-arms) could distinguish cell types, we first per-
formed multidimensional scaling analysis which revealed
a consistent clustering within and between cell types with
only a very small proportion of outliers (see Figure 5).
Even the distinction of lymphoid and myeloid blood cells is
clearly visible with the red blood cell fraction forming a sep-
arated cluster. Also, the already mentioned heterogeneous
neutrophil cells form a consistent cluster pointing towards
a consistent sorting result.

Analysing the repertoire of previously known miRNAs
listed in miRBase v21, 382 of the currently annotated 2578
miRNAs were found to be expressed in >85% of the sam-
ples in at least one of the cell types. Pairwise differential
expression analysis between different cell types revealed
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Figure 3. The distributions of isomiR modification types across different blood compounds. (A) 5′ end trimming modification distribution; (B) 3′ end
trimming modification distribution; (C) nucleotide substitution modification distribution; (D) 3′ end addition modification distribution. Each dot represents
individual sample colored by group. The size of dots indicates the abundance which corresponds to the relative number of molecule copies per modification
type and position present in a given sample. The dash (–) symbol indicates the mean frequency of unique sequences per group. The smoothing in figure C
was performed using the generalized additive model (GAM) method.

224 of the 382 arms being significantly differentially ex-
pressed (FDR corrected P-value < 0.001; |log2FC| > 1)
between the two major blood cell lineages (lymphoid ver-
sus myeloid). We excluded the RBC data from this expres-
sion analysis, as RBCs per definition are anucleate and
do not express genes. As depicted in Figure 6A, 77 out
of 224 differentially expressed miRNAs are up-regulated
in lymphoid cells, whereas 167 miRNAs are up-regulated
in the myeloid lineage. Furthermore, by focusing on the
subtypes of lymphoid and myeloid cells, we found that
149 miRNAs were significantly different between natural
killer cells (CD56+) and small lymphocytes (CD4+, CD8+
and CD19+), 119 miRNAs between T-lymphocytes (CD4+
and CD8+) and B-lymphocytes (CD19+) and 193 between

CD14+ and CD15+ cells. For more details reference is made
to http://134.245.63.235/ikmb-tools/bloodmiRs.

We next focused on miRNAs that were significantly
higher expressed in one given cell type when compared
to every other cell type (see Figure 6B). Those miRNAs
could be considered part of the cell type-specific miRNA-
arm expression signature. Of the 382 miRNAs that were
expressed in at least one of the investigated cell types, 136
miRNAs followed the above pattern (FDR corrected P-
value < 0.001 and log2FC > 1). For CD4+ (T helper cells),
CD8+ (cytotoxic T cells), CD19+ (B cells) and CD56+ (NK
cells) we identified 9, 3, 10 and 18 specific miRNAs, respec-
tively, whereas for CD14+ (monocytes) and CD15+ (neu-
trophils) we detected 25 and 50 specific miRNAs, respec-
tively. The majority of these miRNAs were derived from
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Figure 4. The composition of 3′ added nucleotides across the blood compounds. A hierarchical average linkage clustering was used to generate a dendro-
gram based on relative frequencies of bases per position of the unique sequences, which then were visualized as sequence logos.

intronic regions of protein coding genes. Genomic con-
text and miRNA family information of cell type specific
miRNA-arms can be found in Supplementary Table S2.

To get an overview on miRNAs that are present in hu-
man blood but have not been covered by our cell sort-
ing approach, we additionally generated miRNA expres-
sion data for whole blood samples. We found 417 miRNAs
that were expressed in 85% of the samples in at least one
of the cell types or whole blood samples. Compared to the

Figure 5. The similarity structure of human blood cell miRNA transcrip-
tomes. MDS plot showing three clearly resolved clusters corresponding
to lymphoid cells (NK cells, B cells, T cells and Th cells), myeloid cells
(monocytes and neutrophils) and anucleate erythrocytes. The analysis was
performed on miRNA count data using Spearman’s correlation distance (1
– correlation coefficient). The dots represent samples coloured by group,
while the centre of ellipses corresponds to the group mean and the shapes
are defined by the covariance within group.

above-mentioned 382 miRNA species of the cell type spe-
cific datasets, we detected additional 35 miRNAs which are
either specific for other blood cell types or originate from
other sources (Supplementary Table S3).

Distinct isomiRs yield higher cell type specificity than
miRNA-arms

Taking into consideration that isomiRs can make a sig-
nificant contribution to miRNA representation, we re-
peated the pairwise differential expression analysis be-
tween different cell types and/or cell type groups by using
isomiR counts. Applying the previously described thresh-
old, we identified 2538 expressed isomiRs arising from
309 distinct miRNA-arms. Pairwise comparison between
lymphoid and myeloid lineages revealed 1862 differen-
tially expressed isomiRs deriving from 281 arms, 912 of
those isomiRs being up-regulated and 950 being down-
regulated. Analogous comparisons of the subtypes of lym-
phoid and myeloid cells displayed 1204 (derived from 211
miRNA-arms) differentially expressed isomiRs between
natural killer cells (CD56+) and small lymphocytes (CD4+,
CD8+ and CD19+), 773 (from 179 arms) isomiRs between
T-lymphocytes (CD4+ and CD8+) and B-lymphocytes
(CD19+) and 1420 (from 246 arms) between CD14+ and
CD15+ cells. For detailed information reference is made to
http://134.245.63.235/ikmb-tools/bloodmiRs.

As expected, when looking at higher resolution we were
able to detect considerably higher number of cell type spe-
cific isomiRs than by looking only at the miRNA-arms. In
total, we identified 800 isomiRs which were uniquely sig-
nificantly up-regulated in one of the cell types when com-
pared to every other cell type. For lymphoid lineage CD4+
(T helper cells), CD8+ (cytotoxic T cells), CD19+ (B cells)
and CD56+ (NK cells) we identified 31, 5, 57 and 212 cell
type specific isomiRs, respectively, whereas for myeloid lin-
eage CD14+ (monocytes) and CD15+ (neutrophils) cells
we detected 206 and 289 cell type specific isomiRs, respec-
tively (Supplementary Figure S2). The number of identified
isomiRs per cell type was highly correlated with the number
of identified cell type specific miRNA-arms (Pearson’s r =
0.9).

http://134.245.63.235/ikmb-tools/bloodmiRs
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Figure 6. (A) Differentially expressed miRNAs between lymphoid and myeloid cell lineage; (B) expression levels of blood cell lineage-specific miRNAs.
Each row of the heatmaps represents a sample corresponding to the one of the blood cell types, and each column represents an individual miRNA-arm.
All miRNAs were statistically differentially expressed (FDR ≤ 0.001 and |log2FC| > 1). The Z-score in the heatmaps represents standardized normal-
ized expression values. The unsupervised (agglomerative) hierarchical clustering of miRNAs was performed using Spearman’s correlation distance (1 –
correlation coefficient) as metric and average linkage clustering as linkage criterion.

Modification types of cell type specific isomiRs were sim-
ilarly distributed as in the general population of identified
isomiRs. The most common were 3′ trimming and 3′ ad-
dition modifications, and the least common were 5′ trim-
ming and nucleotide substitutions (Table 1). Interestingly,
on average, only ∼56% of isomiRs per cell type were arising
from previously identified cell type specific miRNAs, mean-
ing that the rest were not captured when only looking at
the miRNA-arm level. The complete list of cell type spe-
cific miRNA-arms and isomiRs identified in this study is
provided in Supplementary Table S4.

Identification of novel, blood cell specific miRNAs

In addition to measuring the expression of known miRNAs,
we also investigated whether novel miRNAs are hidden in
the generated sRNA-Seq data. For that purpose, pooled
data for each blood cell type were analyzed using the de
novo prediction functionality of miRDeep2. Overall, we ob-
tained 716 novel miRNA candidates predicted by miRD-
eep2. After removing false positives and performing several
filtering steps (Supplementary Figure S3), we retained 413
most probable novel miRNA candidates and ranked the se-
quences according to their similarity of known miRNA fea-
tures using novo-miRank. Of these 413 novel miRNA can-
didates, 52 molecules shared the same seed sequence with

known miRNAs from the taxonomic family of primates
(Hominidae). Characteristics such as genome context (in-
tronic, UTR or intergenic), nucleotide composition, min-
imum free energy (MFE) structure etc. of the novel can-
didates are provided in the Supplementary Table S5. Ad-
ditionally, precursor structures, read signatures and predic-
tion scores of novel candidates are provided in the Supple-
mentary File S1. Moreover, 50 out of 197 common novel
miRNAs were validated by the hybridization method in re-
cent study by Fehlmann et al. (56).

Next, we focused on differential expression of novel miR-
NAs in cell types and quantified novel miRNA candidates
in a sample-wise manner. We detected 76 out of 413 candi-
dates in at least 85% of the samples in at least one cell type,
and 26 of those were identified as cell type specific (Supple-
mentary Figure S4). Interestingly, with our thresholds, un-
like in previous reports, we were not able to identify novel
miRNA candidates within the RBC fraction.

DISCUSSION

Most sRNA-based biomarker studies today investigate
archetype miRNA or miRNA-arm expression in either
serum, exosomes or whole blood, while only a small num-
ber of studies focus on sub-compartments of blood, such as
the peripheral mononuclear cell fraction (PBMCs) or even
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Table 1. Summary of cell type specific isomiRs modification types

Cell type
Number of
isomiRs

5′-trimming
isomiRs

Seed
substituted
isomiRs

3′-trimming
isomiRs

3′ nt-added
isomiRs

nt-
substituted
isomiRs

Multi-
modified
isomiRs

Monocytes (CD14+) 206 44 (21.4%) 1 (0.5%) 112 (54.4%) 82 (39.8%) 1 (0.5%) 70 (34%)
Neutrophils (CD15+) 289 52 (18%) 0 (0%) 166 (57.4%) 142 (49.1%) 4 (1.4%) 99 (34.3%)
B cells (CD19+) 57 7 (12.3%) 0 (0%) 42 (73.7%) 39 (68.4%) 0 (0%) 32 (56.1%)
T helper cells (CD4+) 31 0 (0%) 0 (0%) 26 (83.9%) 15 (48.4%) 0 (0%) 14 (45.2%)
NK cells (CD56+) 212 52 (24.5%) 0 (0%) 161 (75.9%) 135 (63.7%) 0 (0%) 136 (64.2%)
Cytotoxic T cells (CD8+) 5 0 (0%) 0 (0%) 4 (80%) 1 (20%) 0 (0%) 1 (20%)
Total 800 155 (19.4%) 1 (0.1%) 511 (63.9%) 414 (51.7%) 5 (0.6%) 352 (44%)

single cell types. Moreover, even fewer studies are focusing
on isomiR expression in the aforementioned compounds.
Nearly all studies, including our own, report differentially
expressed miRNAs characteristic for a certain condition
or a disease, but in most of the cases it is not further in-
vestigated what are the variations in their sequences, and
which tissues or cell types contribute to the expression pat-
tern. The herein presented detailed miRNA expression cat-
alogue for different cellular and non-cellular components
of healthy human peripheral blood enables the researcher
to assign expression-signatures of single or groups of miR-
NAs and isomiRs to cell types and, thus, gather hypothe-
ses about putative functionality of the respective miRNA
(or its predicted target genes) in the study context. While
previous reports on miRNAs in sorted human blood cells
are mostly based on very few samples (n ≤ 5, see below)
or focused on developmental aspects such as hematopoiesis
(57), a comprehensive miRNA expression catalogue for a
broad range of mature blood cell types currently only exist
for mice (58). Moreover, all of the mentioned studies were
focusing only on archetype miRNAs and did not explore the
sequence variations and modifications of mature miRNAs.

Given our data, we were able to detect a substantial num-
ber of miRNAs outside transcriptionally active blood com-
pounds. We identified 271 known miRNA species within
RBCs. The results of a paper by Doss et al. (27) are nicely
mirrored in our RBC profiles, although we are able to ex-
pand the catalogue of highly abundant miRNAs in RBCs
with the most abundant miRNAs being present with me-
dian read counts >1000 reads per sample.

Analysis of miRNA sequence heterogeneity showed that
a vast majority of mature miRNAs, which were found to
be expressed in the peripheral blood compounds, are carry-
ing different and often composite sequence modifications.
Within our dataset, we identified sequence variations in
69.0% of detected miRNAs. As already indicated by previ-
ous studies in various human tissues, 3′-end modifications
were the predominant category (10,13,59–61).

Comparing the distributions of different types of miRNA
modifications across the studied blood compounds, we
found that 3′ trimming modifications were distributed in a
lineage-specific manner – the closer the hematopoietic pro-
genitors are, the higher are their similarities in the prefer-
ence of 3′ trimming modification. This phenomenon was
not observed in 5′ trimming distributions of isomiRs se-
quences, where the frequencies of modification were dis-
tributed similarly across the cell types, except for neu-
trophils (CD15+) and RBCs (CD235a+) in which the

isomiRs having earlier trimmed nucleotide were more fre-
quent than in another cell types. Similar findings of 5′ trim-
ming preference were observed in serum and exosomes.
These results support the assumption that, in contrast to
isomiRs with 3′ variability, 5′ isomiRs because of seed-
shifting have effects on target selection and the choice of
miRNA-5p/-3p strand for AGO binding (12,18), and pos-
sibly due to that, the intra-group variability of 5′ sequence
variation is lower than in the 3′ end.

One particularly interesting finding is that the overall dis-
tribution of nt-substitution modification within isomiR se-
quences showed a consistent pattern of positions in which
the nucleotides are less frequently substituted, thus, high-
lighting the nucleotides at positions 2–8 (seed site) and 15–
19, respectively, which are known to be important for tar-
get site recognition (62,63). All together this explains the
reduced heterogeneity at those sites.

Another surprising observation relates to our finding
that compositions of 3′ added non-templated nucleotides
in the blood compounds are also lineage-specific. The fre-
quencies of non-templated nucleotides clustered into three
main groups, corresponding to myeloid, lymphoid and
non-cellular compartments (serum and exosomes). Non-
templated additions of isomiRs found in whole blood clus-
tered together with RBCs, which is meaningful because
RBCs are the most abundant cells in blood. It is worth
pointing out that 3′ end uridylated isomiRs are relatively
more common in serum and exosomes than in cells––this
finding is consistent with results by Koppers-Lalic et al.,
where they showed that 3′ end adenylated miRNAs are rela-
tively enriched in B-lymphocytes, whereas 3′ end uridylated
isoforms appear overrepresented in exosomes (30). Another
study by Gutiérrez-Vázquez et al. demonstrated that 3′ ad-
dition of uridine promotes degradation of these uridylated
miRNAs after T-lymphocytes activation (31). Moreover, it
has been reported that non-templated nucleotide additions
can affect miRNA stability, target identification and target-
ing power (30,60).

Several recent studies already reported miRNA expres-
sion data on single blood cell types, such as natural
killer cells (64), B-lymphocytes (65), T-lymphocytes (29)
and RBCs (27). Two other projects screened the miRNA-
transcriptome using microarray technology in several blood
cell types (26,28). Comparing the results of both studies to
our miRNA-arm expression data, the previously reported
cell type specific miRNA signatures could only be partially
confirmed, as many miRNAs previously reported to be cell
type specific are actually found in other blood cell types
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in our data. All of six cell type specific miRNAs from Al-
lantaz et al. were confirmed within our dataset (26). The
miRNA profile of monocytes and B-cells reported by Lei-
dinger et al. were also completely verified by our find-
ings. The other profiles (T-cells, NK-cells and granulocytes),
however, contained only about half of cell type specific miR-
NAs that could be confirmed in our data. These differences
most probably arise from distinct miRNA profiling plat-
forms (66) or even different blood cell purification tech-
niques (67). In addition, our data complements the already
known miRNA profiles with numerous other miRNAs, pre-
viously unknown to be specific for certain blood cell types.
The same holds true for studies investigating only a single
blood cell type. Although these reports do not compare dif-
ferent cellular blood compounds, but rather cells in acti-
vated and resting states, thus, they do not report cell type
specific miRNAs; however, a considerable fraction of the
named miRNAs is reflected by our cell type specific profiles.
As nearly one half of miRNAs that have previously been re-
ported to be cell type specific are actually present in more
than one cell type in our data, the best explanation for these
discrepancies is the sample size and profiling platform. All
recent studies were conducted on n ≤ 5 samples using mi-
croarrays compared to n > 40 samples using NGS in our
case, which increases the statistical power substantially and
overcomes possible inter-individual variability.

Finally, we determined cell type specific isomiRs of the
human peripheral blood cells. In comparison to miRNA-
arms, we found a substantially higher number of cell type
specific isomiRs. The modification types of these molecules
were commonly distributed as in the general isomiR popu-
lation. An interesting observation is that almost a half of cell
type specific isomiRs were arising from miRNA-arms which
previously, in our dataset, were not assigned as cell type spe-
cific, showing that a big proportion of molecules is diluted
when looking only at the miRNA-arm level. However, up
to now there are no reports referring to differential expres-
sion of isomiRs within different blood cells, thus making it
impossible to compare and draw conclusions about these
results.

Taken together, we do not claim that our results are ex-
haustive or cover the entire miRNA-repertoire of healthy
human blood, but they provide the most comprehensive
contribution to date (with n > 40 individuals) toward a com-
plete miRNA inventory of human peripheral blood. Up-
coming reports from bigger research initiatives such as the
international human epigenome program (68) will hope-
fully amend the data with additional cell types and more
exhaustive data on miRNA and especially, on isomiRs
in circulation and exosomes. Moreover, recent techno-
logical developments enabling analyses on the single-cell
level will––as soon as they are applicable for miRNA
analysis––likely also make a significant contribution to-
wards completing the miRNA map of human blood.
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