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ABSTRACT

Motivation: Protein contact map describes the pairwise spatial and

functional relationship of residues in a protein and contains key infor-

mation for protein 3D structure prediction. Although studied exten-

sively, it remains challenging to predict contact map using only

sequence information. Most existing methods predict the contact

map matrix element-by-element, ignoring correlation among contacts

and physical feasibility of the whole-contact map. A couple of recent

methods predict contact map by using mutual information, taking into

consideration contact correlation and enforcing a sparsity restraint,

but these methods demand for a very large number of sequence

homologs for the protein under consideration and the resultant contact

map may be still physically infeasible.

Results: This article presents a novel method PhyCMAP for contact

map prediction, integrating both evolutionary and physical restraints

by machine learning and integer linear programming. The evolutionary

restraints are much more informative than mutual information, and the

physical restraints specify more concrete relationship among contacts

than the sparsity restraint. As such, our method greatly reduces the

solution space of the contact map matrix and, thus, significantly im-

proves prediction accuracy. Experimental results confirm that

PhyCMAP outperforms currently popular methods no matter how

many sequence homologs are available for the protein under

consideration.

Availability: http://raptorx.uchicago.edu.
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1 INTRODUCTION

In this article, we say two residues of a protein are in contact if

their Euclidean distance is58 Å. The distance of two residues can

be calculated using C� or C� atoms, corresponding to C�- or C�-

based contacts. A protein contact map is a binary L�L matrix,

where L is the protein length. In this matrix, an element with

value 1 indicates the corresponding two residues are in contact;

otherwise, they are not in contact. Protein contact map describes

the pairwise spatial and functional relationship of residues in a

protein. Predicting contact map using sequence information has

been an active research topic in recent years partially because

contact map is helpful for protein 3D structure prediction

(Ortiz et al., 1999; Vassura et al., 2008; Vendruscolo et al.,

1997; Wu et al., 2011) and protein model quality assessment

(Zhou and Skolnick, 2007). Protein contact map has also been

used to study protein structure alignment (Caprara et al., 2004;

Wang et al., 2013; Xu et al., 2007).
Many machine-learning methods have been developed for pro-

tein contact prediction in the past decades (Fariselli and Casadio,

1999; Göbel et al., 2004; Olmea and Valencia, 1997; Punta and

Rost, 2005; Vendruscolo and Domany, 1998; Vullo et al., 2006).

For example, SVMSEQ (Wu and Zhang, 2008) uses support

vector machines for contact prediction; NNcon (Tegge et al.,

2009) uses a recursive neural network; SVMcon (Cheng and
Baldi, 2007) also uses support vector machines plus features

derived from sequence homologs; Distill (Baú et al., 2006) uses

a 2D recursive neural network. Recently, CMAPpro (Di Lena

et al., 2012) uses a multi-layer neural network. Although differ-

ent, these methods are common in that they predict the contact

map matrix element-by-element, ignoring the correlation among

contacts and also physical feasibility of the whole-contact map

(physical constraints are not totally independent of contact cor-

relation). A special type of physical constraint is that a contact
map matrix must be sparse, i.e. the number of contacts in a

protein is only linear in its length.

Two recent methods [PSICOV (Jones et al., 2012) and Evfold
(Morcos et al., 2011)] predict contacts by using only mutual in-

formation (MI) derived from sequence homologs and enforcing

the aforementioned sparsity constraint. However, both of them

demand for a large number (at least several hundreds) of se-

quence homologs for the protein under prediction. This makes

the predicted contacts not useful in protein modeling, as a

(globular) protein with many sequence homologs usually has

similar templates in PDB; thus, template-based models are of

good quality and hard to be further improved using predicted
contacts. Conversely, a protein without close templates in PDB,

which may require contact prediction, usually has few sequence

homologs even if millions of protein sequences are now available.

Further, these two methods enforce only a simple sparsity con-

straint (i.e. the total number of contacts in a protein is small),

ignoring many more concrete constraints. To name a few, one

residue can have only a small number of contacts, depending on

its secondary structure and neighboring residues. The number of

contacts between two �-strands is bounded by the strand length.
Astro-Fold (Klepeis and Floudas, 2003) possibly is the first

method that applies physical constraints, which implicitly imply

the sparsity constraint used by PSICOV and Evfold, to contact
map prediction. However, some of the physical constraints are

too restrictive and possibly unrealistic. For example, it requires

that a residue in one �-strand can only be in contact with a

residue in another �-strand. More importantly, Astro-Fold

does not take into consideration evolutionary information;

thus, it significantly reduces its prediction accuracy.
In this article, we present a novel method PhyCMAP for con-

tact map prediction by integrating both evolutionary and phys-

ical constraints using machine learning [i.e. Random Forests

(RF)] and integer linear programming (ILP). PhyCMAP first

predicts the probability of any two residues forming a contact

using evolutionary information (including MI), predicted*To whom correspondence should be addressed.
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secondary structure and distance-dependent statistical potential.
PhyCMAP then infers a given number of top contacts based on

predicted contact probabilities by enforcing a set of realistic

physical constraints on the contact map. These restraints specify

more concrete relationship among contacts and also imply the

sparsity restraint used by PSICOV and Evfold. By combining

both evolutionary and physical constraints, our method greatly
reduces the solution space of contact map and leads to much

better prediction accuracy. Experimental results confirm that

PhyCMAP outperforms currently popular methods no matter

how many sequence homologs are available for the protein

under prediction.

2 METHODS

Overview. As shown in Figure 1, our method consists of several key

components. First, we use RF to predict the contact probability of any

two residues based on a few protein features related to these two residues.

Then we use an ILP method to select a set of top contacts by maximizing

their accumulative probabilities subject to a set of physical constraints.

The resultant top contacts form a physically favorable contact map for

the protein under consideration.

2.1 Predicting contact probability by Random Forests

We use RF to predict the probability of any two residues forming a

contact using the following input features: EPAD (a context-specific dis-

tance-based statistical potential) (Zhao and Xu, 2012), PSIBLAST

sequence profile (Altschul and Koonin, 1998), secondary structure pre-

dicted by PSIPRED (Jones, 1999), pairwise contact score and contrastive

MI (CMI) derived from multiple sequence alignment (MSA) of the

sequence homologs of the protein under prediction. The latter four fea-

tures are calculated on the residues in a local window of size 5 centered at

the residues under consideration. In total, there are �300 features for

each residue pair. We trained our RF model using the Random Forest

package in R (Breiman, 2001; Liaw and Wiener, 2002) and selected the

model parameters by 5-fold cross-validation.

EPAD. The context-specific interaction potential of the C� or C�
atoms of two residues at all the possible distance bins is used as features.

The atomic distance is discretized into some bins by 1 Å, and all the

distance415 Å is grouped into a single bin.

Sequence profile. The position-specific mutation scores at residues i

and j and their neighboring residues are used.

In addition, a protein contact-based potential CCPC (Tan et al., 2006)

and amino acid physic-chemical properties are also used as features of

our RF model.

Homologous pairwise contact score (HPS). Let i and j denote two resi-

dues of the protein under consideration. Let H denote the set of all the

sequence homologs. Given an MSA of all the homologs in H, we calcu-

late the homologous pairwise contact score HPS for two residues i and j

as follows.

HPS i, jð Þ ¼
X
h2H

PSbeta ahi , a
h
j

� �
þ PShelix ahi , a

h
j

� �

where ahi ða
h
j Þ denotes the residue in a homolog h aligned to residue i(j) in

the query sequence. PSbetaða
h
i , a

h
j Þ is the probability of two amino acids

ahi , a
h
j forming a contact in a �-sheet. PShelixða

h
i , a

h
j Þ is the probability of

two amino acids ahi , a
h
j forming a contact connecting two helices. The

probability is calculated as follows.

PSbeta A,Bð Þ ¼
The number of amino acids A,Bð Þ forming a beta contact

Total number of beta contact pairs in training set

PShelix A,Bð Þ ¼
The number of amino acids A,Bð Þ forming a helix contact

Total number of beta contact pairs in training set

The contrastive mutual information. Let mi,j denote the MI between

these two residues i and j, which can be calculated from the MSA of

all the sequence homologs. We define the CMI as the MI difference be-

tween one residue pair and all of its neighboring pairs, which can be

calculated as follows.

CMIi, j¼ mi, j�mi�1, j

� �2
þ mi, j�miþ1, j

� �2
þ mi, j�mi, j�1

� �2
þ mi, j�mi, jþ1

� �2

The CMI measures how the co-mutation strength of one residue

pair differs from its neighboring pairs. By using CMI instead of MI,

we can remove the background bias of MI in a local region, as shown

in Figure 2. In the case that there are only a small number of sequence

homologs available, some conserved positions, which usually have en-

tropy50.3, may have very low MI, which may result in artificially high

CMI. To avoid this, we directly set the CMI of these positions to 0.

2.2 The integer linear programming method

The variables. Let i and j denote residue positions and L the protein

length. Let u and v index secondary structure segments of a protein.

Let Begin(u) and End(u) denote the first and last residues of the segment

u and SSeg(u) the set fijBegin uð Þ � i � End uð Þg. Let SStype(u) denote

the secondary structure type of one residue or one segment u. Let Len(u)

denote the length of the segment u. We use the binary variables in

Table 1.

Fig. 2. The CMI (lower triangle) and MI (upper triangle) of protein

1j8bA.The native contact pairs are marked by boxes

Integer Programming Model

Predict contact 
probability by RF

Prior knowledge on 
contact map

Objective
function

Linear physical
constraints

Physically feasible contact map

Fig. 1. The overview of our approach

i267

Predicting protein contact map



The objective function. Intuitively, we shall choose those contacts with

the highest probability predicted by our RF model, i.e. the objective

function shall be the sum of predicted probabilities of the selected con-

tacts. However, the selected contacts shall also minimize the violation of

the physical constraints. To enforce this, we use a vector of relaxation

variables R to measure the degree to which all the soft constraints are

violated. Thus, our objective function is as follows.

max
X,R

X
j�i�6

ðXi, j � Pi, jÞ � g Rð Þ

where Pi, j is the contact probability predicted by our RF model for two

residues and g Rð Þ ¼
P
r
Rr is a linear penalty function where r runs over

all the soft constraints. The relaxation variables will be further explained

in the following section.

The constraints. We use both soft and hard constraints. There is a

single relaxation variable for each group of soft constraint, but the

hard constraints are strictly enforced. We penalize the violation of soft

constraints by incorporating the relaxation variables to the objective

function. The constraints in Groups 1, 2 and 6 are soft constraints.

Those in Groups 3, 4, 5 and 7 are hard constraints, some of which are

similar to what are used by Astro-Fold (Klepeis and Floudas, 2003).

Group 1. This group of soft constraints bound from above the total

number of contacts that can be formed by a single residue i (in a second-

ary structure type s1) with all the other residues in a secondary structure

type s2.

8i : SStype ið Þ ¼ s1,
X

j:SStype jð Þ¼s2

Xi, j � R1 þ bs1, s2

where bs1, s2 is a constant empirically determined from our training data

(Table 2), and R1 is the relaxation variable.

Group 2. This group of constraints bound the total number of contacts

between two strands sharing at least one contact. Let u and v denote two

�-strands. We have
X

i2SSeg vð Þ, j2SSeg uð Þ

Xi, j þ R2 � 3� Su, v �min Len uð Þ,Len vð Þð Þ

X
i2SSeg vð Þ, j2SSeg uð Þ

Xi, j � 3:3�max Len uð Þ,Len vð Þð Þ þ R3

The two constraints are explained in Figure 3 as follows. Figure 3A

shows that the total number of contacts between two �-strands diverges

into two groups when min Len uð Þ,Len vð Þð Þ � 9. One group is due to

�-strand pairs forming a �-sheet. The other may be due to incorrectly

predicted �-strands or �-strand pairs not in a �-sheet. Figure 3B shows

that the total number of contacts between a pair of �-strands has an

upper bound proportional to the length of the longer �-strand. As

there are points below the skew line in Figure 3A, which indicate that

a �-strand pair may have fewer than 3�min Len uð Þ,Len vð Þð Þ contacts, we

add a relaxation variable R2 to the lower bound constraints in Group 2.

Similarly, we use a relaxation variable R3 for the upper bound

constraints.

Group 3. When two strands form an anti-parallel �-sheet, the contacts

of neighboring residue pairs shall satisfy the following constraints.

Xi, j � Xi�1, jþ1 þ Xiþ1, j�1 � 1

where i, i� 1 are residues in one strand, and j, j� 1 are residues in the

other strand.

Table 1. The binary variables used in the ILP formulation

Variables Explanations

Xi, j Equal to 1 if there is a contact between two

residues i and j.

APu, v Equal to 1 if two �-strands u and v form an

anti-parallel �-sheet.

Pu, v Equal to 1 if two �-strands u and v form a parallel �-sheet.

Su, v Equal to 1 if two �-strands u and v form a �-sheet.

Tu, v Equal to 1 if there is an �-bridge between two

helices u and v.

Rr A non-negative integral relaxation variable of

the rth soft constraint.

Table 2. The empirical values of bs1, s2 calculated

from the training data

s1,s2 95% Max

H,H 5 12

H,E 3 10

H,C 4 11

E,H 4 12

E,E 9 13

E,C 6 15

C,H 3 12

C,E 5 12

C,C 6 20

Note: The first column indicates the combination of two

secondary structure types: H (�-helix), E (�-strand) or C

(coil). Each row contains two statistical values for a pair of

secondary structure types. Column ‘95%’: 95% of the sec-

ondary structure pairs have the number of contacts smaller

than the value in this column; column ‘Max’: the largest

number of contacts.

Fig. 3. The skew lines indicate the bounds for the total number of con-

tacts between two �-strands. (A) Lower bound; (B) upper bound
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Group 4. When there are parallel contacts between two strands, the

contacts of neighboring residue pairs should satisfy the following

constraints.

Xi, j � Xi�1, j�1 þ Xiþ1, jþ1 � 1

where i, i� 1 are residues in one strand, and j, j� 1 are residues in the

other strand.

Group 5. One �-strand u can form �-sheets with up to two other

�-strands.
X

v:SStype vð Þ¼beta

Su, v � 2

Group 6. There is no contact between the start and end residues of a

loop segment u.

Xi, j � 0þ R4, i ¼ Begin uð Þ, j ¼ End uð Þ

In our training set, there are totally �8000 loop segments, and only

3.4% of them have a contact between the start and end residues. To allow

the rare cases, we use a relaxation variable R4 in the constraints.

Group 7. One residue i cannot have contacts with both j and jþ 2 when

j and jþ 2 are in the same � helix.

Xi, j þ Xi, jþ2 � 1

Group 8. This group of constraints models the relationship among

different groups of variables.

APu, v þ Pu, v ¼ Su, v

Xi, j � Su, v,8i 2 SSeg uð Þ, j 2 SSeg vð ÞX
1�i5j�L, j�i�6

Xi, j ¼ k

where k is the number of top contacts we want to predict.

Our ILP model is solved by IBM CPLEX academic version V12.1

(CPLEX, 2009).

Training data. It consists of 900 non-redundant protein structures, any

two of which share no425% sequence identity. As there are far fewer

contacting residue pairs than non-contacting pairs, we use all the con-

tacting pairs and randomly sample only 20% of the non-contacting pairs

as the training data. All the training proteins are selected before CASP10

(the 10th Critical Assessment of Structure Prediction) started in May

2012.

Test data I: CASP10. This set contains 123 CASP10 targets with pub-

licly available native structures. Meanwhile, 36 of them are classified as

hard targets because the top half of their submitted models have average

TM-score50.5. When they were just released, most of the CASP10 tar-

gets share low sequence identity (525%) with the proteins in PDB.

BLAST indicates that there are only five short CASP10 targets (�50

residues), which have sequence identity slightly430% with our training

proteins.

Test data II: Set600. This set contains 601 proteins randomly extracted

from PDB25 (Brenner et al., 2000) and was constructed before CASP10

started. The test proteins have the following properties: (i) they share

525% sequence identity with the training proteins; (iii) all proteins

have at least 50 residues and an X-ray structure with resolution better

than 1.9 Å; and (iii) all the proteins have at least five residues with pre-

dicted secondary structure being �-helix or �-strand.
Both the training set and Set600 are sampled from PDB25 (Wang and

Dunbrack, 2003), in which any two proteins share525% sequence iden-

tity. Sequence identity is calculated using the method in (Brenner et al.,

2000).

Programs to be compared. We compare our method, denoted as

PhyCMAP, with four state-of-the-art methods: CMAPpro (Di Lena

et al., 2012), NNcon (Tegge et al., 2009), PSICOV (Jones et al., 2012)

and Evfold (Morcos et al., 2011). We run NNcon, PSICOV and Evfold

locally and CMAPpro through its web server. We do not compare our

method with Astro-Fold because it is not publicly available. Further, it

does not perform well because of lack of evolutionary information.

Evaluation methods. Depending on the chain distance of the two resi-

dues, there are three kinds of contacts: short-range, medium-range and

long-range. Short-range contacts are closely related to local conformation

and are relatively easy to predict. Medium-range and long-range contacts

determine the overall shape of a protein and are more challenging to

predict. We evaluate prediction accuracy using the top 5, L/10, L/5 pre-

dicted contacts, where L is the protein length.

Meff: the number of non-redundant sequence homologs. Given a target

and the multiple sequence alignment of all of its homologs, we measure

the number of non-redundant sequence homologs by Meff as follows.

Meff ¼
X
i

1P
j Si, j

ð1Þ

where both i and j go over all the sequence homologs, and Si,j is a binary

similarity value between two proteins. Following Evfold (Morcos et al.,

2011), we compute the similarity of two sequence homologs using their

hamming distance. That is, Si,j is 1 if the normalized hamming distance is

50.3; 0 otherwise.

3 RESULTS

Performance on the CASP10 set. As shown in Table 3, on the

whole-CASP10 set, our PhyCMAP significantly exceeds the se-

cond best method CMAPpro in terms of the accuracy of the top

five, L/10 and L/5 predicted contacts. The advantage of

PhyCMAP over CMAPpro becomes smaller but still substantial

when short-range contacts are excluded from consideration.

PhyCMAP significantly outperforms NNcon, PSICOV and

Evfold no matter how the performance is evaluated.
Performance on the 36 hard CASP10 targets. As shown in

Table 4, on the 36 hard CASP10 targets, our PhyCMAP exceeds

the second best method CMAPpro by 5–7% in terms of the

accuracy of the top five, L/10 and L/5 predicted contacts. The

advantage of PhyCMAP over CMAPpro becomes smaller but

still substantial when short-range contacts are excluded from

consideration. PhyCMAP significantly outperforms NNcon,

PSICOV and Evfold no matter how many predicted contacts

are evaluated. PSICOV and Evfold almost fail on these hard

CASP10 targets. By contrast, CMAPpro, NNcon and

PhyCMAP still work, although they do not perform as well as

on the whole CASP10 set.

Note that both PSICOV and Evfold, two recent methods

receiving a lot of attentions from the community, do not perform

well on the CASP10 set. This is partially because they require a

large number of sequence homologs for the protein under pre-

diction. Nevertheless, most of the CASP targets, especially the

hard ones, do not have so many sequence homologs because a

protein with so many homologs likely has similar templates in

PDB and thus, were not used by CASP.

Relationship between prediction accuracy and the number of

sequence homologs. We divide the 123 CASP10 targets into five

groups according to their logMeff values: (0,2), (2,4), (4,6), (6,8),

(8,10), which contain 19, 17, 25, 36 and 26 targets, respectively.

Meanwhile, Meff is the number of non-redundant sequence

homologs for the protein under consideration (see Section 2

for definition). Only medium- and long-range contacts are con-

sidered here. Figure 4 clearly shows that the prediction accuracy

increases with respect to Meff. The more non-redundant

Predicting protein contact map
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homologs are available, the better prediction accuracy can be

achieved by PhyCMAP, Evfold and PSICOV. However,

CMAPpro and NNcon have decreased accuracy when

logMeff48.
Figure 4 also shows that PhyCMAP outperforms Evfold,

CMAPpro and NNcon across all Meff. PhyCMAP greatly out-

performs PSICOV in predicting C� contacts regardless of Meff

and also in predicting C� contacts when logMeff �6. PhyCMAP

has comparable performance as PSICOV in predicting C� con-

tacts when logMeff46.

Performance on Set600. To fairly compare our method with

Evfold (Morcos et al., 2011) and PSICOV (Jones et al., 2012),

both of which require a large number of sequence homologs, we

divide Set600 into two subsets based on the amount of homolo-

gous information available for the protein under prediction. The

first subset is relatively easier, containing 471 proteins with

Meff4100 (see Section 2 for definition). All the proteins in this

subset have4500 sequence homologs, which satisfies the require-

ment of PSICOV. The second subset is more challenging to

predict, containing 130 proteins with Meff� 100. As shown in

Table 5, even on the first subset, PhyCMAP still exceeds

PSICOV and Evfold, although the advantage over PSICOV is

not substantial for C� contacts prediction when short-range con-

tacts are excluded from consideration. PhyCMAP also outper-

forms NNcon and CMAPpro on this set. As shown in Table 6,

on the second subset, PhyCMAP significantly outperforms

PSICOV and is slightly better than CMAPpro and NNcon.

These results again confirm that our method applies to a protein

without many sequence homologs, on which PSICOV and

Evfold usually fail.
It should be noticed that CMAPpro used Astral 1.73 (Brenner

et al., 2000; Di Lena et al., 2012) as its training set, which shares

490% sequence identity with 226 proteins in Set600 (180 with

Meff4100 and 46 with Meff� 100). To more fairly compare the

prediction methods, we exclude the 226 proteins from Set600

that share490% sequence identity with the CMAPpro training

set. Here, the sequence identity is calculated using CD-HIT (Li

and Godzik, 2006; Li et al., 2001). This results in a set of 291

proteins with Meff4100 and 84 proteins Meff� 100. Table 7

shows that PhyCMAP greatly outperforms CMAPpro and

Evfold on the reduced dataset. PhyCMAP also outperforms

Table 3. This table lists the prediction accuracy of PhyCMAP, PSICOV, NNcon, CMAPpro and Evfold on short-, medium- and long-range contacts,

tested on CASP10 (123 targets)

Method Short-range, sequence

distance from 6 to 12

Medium- and long-range,

sequence distance412

Medium-range, sequence

distance412 and �24

Long-range, sequence

distance424

Top 5 L/10 L/5 Top 5 L/10 L/5 Top 5 L/10 L/5 Top 5 L/10 L/5

PhyCMAP (C�) 0.623 0.555 0.459 0.650 0.584 0.523 0.585 0.518 0.448 0.421 0.363 0.320

PhyCMAP (C�) 0.667 0.580 0.482 0.655 0.604 0.539 0.621 0.550 0.465 0.514 0.425 0.373

PSICOV (C�) 0.294 0.225 0.179 0.397 0.345 0.306 0.384 0.303 0.255 0.350 0.277 0.226

PSICOV (C�) 0.379 0.281 0.223 0.522 0.458 0.405 0.515 0.387 0.316 0.457 0.372 0.315

NNcon (C�) 0.595 0.499 0.399 0.472 0.409 0.358 0.463 0.393 0.334 0.286 0.239 0.188

CMAPpro (C�) 0.506 0.437 0.368 0.517 0.466 0.424 0.485 0.414 0.363 0.380 0.336 0.297

CMAPpro (C�) 0.543 0.477 0.395 0.519 0.466 0.415 0.491 0.419 0.370 0.395 0.347 0.313

Evfold (C�) 0.236 0.193 0.165 0.380 0.326 0.295 0.351 0.294 0.249 0.328 0.257 0.225

Fig. 4. The relationship between prediction accuracy and the number of

non-redundant sequence homologs (Meff). x-axis is logMeff and y-axis is

the mean accuracy of top L/10 predicted contacts on the corresponding

CASP10 target group. Only medium- and long-range contacts are

considered

Table 4. Prediction accuracy on the 36 hard CASP10 targets

Method Short-range, sequence

distance from 6 to 12

Medium and long-range,

sequence distance412

Top 5 L/10 L/5 Top 5 L/10 L/5

PhyCMAP (C�) 0.456 0.439 0.378 0.394 0.378 0.325

PhyCMAP (C�) 0.478 0.469 0.414 0.444 0.409 0.363

PSICOV (C�) 0.100 0.083 0.082 0.183 0.156 0.150

PSICOV (C�) 0.144 0.113 0.103 0.239 0.196 0.180

NNcon (C�) 0.400 0.372 0.320 0.367 0.317 0.289

CMAPpro (C�) 0.383 0.347 0.314 0.328 0.322 0.292

CMAPpro (C�) 0.433 0.398 0.344 0.394 0.362 0.308

Evfold (C�) 0.100 0.095 0.094 0.194 0.179 0.156

Note: The C� results are in gray rows.

Z.Wang and J.Xu
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PSICOV in predicting C� contacts, but it is slightly worse in

predicting long-range C� contacts.

3.1 Contribution of contrastive mutual information and

pairwise contact scores

The CMI and HPS help improve the performance of our RF

model. Table 8 shows their contribution to the prediction accur-

acy on the 471 proteins (with Meff4100) in Set600.

3.2 Contribution of physical constraints

Table 9 shows the improvement resulting from the physical con-

straints (i.e. the ILP method) over the RF method on Set600. On

the 471 proteins with Meff4100, ILP improves medium and

long-range contact prediction, but not short-range contact pre-

diction. This result confirms that the physical constraints used by

our ILP method indeed capture some global properties of a pro-

tein contact map. The improvement resulting from the physical

constraints is larger on the 130 proteins with Meff� 100. In par-

ticular, the improvement on short-range contacts is substantial.

These results may imply that when homologous information is

sufficient, we can predict short-range contacts accurately and

thus, cannot further improve the prediction by using the physical

constraints. When homologous information is insufficient for

accurate contact prediction, we can improve the prediction

using the physical constraints, which are complementary to evo-

lutionary information.

3.3 Specific examples

We show the contact prediction results of two CASP10 targets

T0693D2 and T0677D2 in Figures 5 and 6, respectively.

T0693D2 has many sequence homologs with Meff¼ 2208.39.

As shown in Figure 5, PhyCMAP does well in predicting the

long-distance contacts around the residue pair (20,100). For

this target, PhyCMAP and Evfold obtain top L/10 prediction

accuracy of 0.810 and 0.619, respectively, on medium- and

long-range contacts. T0677D2 does not have many sequence

homologs with Meff¼ 31.53. As shown in Figure 6, our predic-

tion matches well with the native contacts. PhyCMAP has top L/

10 prediction accuracy 0.429 on medium- and long-range con-

tacts, whereas Evfold cannot correctly predict any contacts.

4 CONCLUSION AND DISCUSSIONS

This article has presented a novel method for protein contact

map prediction by integrating both evolutionary and physical

constraints using machine learning and ILP. Our method differs

from currently popular contact prediction methods in that we

enforce a few physical constraints, which imply the sparsity con-

straint (used by PSICOV and Evfold), to the whole-contact map

and take into consideration contact correlation. Our method also

differs from the first-principle method (e.g. Astro-Fold) in that

we exploit evolutionary information from several aspects (e.g.

MI, context-specific distance potential and sequence profile) to

significantly improve prediction accuracy. Experimental results

confirm that our method outperforms existing popular machine-

learning methods (e.g. CMAPpro and NNcon) and two recent

co-mutation–based methods PSICOV and Evfold regardless of

the number of sequence homologs available for the protein under

consideration.
The study of our method indicates that the physical con-

straints are helpful for contact prediction, especially when the

protein under consideration does not have many sequence homo-

logs. Nevertheless, the physical constraints exploited by our cur-

rent method do not cover all the properties of a protein contact

map. To further improve prediction accuracy on medium- and

long-range contact prediction, we may take into consideration

global properties of a protein distance matrix. For example, the

pairwise distances of any three residues shall satisfy the triangle

inequality. Some residues also have correlated pairwise distances.

To enforce this kind of distance constraints, we shall introduce

distance variables and also define their relationship with contact

variables. By introducing distance variables, we may also opti-

mize the distance probability, as opposed to the contact prob-

ability used by our current ILP method. Further, we can also

introduce variables of �-sheet (group of �-strands) to capture

more global properties of a contact map.
One may ask how our approach compares with a model-based

filtering strategy in which 3D models are built based on initial

predicted contacts and then used to filter incorrect predictions.

Our method differs from this general ‘model-based filtering’

strategy in a couple of aspects. First, it is time-consuming to

build thousands or at least hundreds of 3D models with initial

Table 6. Benchmark on the 130 proteins with Meff� 100

Method Short-range, sequence

distance from 6 to 12

Medium- and long-range,

sequence distance412

Top 5 L/10 L/5 Top 5 L/10 L/5

PhyCMAP (C�) 0.534 0.451 0.377 0.432 0.372 0.319

PhyCMAP (C�) 0.505 0.435 0.365 0.418 0.364 0.314

PSICOV (C�) 0.060 0.061 0.064 0.049 0.039 0.035

PSICOV (C�) 0.077 0.070 0.073 0.069 0.050 0.045

NNcon (C�) 0.442 0.363 0.309 0.368 0.339 0.301

CMAPpro (C�) 0.435 0.365 0.314 0.368 0.331 0.300

CMAPpro (C�) 0.532 0.434 0.353 0.358 0.331 0.280

Note: The result for Evfold is not shown, as it does not produce meaningful pre-

dictions for some proteins.

Table 5. Benchmark on the 471 proteins with Meff4100

Method Short-range, sequence

distance from 6 to 12

Medium- and long-range,

sequence distance412

Top 5 L/10 L/5 Top 5 L/10 L/5

PhyCMAP (C�) 0.761 0.653 0.539 0.716 0.675 0.611

PhyCMAP (C�) 0.746 0.637 0.531 0.731 0.656 0.608

PSICOV (C�) 0.457 0.341 0.257 0.528 0.465 0.411

PSICOV (C�) 0.584 0.425 0.316 0.732 0.646 0.565

NNcon (C�) 0.512 0.432 0.355 0.432 0.361 0.308

CMAPpro (C�) 0.682 0.551 0.431 0.710 0.642 0.574

CMAPpro (C�) 0.671 0.542 0.436 0.674 0.601 0.532

Evfold (C�) 0.379 0.297 0.234 0.473 0.438 0.400
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Table 7. This table lists the prediction accuracy of PhyCMAP, PSICOV, NNcon, CMAPpro and Evfold on short-, medium- and long-range contacts,

tested on Set600

Method Short-range, sequence

distance from 6 to 12

Medium- and long-range,

sequence distance412

Medium-range, sequence

distance412 and �24

Long-range, sequence

distance424

Top 5 L/10 L/5 Top 5 L/10 L/5 Top 5 L/10 L/5 Top 5 L/10 L/5

a) The 291 proteins in Set600 with Meff4100 and �90% sequence identify with Astral 1.73

PhyCMAP(C�) 0.759 0.653 0.536 0.713 0.680 0.622 0.639 0.570 0.496 0.582 0.528 0.461

PhyCMAP(C�) 0.741 0.641 0.534 0.746 0.653 0.611 0.655 0.571 0.500 0.636 0.550 0.477

PSICOV(C�) 0.459 0.343 0.258 0.528 0.469 0.417 0.462 0.363 0.282 0.483 0.418 0.358

PSICOV(C�) 0.582 0.422 0.314 0.733 0.650 0.569 0.647 0.496 0.371 0.674 0.584 0.495

NNcon(C�) 0.475 0.390 0.318 0.377 0.313 0.267 0.342 0.284 0.236 0.224 0.182 0.152

CMAPpro(C�) 0.643 0.519 0.412 0.689 0.618 0.554 0.580 0.511 0.439 0.527 0.469 0.416

CMAPpro(C�) 0.642 0.520 0.422 0.653 0.580 0.515 0.573 0.494 0.421 0.504 0.444 0.396

Evfold(C�) 0.382 0.297 0.235 0.488 0.442 0.398 0.451 0.366 0.289 0.442 0.389 0.342

b) The 84 proteins in Set600 with Meff �100 and �90% sequence identity with Astral 1.73

PhyCMAP(C�) 0.580 0.488 0.404 0.481 0.430 0.357 0.476 0.417 0.335 0.204 0.179 0.159

PhyCMAP(C�) 0.548 0.468 0.392 0.454 0.408 0.345 0.452 0.399 0.331 0.220 0.214 0.187

PSICOV(C�) 0.070 0.071 0.072 0.065 0.050 0.044 0.074 0.055 0.049 0.063 0.043 0.035

PSICOV(C�) 0.081 0.078 0.083 0.088 0.068 0.059 0.092 0.066 0.059 0.076 0.058 0.046

NNcon(C�) 0.535 0.421 0.342 0.324 0.298 0.248 0.348 0.321 0.271 0.162 0.132 0.114

CMAPpro(C�) 0.465 0.370 0.316 0.346 0.328 0.285 0.360 0.332 0.286 0.173 0.169 0.158

CMAPpro(C�) 0.447 0.367 0.321 0.346 0.320 0.287 0.366 0.331 0.290 0.191 0.189 0.176

Evfold(C�) 0.074 0.068 0.066 0.079 0.058 0.039 0.074 0.053 0.045 0.063 0.042 0.032

Table 9. The contribution of physical constraints

Method Short-range contacts Medium- and long-range

Top 5 L/10 L/5 Top 5 L/10 L/5

471 proteins in Set600 with Meff 4 100

RFþ ILP 0.746 0.637 0.531 0.731 0.656 0.608

RF 0.754 0.632 0.521 0.720 0.649 0.589

130 proteins in Set600 with Meff� 100

RFþ ILP 0.505 0.435 0.365 0.418 0.364 0.314

RF 0.445 0.368 0.299 0.414 0.342 0.281

Note: The results are C� contact prediction.

Table 8. The contribution of CMI and homologous pair contact scores to

C� contact prediction

Method Short-range

contacts

Medium- and

long-range

Top 5 L/10 L/5 Top 5 L/10 L/5

with CMI and HPS 0.754 0.632 0.521 0.720 0.649 0.589

no CMI and HPS 0.600 0.570 0.487 0.538 0.560 0.506

Note: Similar results are observed for C� contact prediction.

Fig. 5. The predicted medium- and long-range contacts for T0693D2.

The upper triangles display the native C� contacts. The lower triangles

of the left and right plots display the contact probabilities predicted by

PhyCMAP and Evfold, respectively

Fig. 6. The predicted medium- and long-range contacts for T0677D2.

The upper triangles display the native C� contacts. The lower triangles

of the left and right plots display the contact probabilities predicted by

PhyCMAP and Evfold, respectively
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predicted contacts. In contrast, our method can do contact pre-
diction (using physical constraints) within minutes. Second, the
quality of the 3D models is also determined by other factors,
such as energy function and energy optimization (or conform-

ation sampling) methods, whereas our method is independent of
these factors. Even if the energy function is accurate, the energy
optimization algorithm often is trapped to local minima because

the energy function is not rugged. That is, the 3D models result-
ing from energy minimization are biased toward a specific region
of the conformation space, unless an extremely large-scale of

conformation sampling is conducted. Therefore, the predicted
contacts derived from these models may also suffer from this
‘local minima’ issue. By contrast, our integer programming

method can search through the whole conformation space and
find the global optimal solution; thus, it is not biased to any local
minima region. By using our predicted contacts as constraints,
we may pinpoint to the good region of a conformation space

(without being biased by local minima), reduce the search space
and significantly speed-up conformation search.
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