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Abstract Non-random functional connectivity during unconsciousness is a defining feature of

supraspinal networks. However, its generalizability to intrinsic spinal networks remains incompletely

understood. Previously, Barry et al., 2014 used fMRI to reveal bilateral resting state functional

connectivity within sensory-dominant and, separately, motor-dominant regions of the spinal cord.

Here, we record spike trains from large populations of spinal interneurons in vivo in rats and

demonstrate that spontaneous functional connectivity also links sensory- and motor-dominant

regions during unconsciousness. The spatiotemporal patterns of connectivity could not be

explained by latent afferent activity or by populations of interconnected neurons spiking randomly.

We also document connection latencies compatible with mono- and disynaptic interactions and

putative excitatory and inhibitory connections. The observed activity is consistent with the

hypothesis that salient, experience-dependent patterns of neural transmission introduced during

behavior or by injury/disease are reactivated during unconsciousness. Such a spinal replay

mechanism could shape circuit-level connectivity and ultimately behavior.

Introduction
Synchronous neural activity across functionally and spatially distinct brain structures, that is, func-

tional connectivity, is a hallmark of sensorimotor integration, cognition, and behavior during periods

of attentive wakefulness. Recent elucidation of brain networks intrinsically active during unconscious-

ness and inattentive wakefulness has led to a substantially more nuanced view of brain

function (Demertzi et al., 2019; Fox et al., 2005; Greicius et al., 2003; Mashour and Hudetz,

2018; Raichle et al., 2001; Steriade et al., 1993; Wenzel et al., 2019). Unconscious network activ-

ity spans multiple spatiotemporal scales and has known functions ranging from circuit-level synaptic

stabilization (Puentes-Mestril and Aton, 2017; Tsodyks et al., 1999; Wei et al., 2016) to mainte-

nance of ongoing physiological processes (Sanchez-Vives et al., 2017). Although the finding of

spontaneous, non-random network activity during unconsciousness appears to be robust across dif-

ferent functional regions of the brain, it has yet to be unequivocally confirmed whether this phenom-

enon is a conserved feature of complex neural systems that generalizes to the spinal cord.

Patterns of resting state functional connectivity in the spinal cord have only been preliminarily

characterized (Barry et al., 2014; Chen et al., 2015; Conrad et al., 2018; Eippert et al., 2017;

Kong et al., 2014; Tl et al., 2019). The most reliable findings to date have been correlations

between spontaneous BOLD signals in the left and right dorsal horns, and, separately, the left and
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right ventral horns (VHs) (Barry et al., 2014; Eippert et al., 2017; Kong et al., 2014; Tl et al.,

2019). Spontaneous connectivity between the dorsal horn and VH, between the intermediate

gray (IG) and the VH, and within the VH itself has yet to be reliably delineated.

Other gaps also exist. For example, it is unknown whether network topologies evinced by spinal

BOLD signals mirror those drawn from spike trains of individual neurons. Indeed, BOLD signals are

only indirectly linked to spiking activity (Logothetis et al., 2001; Murayama et al., 2010;

Vakorin et al., 2007), which is compounded by the relatively coarse spatiotemporal resolution of

fMRI in the spinal cord. It is also not readily apparent whether structured activity at the single-unit

level actually persists in spinal networks during unconsciousness in the absence of evoked neural

transmission. The most relevant evidence, which suggests that aggregate multi-unit and local field

potential activity in the dorsal horn is broadly correlated with dorsal horn BOLD fluctuations, was

made during mechanical probing of the dermatome (Tl et al., 2019).

The potential function(s) of resting state intraspinal connectivity are likewise unknown. An intrigu-

ing possibility is that it plays a role in adaptive or maladaptive neural plasticity through a form of

reactivation and synaptic stabilization during unconsciousness. This hypothesis is drawn from the

function of supraspinal network activity during sleep (Abel et al., 2013; Puentes-Mestril and Aton,

2017; Wei et al., 2016) and is supported by the finding of altered patterns of BOLD-based intraspi-

nal functional connectivity in conditions associated with maladaptive neural plasticity in spinal net-

works (Chen et al., 2015; Conrad et al., 2018). To have a direct role in shaping neural plasticity,

however, a necessary substrate would be the tandem presence of synchronous discharge amongst

populations of individual units spanning multiple spatial and functional regions.

Given the critical role played by the spinal cord in sensorimotor integration (broadly) and reflexes

(specifically), we reasoned that spontaneous functional connectivity between neurons in sensory-

dominant and motor-dominant regions of the gray matter would be a precondition for functional

network activity during unconsciousness, regardless of its function. And for the reasons noted above,

such a finding would have important implications for both the physiological and pathophysiological

states. Several fundamental questions remain unresolved, however. Here, we address three. First, is

neuron-level functional connectivity evident in regions of the spinal gray matter not traditionally

associated with primary afferent inflow? Second, is spontaneous functional connectivity evident

between sensory and motor regions of the gray matter? And third, does the proportion of spontane-

ously active neurons exhibiting correlated discharge, as well as their topology, depart from that

which would be expected amongst an interconnected population of statistically similar neurons firing

uncooperatively (i.e., randomly)?

We addressed these questions in vivo in rats, recording large populations of single units through-

out the dorsoventral extent of the lumbar enlargement. We find that robust spontaneous neural

activity is prevalent throughout the gray matter during unconsciousness and that neurons in sensory

and motor regions exhibit significant, non-random correlations in their spatiotemporal discharge

patterns. We also find a substantial portion of connection latencies consistent with mono- and disy-

naptic interactions, offering clues to a possible mechanism by which intrinsic network activity could

directly shape synaptic plasticity.

Materials and methods
All experiments were approved by the Institutional Animal Care and Usage Committees at Florida

International University and Washington University in St. Louis.

Surgical procedures, electrode implantation
Experiments were performed in adult male Sprague–Dawley rats (N = 24; weight), divided across

two cohorts. Fifteen animals received urethane anesthesia (1.2 g/kg i.p.). The remaining nine animals

received inhaled isoflurane anesthesia (2–4% in O2). Heart rate, respiration rate, body temperature,

and SpO2 were monitored continuously during the experiments (Kent Scientific, Inc), and tempera-

ture was regulated via controlled heating pads.
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In a terminal, aseptic procedure, a skin incision was made over the dorsal surface of the T1–S1

vertebrae and the exposed subcutaneous tissue and musculature were retracted. The T13–L3 verte-

brae were cleaned of musculotendonous attachments using a microcurette and the vertebral laminae

were removed to expose spinal segments L4–6. The rat and surgical field were then transferred to

an anti-vibration air table (Kinetic Systems, Inc) enclosed in a dedicated Faraday cage.

Clamps were secured to the vertebrae rostral and caudal to the laminectomy site, and the rat’s

abdomen was elevated such that respiration cycles did not result in upward or downward movement

of the chest cavity or spinal cord. Under a surgical microscope (Leica Microsystems, Inc), the

exposed spinal meninges were incised rostrocaudally and reflected. The spinal cord was then cov-

ered in homeothermic physiological ringer solution.

A custom four-axis motorized micromanipulator with submicron resolution (Siskiyou Corp.) was

then coarsely centered over the laminectomy site. A silicon microelectrode array (NeuroNexus, Inc)

custom electrodeposited with activated platinum-iridium electrode contacts (Platinum Group Coat-

ings, Inc) was mated via Omnetics nano connectors to a Ripple Nano2+ Stim headstage (Ripple

Neuro, Inc). The microelectrode array contained two shanks, each with 16 individual electrode con-

tacts spaced uniformly at 100 mm intervals (Figure 1a). Electrode impedance ranged from ~1 to –4

kW per contact. The headstage was then securely fastened to the micromanipulator for implantation.

During implantation, the data acquisition system was configured for online visualization of multi-unit

and spiking activity from all 32 electrodes. Neural waveforms for specific electrode channels were

also patched into an audio monitor (A-M Systems, Inc) for additional real-time feedback.

The electrode implantation site targeted the tibial branch of the sciatic nerve, with particular

emphasis on sensitivity to receptive fields on the glabrous skin of the plantar surface of the ipsilateral

hindpaw toes. The implantation site corresponded closely to the L5 spinal nerve dorsal root entry

zone in all animals. Initial implantation site verification was performed by mechanically probing the

L5 dermatome, specifically on the plantar aspect of the ipsilateral hindpaw, with the bottom-most

electrodes of the microelectrode array being in contact with the dorsal roots at their entry zone. If

clearly correlated multi-unit neural activity was evident, the probe was slowly advanced ventrally in

Figure 1. Experimental setup and design. (a) Dual-shank microelectrode arrays with 32 independent recording contacts were implanted into the spinal

cord at the L5 dorsal root entry zone. Electrodes spanned the superficial dorsal horn (sDH), deep dorsal horn (dDH), intermediate gray matter (IG), and

the ventral horn (VH). Multi-unit neural activity was recorded from each electrode (e.g., upper gray trace) and discriminated offline into spike trains of

individual units (red single-unit waveforms and spike train raster plots depict four units found on a single channel). Temporal synchrony between

spontaneously co-active units was then analyzed via correlation-based approaches (cross-correlation ‘xcorr’ histograms below rasters, vertical red lines

illustrate the 0 ms lag point). (b) Illustration of procedure for generating the synthetic dataset. Each spike, from every identified neuron in every trial,

was randomly jittered by [�5:5] ms or, separately, [�50:50] ms. The jittered data were then reconstructed, forming synthetic trials containing neurons

with firing properties that were statistically similar to the observed data. This process was then repeated over 1000� to generate a large synthetic

dataset from which to sample. Spatiotemporal correlation analyses then proceeded on this synthetic dataset to benchmark the empirically observed

data.
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25 mm increments until the deepest row of electrodes was ~200 mm deep to the dorsal surface of

the spinal cord. The L5 dermatome was again probed to verify alignment between neural activity at

the implantation site and the dermatome. If correlated multi-unit activity was again observed, the

electrode continued to be advanced ventrally in 25 mm increments until the ventral-most row of elec-

trode contacts was 1600–1800 mm deep to the dorsal surface (and correspondingly, the dorsal-most

row of electrode contacts, i.e., the most superficial, was 100–200 mm deep to the dorsal surface of

the spinal cord).

In cases where multi-unit dorsal root activity was not clearly correlated with the desired hindpaw

receptive field, but rather was correlated with a different receptive field (e.g., on the hairy skin of

the leg), the electrode was repositioned prior to implantation. In cases where no discernible correla-

tion could be observed between a receptive field and dorsal root activity, yet the electrode was

positioned over the L5 dorsal root entry zone, the electrode was advanced in 25 mm increments to a

depth of 200 mm ventrally into the spinal cord and the receptive field mapping procedures was per-

formed again. If appropriate activity was observed, the electrode was tracked fully; if not, it was

removed and a new track was made.

In all cases, electrodes were advanced slowly to the target depth to avoid compression of the spi-

nal cord and minimize intraspinal trauma from shear. After every ~100–200 mm of penetration, elec-

trode advancement was paused momentarily. Penetration was resumed when neural activity

(evinced by multi-unit and spiking data from implanted channels) stabilized.

In two animals, the sciatic nerve of the ipsilateral hindlimb was exposed proximal to its bifurcation

into the tibial and peroneal nerves and a silver hook electrode (A-M Systems, Inc) placed around the

nerve to record electroneurographic (ENG) activity. Upon completion of surgical procedures and

data collection, all animals were humanely euthanized in accordance with AVMA guidelines via over-

dose of sodium pentobarbital (i.p. injection of Fatal Plus solution).

Experimental procedure
We established resting motor threshold for each animal prior to recording spontaneous neural trans-

mission. We delivered single pulses of charge-balanced current (cathode leading, 200 ms/phase, 0 s

inter-phase interval) to electrodes located in the VH, with current intensity increasing in increments

of 5 mA until a muscle twitch was detected in the L5 myotome (toe twitch on ipsilateral hindpaw).

Current intensity was then reduced in 1 mA steps until the twitch was undetectable. Subsequently,

we increased current intensity again in 1 mA increments until a twitch was recovered. The lowest cur-

rent at which a twitch was detected, across all electrodes, was considered to be resting motor

threshold.

We recorded 10–20 trials of spontaneous intraspinal neural transmission per animal. Each trial

lasted for ~2–5 min. Raw, broadband neural activity was sampled continuously from the microelec-

trode array at 30 kHz. Electrical line noise and harmonics were removed via hardware filters prior to

digitization. During data acquisition epochs, data from all 32 electrode channels was streamed in

real time to a 600 flat screen monitor. These data were high-pass filtered at 750 Hz to reveal multi-

unit neural activity (e.g., Figure 1a). On channels in which single-unit activity was readily observable,

dual-window time-amplitude discriminators were used to discriminate and visualize real-time single-

unit spiking activity. Prior to each trial, the dermatome was mechanically probed to ensure ongoing

consistency between electrode placement and receptive field location and to assess qualitatively the

overall degree of neural excitability. The latter assessment in particular was used in conjunction with

vital and other physiological signs to control depth of anesthesia and ensure that neural excitability

did not become progressively depressed during the data acquisition session.

For sciatic nerve recordings, we first collected trials of spontaneous, baseline ENG (~1–5 min per

trial). We then induced sensory transmission in the nerve by mechanically stimulating the L4, L5, and

L6 dermatomes. Specifically, we recorded ENG during periods of innocuous cutaneous stimulation

of the glabrous and hairy skin and during periods of proprioceptive stimulation. Proprioceptive stim-

uli included ankle plantarflexion and dorsiflexion, abduction and adduction of the toes, and holding

joints in a flexed or extended position for a prolonged period of time. Sensory stimuli lasted ~30 s

each, with 30 s to 1 min elapsing between stimuli. Subsequently, we blocked transmission in the

nerve via epineurial injection of lidocaine (20 mL, 2%) (Gokin et al., 2001; Kau et al., 2006;

Thalhammer et al., 1995) and repeated the sensory transmission experiments described above. This

pharmacological nerve block is a form of deafferentation that avoids the confound of ectopic
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discharge sometimes observed with mechanical sectioning of the nerve. ENG was sampled at 30

kHz (Ripple Neuro, Inc), and filtered offline to remove electrical noise (60, 120, and 180 Hz). We

applied a broadband filter to the data (40 Hz to 15 kHz) to enable detection of compound action

potentials/multi-unit activity as well as any potential single-unit action potentials.

Discrimination of units, correlation and functional connectivity analyses
Single-unit neural activity was discriminated offline using the unsupervised, wavelet-based clustering

approach ‘wave_clus’ (parameters: bandpass filter: 1 Hz to 15 kHz; minimum detection threshold: 4

standard deviations [SD] from mean; maximum detection threshold: 25 SD; detection thresholds on

both positive and negative deviations; filter order for detection: 4; filter order for sorting: 2)

(Quiroga et al., 2004). The veracity of discriminated units was verified manually. Spurious and/or

duplicative units were identified and eliminated, with particular focus on units discriminated on the

same or adjacent electrodes. Exclusion criteria were both quantitative (e.g., predominance of ISI < 2

ms) and qualitative (e.g., non-physiological shape, inappropriate action potential duration). Func-

tional connectivity analyses then proceeded as follows on a per-trial basis, where pairs of units found

to exhibit statistically significant temporal synchrony were deemed ‘functionally connected.’

First, we computed the cross-correlation of all unique pairs of admissible units from the 32-chan-

nel microelectrode array, effectively analogous to computing peri-spike time histograms for each

pair (Figure 1a). These computations were performed without regard to the anatomical/spatial loca-

tion of the units and without defining each units of a pair as either pre- or post-synaptic. Connection

latency was taken to be the time to peak correlation strength. Connection polarity (excitatory or

inhibitory) was inferred using the normalized cross-correlation approach (Pastore et al., 2018;

Shao and Chen, 1987).

We then quantified the strength of correlation by adapting an approach originally developed to

be compatible with spike trains containing a relatively small numbers of spikes (Gerstein and Aer-

tsen, 1985; Shao and Tsau, 1996). This calculation led to a correlation coefficient analogous to the

Pearson correlation coefficient common in linear regression. If the number of spikes per train is suffi-

ciently low (N � ~50), it is possible to use this approach to compute p-values via Fisher’s exact

test (Shao and Tsau, 1996). However, our surprisingly vigorous spontaneous neural transmission

(see Results), coupled with the length of each trial, rendered Fisher’s exact test largely intractable.

As the number of spikes in a train increases, however, the distribution of spike times approximates

the chi-square distribution and enables that statistic and associated degrees of freedom be used for

computation of p-values associated with each correlation coefficient.

Given the large number of neurons discriminated per trial (~50–70 on average), and thus the large

number of unit-pair combinations in which we computed correlation strength, careful attention was

paid to multiple comparison corrections to minimize the prevalence of falsely concluding that a pair

of units was significantly correlated. Controlling the family-wise error rate by applying Bonferroni

correction to each test, as is often used for post-hoc multiple comparisons corrections in statistical

inference, is inappropriate for datasets such as ours with trials containing extremely large numbers

of non-independent comparisons (Shao and Tsau, 1996). Therefore, we instead used the Benjamini–

Hochberg procedure to control the false discovery rate of our data on a per-trial basis. This

approach ensures that the proportion of false-positive findings amongst all findings deemed to be

significant is no more than specified level (in our case, 5%). The Benjamini–Hochberg procedure is

applied at the trial level, and the specific p-value deemed to indicate statistical significance is a func-

tion of the data from which the statistics are being inferred. Thus, the significant p-value may be rela-

tively more or less across different trials. Controlling the false discovery rate is a validated method

for multiple comparisons corrections with datasets containing large numbers of comparisons, and it

is particularly effective for situations in which certain elements being compared in a trial are likely to

be more or less correlated than others due to factors such as anatomical connectivity (e.g., voxel-

wise comparisons of fMRI data, where distance between voxels may influence correlation strength

based on the anatomy/structure-function relationships of the sampled neural

structures) (Lindquist and Mejia, 2015).

To characterize topological aspects of functional connectivity, we classified the significantly corre-

lated unit pairs based on their gross anatomical locations as well as the electrode from which their

correlated units were discriminated. Gross anatomical locations included the superficial dorsal horn

(sDH), ranging from the dorsal surface of the spinal cord to ~400 mm in depth and corresponding
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approximately to Rexed’s Laminae I–III; the deep dorsal horn (dDH), ranging from ~500 to 1000 mm

and corresponding approximately to Rexed’s Laminae III/IV–VI; the IG, ranging from ~1100 to 1300

mm, corresponding to Rexed’s Laminae VII–VIII; and the VH, ranging from ~1400 to 1600+ mm and

including Rexed’s Laminae VIII–IX. We define the ‘most connected nodes’ for a given trial as the

electrodes containing a significantly greater number of significant unit-pair connections than the

mean number of connections across all electrodes in the microelectrode array.

Synthetic data
We generated large synthetic datasets that matched the broad statistical properties of our observed

data to use as an additional means of comparison and analyses (Figure 1b). The details of our

approach to creating this synthetic dataset have been described previously (Amarasingham et al.,

2012; Fujisawa et al., 2008). Briefly, however, the procedure is as follows. After performing spike

sorting on each electrode channel for a given trial, we arrived at N spike trains (where N corresponds

to the number of units discriminated during the spike sorting process for that trial). We then ran-

domly selected a single number from one of two uniform distributions (see next paragraph) and

added that value to the first spike time for, say, Unit 1. For example, if the first spike of Unit 1

occurred exactly 1 s after recording commenced, and we randomly drew a value of +3 ms, we would

restate the first spike time for Unit 1 as occurring at 1.003 s after recording began. We then ran-

domly drew another number from the same distribution (numbers were replaced after each draw)

and added that value to the second spike time of Unit 1. This process continued for all spike times

for Unit 1 during the trial. We refer to this process as jittering. The same process was subsequently

performed for all units discriminated in that trial, resulting in N jittered spike trains. After jittering all

spike times for all units for a single trial, we arrived at a ‘synthetic’ trial. We then re-ran the correla-

tion analyses on the jittered spike trains in the synthetic trial. By repeating this process 1000� for

each unit, trial, and rat, we developed a large synthetic dataset from which statistical confidence

intervals could be derived and hypothesis testing could be performed.

We created two synthetic datasets, each designed to test a different aspect of connectivity. The

first synthetic dataset was designed to test short-latency connectivity, as would be observed with

mono-, di-, and minimally polysynaptic connections. For this dataset, we jittered the real data using

a distribution of ±[0, 1, 2, 3, 4, or 5] ms. These values simulate perturbations to short-latency interac-

tions while preserving each unit’s firing rate at a broad timescale. The second synthetic dataset was

designed to test latencies compatible with complex, highly polysynaptic interactions, and used a jit-

tering distribution of ±50 ms (also with 1 ms granularity; i.e., draw a random number from [�50,–49,

�48, . . . 48, 49, 50] ms). The overall number of spikes per unit was not changed in either jittering

procedure so as to avoid confounds in the interpretation of our correlation results.

Statistical methods
Statistical inference beyond that required for the determination of significant temporal connections

between pairs of co-active units (described above) is largely based on analysis of variance (ANOVA)

techniques for both the urethane and isoflurane cohorts. The normality of each dataset was con-

firmed prior to performing ANOVAs. For within-cohort comparisons, a main effect of anatomical

region on the mean number of units, proportion of significant connections, or proportion of most

connected nodes (respectively) was inferred using one-way repeated measures ANOVA formula-

tions. Assessment of the potential significance of anatomical region (within-subjects factor), anes-

thetic (between-subjects factor), and their interaction on the proportion of excitatory and inhibitory

connections was conducted using a two-way repeated measures ANOVA design. If data violated the

assumption of sphericity, Greenhouse–Geisser correction was applied. The family-wise error rate of

post-hoc testing was controlled through Bonferroni correction for all comparisons. Student’s t-tests

were used to determine differences between individual (non-repeated) factors. This included com-

parisons of the proportion of within-region vs. between-region connections for a given cohort, com-

parisons of the mean number of units discriminated per animal between the cohorts, and excitatory

vs. inhibitory latencies for a given cohort. For both ANOVA-based and t-test-based analyses, com-

parisons were considered significant at the a = 0.05 level. Data are presented in text as

mean ± standard error unless otherwise noted. All statistical tests were performed in the IBM SPSS

environment.
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Results

Vigorous spontaneous activity in single units remains evident
throughout sensory and motor regions of the spinal gray matter during
unconsciousness
We focus on urethane anesthetized animals because urethane potently suppresses spontaneous dis-

charge in the dorsal roots (minimizing undue afferent activity) while only modestly impacting resting

membrane potential, GABA-ergic, and excitatory amino acid transmission (Daló and Hackman,

2013; Hara and Harris, 2002). Thus, urethane enables characterization of the spinal cord in a state

more representative of physiological activity than many other anesthetic agents.

First, we quantified the gross anatomical distribution of spontaneously active units. In total, we

recorded from approximately 860 well-isolated units across 13 urethane-anesthetized rats, averaging

66 ± 8 units per trial (e.g., Figure 1a). This per-animal average number of units corresponds to

approximately two units discriminated per electrode across the array, with a range from 0 to ~5 units

per electrode. These findings are consistent with the initial validation data for the wave_clus pack-

age, which was developed with three neurons per electrode as the benchmark (Quiroga et al.,

2004). They are also consistent with subsequent studies using wave_clus with similar electrodes to

ours, which show that 1–4 units are typically discriminated and that 5–6 units can be discriminated

effectively without missed clusters or false positives (Pedreira et al., 2012; Rey et al., 2015).

A representative raster plot from one trial is shown in Figure 2a. Spontaneously active units can

be observed throughout the dorsoventral extent of the sampled region. Broadly distributed, robust

discharge was a consistent feature of all animals. Across the urethane cohort, the mean number of

spontaneously active units discriminated per gross anatomical region per trial was: sDH: 11 ± 3;

dDH: 25 ± 3; IG: 16 ± 2; VH: 14 ± 2 (Figure 2b). We found a significant main effect of region on con-

nection number (F = 6.368, p=0.001), which was driven by a significantly greater number of units in

the dDH than the sDH or VH. No other regions differed from one another (Supplementary file 1,

tab 1a).
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single electrode. X-axes (time) are synchronized across the two subplots. (b) Distribution of spontaneously active units per gross anatomical region

across animals in the urethane cohort (m ± sem; N = 13 animals). The deep dorsal horn contained significantly more spontaneously active units on

average than the superficial dorsal horn or ventral horn, driving an overall main effect of region (p=0.001).
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Spontaneous functional connectivity remains evident in intrinsic spinal
networks during unconsciousness, enabling persistent communication
between functionally and spatially diverse regions of the spinal gray
matter
Next, we asked whether pairs of spontaneously active units exhibited correlated discharge patterns.

Statistical matrices of unit-pair correlations for a 5 min epoch with a high degree of connectivity can

be seen in Figure 3. In Figure 3a, each pixel’s color represents the magnitude of correlation

between the two units defined by an x–y pair; connection polarity is not indicated (although see

Figure 4c). Figure 3b indicates the p-values of the correlations. Across all animals and epochs in the

urethane cohort, 4.2 ± 0.8% of unit pairs exhibited significantly correlated temporal discharge

patterns.

We then sought to determine the gross anatomical organization of synchronous unit pairs. To do

so, we constructed functional connectivity maps that enabled topological aspects of the correlation

structure to be visualized in the context of the microelectrode array geometry and location within

the spinal cord. Because it is not possible to know if the units were synaptically coupled, we adopt

the term functional connectivity to refer to significant temporal synchrony between unit pairs.

Figure 4 depicts examples of such intraspinal functional connectivity maps from two representa-

tive animals. Figure 4a, b depicts all significant connections, regardless of polarity; Figure 4c high-

lights the topology of excitatory and inhibitory connections from Figure 4a. In Figure 4c (red), we

show only the significant excitatory connections from the animal in Figure 4a; in Figure 4c (blue),

we show putative inhibitory connections, also from the animal in Figure 4a. In both figures, gray

circles represent each electrode on the microelectrode array, referred to as ‘nodes.’ Green

highlighted circles in Figure 4 were determined to be the most connected nodes of the array (see

Materials and methods). Qualitatively, it is evident from Figure 4 that pairs of temporally correlated,

spontaneously active units can be found (a) at all sampled dorsoventral depths, (b) within each gross

anatomical region, and (c) between all anatomical regions.
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Figure 3. Spontaneously active units exhibit temporal synchrony. For both plots, rows and columns are ordered from 1 N, where N is the total number

of units discriminated for a given trial. (a) Strength of temporal correlation between pairs co-active units, indicated by pixel color. Pixels below identity

line are omitted because reciprocal connections were not considered. (b) Statistical matrix of correlation strength show in panel (a). White pixels

represent statistically significant correlations, here defined as those with p-values � 0.02. Of the 66 total spontaneously active units discriminated in this

epoch, and thus 2145 possible unique connections (ignoring reciprocal connections), 438 pairs exhibited significantly correlated temporal discharge.
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Summary functional connectivity data from all animals in the urethane cohort can be seen in Fig-

ure 5 and Figure 5—figure supplement 1. The proportion of significant connections within regions,

at 68.9%, was significantly greater than the proportion of between-region connections, 31.1%

(p<0.0001; Figure 5a). We also found a main effect of anatomical region on the proportion of signif-

icant connections detected across all regions (F = 9.277, p<0.0001; Figure 5a, Supplementary file

1, tab 1b; Figure 5—figure supplement 1). This effect was driven (a) by pairs of units within the

dDH, IG, and VH, which accounted for the highest overall proportion of connections (24.9 ± 3.6,

17.3 ± 3.7, and 17.4 ± 3.7%, respectively), and (b) by sDH-IG and sDH-VH pairs, which exhibited the

lowest proportion of significant connections (1.5% and 1.2%, respectively). Predictably, the propor-

tion of significant connections was inversely related to connection distance. For example, sDH-sDH,

sDH-dDH, sDH-IG, and sDH-VH connections account for 9.3, 6.3, 1.5, and 1.2% of overall significant

connections.

The gross anatomical connectivity results were also reflected in the distribution of the most con-

nected nodes. Nodes in the dDH were classified as belonging to the most connected group in a
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Figure 4. Topology of spontaneously synchronous unit pairs is not relegated to regions of primary afferent terminations, rather it links sensory- and

motor-dominant regions of the spinal cord. Representative functional connectivity maps from two animals (panels a and b from same animal; panel c

from separate animal). For all topology plots (a–c): spinal cord inset image in panel (a) shows electrode location. Gray circles represent individual

electrodes on the microelectrode array. Green highlighted circles were determined to be the most connected nodes of the recording. Colored lines

represent significantly correlated temporal discharge between pairs of spontaneously active units at the indicated locations (note: horizontal lines

indicate connections between units discriminated from a single electrode, vertical lines are connections between units on the same shank). For panels

(a) and (b), line color delineates increasing correlation strength from blue to violet; for panel (c), red lines indicate putative excitatory connections, blue

lines indicate putative inhibitory connections. In panels (a) and (b), histograms depict the following (top to bottom): purple histograms indicate the

overall anatomical distribution of significant connections (in order left to right: sDH-sDH, sDH-dDH, sDH-IG, sDH-VH, dDH-dDH, dDH-IG, dDH-VH, IG-

IG, IG-VH, VH-VH); green histograms indicate the gross anatomical distribution of most connected nodes (in order left to right: sDH, dDH, IG, VH); and

red/blue histograms indicate the distribution of putative excitatory and inhibitory connections, respectively, in same order as purple histograms above.

Black arrows in panel (c), inhibitory connections, are intended simply to highlight the preponderance of within-electrode connections. sDH: superficial

dorsal horn; dDH: deep dorsal horn; IG: intermediate gray matter; VH: ventral horn.
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Figure 5. Summary of topological data for urethane-anesthetized animals. (a) Proportion of significant connections by anatomical region (N = 13

animals). From left to right, bar plots indicate connections from sDH-sDH, sDH-dDH, sDH-IG, sDH-VH, dDH-dDH, dDH-IG, dDH-VH, IG-IG, IG-VH, and

VH-VH. Darkening color gradient from left to right qualitatively indicates depth from dorsal surface of spinal cord. Grayscale plots are the proportion of

within- and between-region connections, respectively. Significant connections are not uniformly distributed anatomically, with an overall main effect of

connection location (p<0.0001) and significantly more within-region than between-region connections (p<0.0001). (b) Gross anatomical distribution of

the most connected nodes (N = 13 animals). From top to bottom (light to dark): sDH, dDH, IG, and VH. Significant main effect of anatomical region on

proportion of most connected nodes, p=0.009. (c) Histogram of most connected nodes across electrodes on each shank. Bars to left of vertical black

line reflect lateral electrode shank, and bars to right of vertical black line reflect medial electrode shank; from top to bottom (light to dark), each row

represents one electrode (16 total rows). Bar length indicates the number of occurrences that electrode was determined to be in the ‘most connected’

subset. (d) Spatial distribution: proportion of significant connections by polarity (excitatory, inhibitory) and anatomical region. Red bars: putative

excitatory connections; blue bars: putative inhibitory connections. (e) Temporal distribution: latencies of significant excitatory (red) and inhibitory (blue)

connections. Purple shaded region intended to highlight latencies compatible with potential monosynaptic or disynaptic connections. Inhibitory

Figure 5 continued on next page
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greater proportion of trials (35.4 ± 4.6%) than nodes in the sDH (14.1 ± 4.3%), IG (27.4 ± 4.4%), or

VH (23.0 ± 3.9%), driving an overall main effect of anatomical region on the distribution of most con-

nected nodes (F = 4.333, p=0.009; Figure 5b, Supplementary file 1, tab 1c). It should be noted,

however, that the dDH comprised a relatively larger dorsoventral extent than did the other regions,

and thus contained a greater number of nodes. This contributed to the greater proportion of con-

nections attributed to it. To this point, in Figure 5c, we show a histogram of the most connected

nodes across the 32-channel microelectrode array. While a clear increase in counts is evident moving

from dorsal-most to ventral-most, many individual electrodes in the IG or VH exhibited a higher

occurrence of being ‘most connected’ than those in the dDH (see Discussion).

Finally, we characterized the distribution of putative excitatory and inhibitory connections. In

Figure 5d, we highlight their anatomical distribution. We found that connections within the dDH,

within the IG, and within the VH contained the highest proportion of putative inhibitory connections

(22.7 ± 5.3%, 24.1 ± 7.3%, and 37.8 ± 9.0%, respectively), with the dDH containing the highest pro-

portion of excitatory connections (25.9 ± 3.7%). Interestingly, only the dDH displayed an approxi-

mately balanced proportion of excitation and inhibition – that is, nearly the same proportion of the

overall number of putative excitatory connections as overall putative inhibitory connections.

Although it is striking that the highest percentage of inhibitory connections were all within spe-

cific regions rather than between regions, this may be a practical consequence of the extracellular

recording technique: detection of inhibitory connections via correlation-based approaches is notori-

ously challenging, in part because both cells must have a relatively high and stable base firing rate

to detect a reduction in firing. Functional connectivity, which includes many polysynaptic pathways,

makes detection more difficult still. Thus, some of the differences we observed in the within-vs.

between-region distribution of inhibitory connections may reflect these experimental elements and

should not be interpreted exclusively as a physiological feature of spinal network structure. The rela-

tive balance of inhibitory connections may also change with sensorimotor reflex activation, volitional

movement, nociceptive transmission, etc., even using extracellular recording techniques.

The distribution of latencies between each statistically significant connection is shown in

Figure 5e. Mean excitatory latency was significantly longer than the mean inhibitory latency, at

6.4 ± 0.6 ms vs. 2.7 ± 0.4 ms (p=0.0003), with both categories including latencies consistent with

putative mono-, di-, and polysynaptic pathways. Interestingly, we find a subset of both excitatory

and inhibitory connections with latencies between 0 and 1 ms. While some of these connections

could indeed be monosynaptic and the lower-than-expected delay merely related to binning spikes,

the most likely interpretation for coincidentally firing unit pairs would be a shared presynaptic input.

While the distribution of inhibitory latencies contained was skewed towards an increased probability

of observing putative mono- and disynaptic connections, this apparent disparity may also be related

to the aforementioned challenging of detecting inhibition via extracellular recording techniques.

Functional connectivity within and between deep regions of the spinal
gray matter is not abolished by preferential pharmacological
depression
The finding of robust functional connectivity between sensory-dominant dorsal horn regions and the

IG and VH was unexpected. Especially intriguing was the presence of vigorous neural transmission

within the IG and VH themselves. Although urethane profoundly depresses spontaneous discharge

in the dorsal root ganglia, it exerts less of a depressive effect on cells deep in the gray matter (i.e.,

the IG and VH) (Daló and Hackman, 2013; Hara and Harris, 2002). To control for the potential

influence of this anesthetic gradient on our findings, we conducted an additional set of experiments

in a cohort of eight rats anesthetized with isoflurane. Isoflurane is a more potent depressant of spinal

motor activity than urethane, with an overall gradient of depression that increases from the dorsal

Figure 5 continued

latencies were significantly shorter than excitatory latencies on average (p=0.0003). sDH: superficial dorsal horn; dDH: deep dorsal horn; IG:

intermediate gray matter; VH: ventral horn.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Summary of topological data for urethane-anesthetized animals.
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horn to the VH (Kim et al., 2007). For example, while nociceptive pathways in the sDH remain

largely uninhibited by isoflurane, premotor interneurons and motoneurons in the VH are markedly

depressed (Grasshoff and Antkowiak, 2006). Mean intraspinal resting motor threshold confirmed

the greater depression of VH cells by isoflurane than urethane (isoflurane threshold: 20.4 mA; ure-

thane threshold 14.0 mA).

In total, we recorded from 484 well-isolated units across the nine rats, translating to ~51 ± 2 units

per trial. The mean number of units recorded per trial did not differ between the urethane and the

isoflurane cohorts (p=0.0718). A representative raster plot of spontaneous neural activity from one

trial is shown in Figure 6a. Surprisingly, spontaneously active units were observed throughout the

dorsoventral extent of the sampled region in all animals, including the IG and VH. The mean num-

bers of units per region are as follows: sDH: 9 ± 2, dDH: 20 ± 3, IG: 12 ± 1, VH: 13 ± 1 (main effect of

region: F = 6.650, p=0.001; Figure 6b, Supplementary file 1, tab 1d). In Figure 6c, we show a rep-

resentative functional connectivity map for the isoflurane cohort.

Summary data from the isoflurane cohort can be seen in Figure 7 and Figure 7—figure supple-

ment 1. Here, we show the gross anatomical distribution of significant connections. Similar to the

urethane cohort, we observed a significantly greater proportion of connections within regions

(66.4%) than across regions (33.6%) (p=0.005), and an overall main effect of anatomical region (e.g.,

sDH-sDH, sDH-dDH) on the proportion of significant connections (F = 6.517, p<0.0001;

Supplementary file 1, tab 1e). Interestingly, despite the different mechanisms of action and
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Figure 6. Vigorous spontaneous sensorimotor functional connectivity persists despite preferential depression of ventral horn (VH) cells. (a) Raster plot of

spontaneously active neurons from a representative isoflurane-anesthetized animal. Each row of hatches represents a discrete neuron. X-axes (time) are

synchronized across the two subplots. (b) Distribution of spontaneously active units per gross anatomical region across animals in the isoflurane cohort

(N = 9 animals). The deep dorsal horn contained significantly more spontaneously active units on average than the superficial dorsal horn or VH, driving

an overall main effect of region (p=0.001). (c) Representative functional connectivity map from panel (a). Gray circles represent individual electrodes on

the microelectrode array (as in Figure 4). Green highlighted circles were determined to be the most connected nodes of the recording. Colored lines

represent significantly correlated temporal discharge between pairs of spontaneously active units at the indicated locations (note: horizontal lines

indicate connections between units discriminated from a single electrode, vertical lines are connections between units on the same shank). Line color

delineates increasing correlation strength from blue to violet.
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Figure 7. Summary of topological data for isoflurane-anesthetized animals. (a) Proportion of significant connections by anatomical region (N = 9

animals). From left to right, bar plots indicate connections from sDH-sDH, sDH-dDH, sDH-IG, sDH-VH, dDH-dDH, dDH-IG, dDH-VH, IG-IG, IG-VH,

and VH-VH. Darkening color gradient from left to right qualitatively indicates depth from dorsal surface of spinal cord. Grayscale plots are the

proportion of within- and between-region connections, respectively. Significant connections are not uniformly distributed anatomically, with an overall

main effect of connection location (p<0.0001) and significantly more within-region than between-region connections (p<0.005). (b) Difference in

proportion of significant connections per anatomical region between the urethane (URE) and isoflurane (ISO) cohorts. Vertical axis represents the

difference in proportion of connections between the two cohorts; positive values: more significant connections in the urethane cohort; negative values:

more significant connections in the isoflurane cohort. Overall, there was no statistically significant difference between the anatomical distribution of

significant connections between the two cohorts. (c) Gross anatomical distribution of the most connected nodes (N = 9 animals). From top to bottom

(light to dark): sDH, dDH, IG, and VH. Significant main effect of anatomical region on proportion of most connected nodes, p=0.006. (d) Histogram of

most connected nodes across electrodes on each shank. Bars to left of vertical black line reflect lateral electrode shank, and bars to right of vertical

black line reflect medial electrode shank; from top to bottom (light to dark), each row represents one electrode (16 total rows). Bar length indicates

the number of occurrences that electrode was determined to be in the ‘most connected’ subset. (e) Spatial distribution: proportion of significant

connections by polarity (excitatory, inhibitory) and anatomical region in the isoflurane cohort. Red bars: putative excitatory connections; blue bars:

putative inhibitory connections. (f) Temporal distribution: latencies of significant excitatory (red) and inhibitory (blue) connections in the isoflurane

Figure 7 continued on next page
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depressive profiles of the two anesthetics, we found no systematic difference in the proportion of

significant connections per region across the urethane and isoflurane cohorts (anesthetic by region

interaction: F = 0.369, p=0.949; main effect of anesthetic: F = 0.631, p=0.436); rather, all were within

1.8% of one another on average (range, 4–6%, Figure 7b). The distribution of most connected

nodes in the isoflurane cohort also mirrored that of the urethane cohort. Specifically, the largest pro-

portion of most connected nodes was found in the dDH (34.2%), the lowest in the sDH (13.2%), with

22.6% in the IG and 30.0% in the VH. There was a significant main effect of region on most con-

nected node (F = 4.935, p=0.006; Supplementary file 1, tab 1f; Figure 7c, d). Together, these find-

ings provide additional confirmation of the presence of persistent, synchronous discharge between

functionally and spatially different regions of the spinal gray matter during unconsciousness. That

such activity persisted in the IG and VH with isoflurane also underscores the apparent robustness of

the finding.

The anatomical distribution of excitatory and inhibitory links also remained remarkably stable

between urethane and isoflurane (Figure 7e). There was no main effect of anesthetic agent nor an

interaction of drug by region for either the proportion of excitatory or inhibitory links in each region

(excitatory: region: F = 13.981, p=0.000; region*drug: F = 0.348, p=0.819; drug: F = 0.030,

p=0.865, Supplementary file 1, tab 1g; inhibitory: region: F = 19.403; p=0.000; region*drug:

F = 0.231, p=0.794; drug: F = 0.611, p=0.444, Supplementary file 1, tab 1h). The mean latency of

excitatory and inhibitory connections also did not change from the urethane to the isoflurane cohorts

(excitatory: 6.4 ± 0.5 vs. 6.7 ± 1 ms, p=0.8188; inhibitory: 2.6 ± 0.4 vs. 3.1 ± 0.6 ms, p=0.5389).

Within the isoflurane cohort, inhibitory latencies were significantly shorter than excitatory latencies

(p=0.017; Figure 7f), which was also reflected when pooling data across both cohorts (i.e., inhibitory

latencies were significantly shorter than excitatory latencies on average at 2.9 vs. 6.5 ms, p<0.0001).

The magnitude and spatiotemporal profile of unconscious intraspinal
functional connectivity is not explained by random network activity
Because these experiments characterize spontaneous rather than evoked network activity, it is rea-

sonable to question whether the activity is likely to emerge merely by chance. To address this ques-

tion, we first asked whether the proportion of significantly correlated unit pairs was greater than that

which would be expected by an interconnected population of statistically matched neurons firing

randomly. We addressed this question in a twofold manner, first by comparing the observed data to

a synthetic dataset designed to jitter short-latency interactions and second by comparing the

observed data to a synthetic dataset designed to jitter long-latency interactions. Across animals, we

find that the mean proportion of significantly correlated unit pairs in the synthetic datasets was sig-

nificantly lower than that observed experimentally (urethane: short-latency synthetic: 2.7 ± 0.4%,

long-latency synthetic: 2.6 ± 0.5%, experimentally observed: 4.2 ± 0.8%, p=0.0053; isoflurane: short-

latency synthetic: 2.7 ± 1.1%, long-latency synthetic: 2.6 ± 0.5%, experimentally observed, 3.9 ± 1.3,

p=0.0033). On a per-animal level, we find that the proportion of significant connections in the

observed data always exceeded its synthetic counterpart; that is, in no animals did we detect only as

few (or fewer) significant connections than would be expected at random when controlling for the

uniqueness of each animal’s own data. These findings indicate that the overall degree of temporal

synchrony was highly unlikely to be observed at random.

Next, we asked whether the spatial patterns of connectivity – that is, the topology of the signifi-

cantly correlated unit pairs – differed from a random structure. Given the consistent surgical place-

ment of our microelectrode arrays in each experiment, their known geometry, and our definitions of

the approximate boundaries between gross anatomical regions in the spinal gray matter, it is

Figure 7 continued

cohort. Purple shaded region intended to highlight latencies compatible with potential monosynaptic or disynaptic connections. Inhibitory latencies

were significantly shorter than excitatory latencies on average within the isoflurane cohort (p=0.017). We found no systematic differences in the

spatiotemporal profiles of excitatory and inhibitory connections between the urethane and isoflurane cohorts, which preferentially depress the

dorsal horns and VH, respectively. sDH: superficial dorsal horn; dDH: deep dorsal horn; IG: intermediate gray matter; VH: ventral horn.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Summary of topological data for isoflurane-anesthetized animals.
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possible to directly compute the probabilities that significant connections will exist within or

between regions if neurons are distributed at random. In our paradigm, the number of electrodes

per region is: sDH: 8; dDH: 12; IG: 6; VH: 6. These values can be seen in Figure 1a. We are inter-

ested in all within- and between-region connections as a matter of combinations, not permutations

(i.e., sDH-DH connections are the same as dDH-sDH connections).

Assuming that neurons are randomly (albeit uniformly) distributed throughout the sampled gray

matter, the expected value for each regional comparison is the ratio of the number of electrodes

represented in a given comparison to the total number of electrodes represented across all compari-

sons. For example, the expected percentage of dDH-dDH connections is arrived at by dividing 12,

the number of electrodes in the regional comparison, by 128, the total number of electrodes repre-

sented across all combinations. Note that the overall total (128) is not the same as the number of

electrodes on the array itself (32). This difference is because we are including comparisons between

regions in addition to comparisons within regions. Expected values for overall within-region and

between-region connectivity are the sum of the individual regional percentages. Theoretical proba-

bilities are: sDH-sDH: 6.3%; sDH-dDH: 15.6%; sDH-IG: 10.9%; sDH-VH: 10.9%; dDH-dDH: 9.4%;

dDH-IG: 14.1%; dDH-VH: 14.1%; IG-IG:4.7%; IG-VH: 9.4%; and VH-VH: 4.7%. For within- and

between-region connections, the probabilities are 25 and 75%, respectively. We then verified that

the bootstrapped synthetic data indeed converged to these theoretical predictions (Figure 8a).

We found an overall main effect of anatomical region on connectivity patterns between the boot-

strapped synthetic data and the observed data (urethane: F = 10.571, p<0.0001, Figure 8b,

Supplementary file 1, tab 1i; isoflurane: F = 7.251, p=0.001, Supplementary file 1, tab 1j) and,

notably, a significant interaction of region by cohort (i.e., real or synthetic urethane data; F = 16.168;

p<0.0001 Supplementary file 1, tab 1i; isoflurane: F = 11.561, p<0.0001, Supplementary file 1, tab

1j). Post-hoc testing across regions revealed a lower proportion of significant sDH-dDH, sDH-IG,

sDH-VH, dDH-IG, and dDH-VH connections in the real compared to the synthetic dataset and a sig-

nificantly greater proportion of dDH-dDH, IG-IG, and VH-VH connections in the observed compared

to the synthetic dataset (Figure 8b). Overall, we found a significantly greater proportion of within-

region connections in the observed dataset than the synthetic dataset (68.9 vs. 26.3%, p<0.0001)

and a significantly lower proportion of between-region connections in the observed dataset com-

pared to the synthetic dataset (31.1 vs. 73.7%, p<0.0001).

Absence of latent sensory afferent feedback suggests an intrinsic spinal
source of the persistent network activity
Latent sensory afferent feedback could provide an input to spinal networks during unconsciousness.

If sufficiently vigorous, this feedback could lead to activation of a diverse population of spinal inter-

neurons and confound the interpretation of whether an intrinsic spinal source gave rise to the persis-

tent network activity we observed. To determine whether this was likely to be the case, we

conducted a further set of validation experiments in two rats (Figure 9).

In these rats, we implanted a recording electrode around the ipsilateral sciatic nerve proximal to

its bifurcation (Figure 9a) and recorded spontaneous baseline ENG (Figure 9b; as during the intra-

spinal recording sessions) and ENG during periods of induced cutaneous and proprioceptive sensory

transmission (Figure 9c–e). In the anesthetized, unblocked state, action potential discharge was not

evident during periods without sensory stimulation (Figure 9b). Overall ENG amplitude was also

negligible during these periods, and its standard deviation remained constant.

We then mechanically probed the L4–L6 dermatomes to quantify potential differences in afferent

transmission between periods with sensory stimulation and those without. Representative epochs of

each type are shown in Figure 9c, d. In Figure 9c, we show ENG in response to light touch of the

L4–L6 dermatomes, including over regions of glabrous and of hairy skin. Dots above the ENG are

rasters of individual spikes discriminated from the compound action potential/multi-unit ENG activ-

ity. In Figure 9d, we show ENG during periods of induced proprioceptive transmission as we plan-

tarflex and dorsiflex (and hold, as indicated) the ankle. In both panels, the horizontal dashed line

indicates the average ENG amplitude during bursts of induced sensory transmission, and the solid

horizontal line below it indicates the average ENG amplitude during periods without sensory stimu-

lation plus 3� its standard deviation. During epochs between delivery of sensory stimuli, the hin-

dlimb rested gently on a pad with the plantar surface of the hindpaw facing upwards, as during our

intraspinal recording sessions (which is also the same as in Figure 9b). Note that no persistent or
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Theoretical prediction

Synthetic urethane dataset

Synthetic urethane dataset

* * * * *! !! ! *

Anatomical distribution of significant connections: 
observed and synthetic datasets

a

b

Figure 8. Experimentally realized spatial patterns of functional connectivity diverge from predictions of random

network interactions. (a) Proportion of significant connections by anatomical region. From left to right, bar plots

indicate connections from sDH-sDH, sDH-dDH, sDH-IG, sDH-VH, dDH-dDH, dDH-IG, dDH-VH, IG-IG, IG-VH,

and VH-VH. Black bars indicate theoretical predictions; white bars indicate results of simulations ± sem (i.e.,

synthetic data). The synthetic dataset, generated from randomly shuffling by ±0–5 ms each spike time of each

neuron in each trial, then repeating >1000 �, converges to theoretical predictions. Theoretical predictions are

based upon the number and anatomical distribution of electrodes throughout the gray matter. (b) Anatomical

distribution of synthetic data (white, as in panel a) compared to experimentally realized urethane data (N = 13,

purple bars). We found a significant interaction of cohort by anatomical region (real vs. synthetic, p<0.0001),

indicating the divergence of the real dataset from that which would be expected by a population of

interconnected neurons that are statistically similar but spiking at random. Asterisks indicate connections in which

the synthetic data was overrepresented relative to the real data; crosses indicate connections in which the real

data was overrepresented relative to the synthetic data. Most notably, we found significantly more within-region

connections in the real data compared to the synthetic (p<0.0001), and significantly fewer between region

connections in the real compared to the synthetic data (p<0.0001). sDH: superficial dorsal horn; dDH: deep dorsal

horn; IG: intermediate gray matter; VH: ventral horn.

The online version of this article includes the following source data for figure 8:

Source data 1. This file contains source data for Figure 8.
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spontaneously arising action potential discharge is evident during epochs between sensory stimula-

tion; that is, the nerve returns to quiescence.

We then enveloped the multiunit ENG (gray lines over the ENG; 250 ms envelope window) and

extracted amplitude and variability metrics for periods of spontaneous baseline ENG and induced

sensory transmission. Across modalities of induced sensory transmission, bursts of multi-unit ENG

had an average peak amplitude 16.7� (±0.82 sem) greater than the average amplitude of spontane-

ous baseline ENG (N = 51 pairs). The average ENG amplitude across each period of sensory stimula-

tion (not the average peak amplitude, as previously reported) was 3.09� (±0.17 sem) greater than

the sum of the spontaneous baseline ENG amplitude and its standard deviation.

Next, we blocked afferent transmission via epineurial lidocaine injection. In the top panel of

Figure 9e, we show periods of induced sensory transmission and interleaved periods of spontaneous

baseline ENG prior to nerve block. In the bottom-left panel of Figure 9e, we show a representative

2 sec
0.5 mV

Lack of spontaneous action potential discharge in intact sciatic nerve

0.5 mV
2 sec

Light touch Light touch

2 sec 0.5 mV

Plantarflex + hold Dorsiflex + hold Alt. P-flx / D-flx

a b

c

d

Sciatic nerve

2

3
4

1

To computer

e

Light touchToe ab/adductionLight touch

Pre-lidocaine nerve block:

2 sec
0.5 mV

Spontaneous discharge remains absent

2 sec 0.5 mV

Light touch Toe ab/adduction

Confirmation of nerve block

2 sec

0.5 mV

During nerve block:

1

m
V

Pre- block During block

Avg. spontaneous 

Avg. peak amplitude of 

evoked transmission
f

Figure 9. Spontaneous baseline electroneurographic (ENG) activity in the sciatic nerve is minimal and unaltered by nerve block. (a) Schematic diagram

of recording site and relevant anatomical features. Yellow line indicates the nerve; we recorded sciatic nerve ENG using a hook electrode located at

site #1, proximal to the bifurcation into tibial and peroneal nerves; site #2 represents the common peroneal nerve, site #3 represents the sural nerve,

and site #4 the tibial nerve. (b) Representative ENG activity in the absence of sensory stimulation, as during intraspinal recording sessions. No

spontaneous action potential discharge is present, and ENG amplitude is minimal and constant. (c) Large bursts of high-amplitude ENG are induced by

cutaneous stimulation of the L4–L6 dermatomes. Stimulation epochs are indicated by the top-most horizontal bars, and the dots above the ENG are

rasters of individual spikes discriminated from the compound action potential/multi-unit ENG waveforms. The horizontal dashed line indicates the

average ENG amplitude during bursts of induced sensory transmission, and the solid horizontal line below it indicates the average ENG amplitude

during periods without sensory stimulation plus 3� its standard deviation. (d) Identical in layout to panel (c), with proprioceptive feedback rather than

cutaneous. The ankle was plantarflexed and held, dorsiflexed and held, and then alternated between plantarflexion and dorsiflexion. (e) Top panel:

sciatic nerve ENG recording during periods of induced sensory transmission (horizontal black bars) and baseline transmission prior to lidocaine nerve

block. Bottom panel (left): baseline ENG 30 min after epineurial lidocaine injection, showing a lack of spontaneous action potential discharge and

minimal amplitude. Bottom panel (right): minimal ENG during attempted induction of sensory transmission confirms efficacy of nerve block. (f)

Spontaneous baseline ENG amplitude is indistinguishable before (black) and during (gray) nerve block, and is 16.7� smaller than average peak ENG

amplitude during bursts of induced sensory transmission before the block (white). Note: the y-axis scales are the same for all plots in (b–e).
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epoch of neural data recorded 30 min after lidocaine injection. No sensory stimulation was delivered

during this epoch, and spontaneous action potential discharge expectedly remained absent. In the

bottom-right panel of Figure 9e, we confirm the blocking effect of lidocaine injection by attempting

to induce sensory transmission. Qualitatively, it is evident that the spontaneous baseline ENG is

indistinguishable pre- and post-block (Figure 9b vs. Figure 9e). This similarity is represented quanti-

tatively in Figure 9f, which shows that the average spontaneous baseline ENG before the block

(black bar) is indistinguishable from that during the block (gray bar). Figure 9f also depicts the aver-

age peak ENG burst amplitude across trials (white bar) to provide reference for the observed spon-

taneous baseline ENG amplitude.

Discussion

Presence of an intrinsic spinal network active during unconsciousness
Our primary finding is that neural transmission persists in the spinal cord during unconsciousness at

a level and with a structure that appears to be non-random. We interpret our findings as supporting

the emerging view that the spinal cord possesses intrinsic networks that maintain functionality during

unconsciousness and in the absence of evoked neural transmission (Barry et al., 2014; Eippert and

Tracey, 2014).

In intrinsic surpraspinal networks, functional neural transmission during unconsciousness involves

patterned activity within local and regional circuits as well as communication between functionally

and spatially distributed neural structures (Demertzi et al., 2019; Fox et al., 2005; Greicius et al.,

2003; Mashour and Hudetz, 2018; Raichle et al., 2001; Steriade et al., 1993; Wenzel et al.,

2019). Thus, we reasoned that persistence of correlated discharge at multiple spatial scales would

also be a necessary precondition for intrinsic spinal networks to maintain functionality during uncon-

sciousness. Central to this idea would be the presence of non-random functional connectivity within

sensorimotor regions deep in the gray matter (in addition to connectivity within and between the

predominantly sensory regions of the dorsal horn) as the spinal cord plays a key role in sensorimotor

integration and motor output.

To this point, we found a greater proportion of connectivity within the VH than within or between

any other region(s) except within the dDH, despite a lack of motor output. Connections within the

IG were the third most represented (behind dDH-dDH and VH-VH). Of particular note is the propor-

tion of VH-VH connections relative to dDH-dDH connections. While it is perhaps not surprising that

the dDH exhibited the greatest interconnectivity given that it forms both local and distributed cir-

cuits and receives direct primary afferent input, it is however surprising that, when normalized for

anatomical area, the dDH exhibits only ~60% as much within-region connectivity as the VH.

Previous studies have found resting state functional connectivity within the dorsal horns and the

VH, respectively, but it has been an enduring question whether functional connectivity exists

between the dorsal horn and other regions of the spinal gray matter during unconsciousness, partic-

ularly in the absence of evoked responses (Barry et al., 2014; Eippert et al., 2017; Kong et al.,

2014; Tl et al., 2019). Remarkably, we found that >20% of all significant connections were between

the sDH or dDH and the IG or VH (e.g., Figure 5a). To the best of our knowledge, this is the first

such demonstration of single-neuron-level spontaneous functional connectivity between sensory and

motor regions of the spinal gray matter during unconsciousness. From these findings, we can con-

clude that spontaneous synchronous discharge of spinal neurons during unconsciousness is not con-

fined to local, sensory-dominant circuits in the dorsal horn; rather, it spans spatially and functionally

distinct regions of the spinal gray matter, reflecting the integrative nature of spinal neural transmis-

sion during periods of wakeful behavior.

Determining whether the connectivity we see truly reflects the presence of orderly activity in an

intrinsic spinal network during unconsciousness is a complex process, in part because of the poten-

tial role of sensory afferent inflow. On the other hand, the presence of nominal sensory inflow does

not itself exclude the possibility that intrinsic activity was maintained; merely that the observed activ-

ity reflects the interaction of the two. This would be analogous to studies of resting state functional

connectivity in the brain during inattentive wakefulness (e.g., the default mode network), where envi-

ronmental stimuli and sensory feedback are continuously present, but lack saliency (Raichle et al.,
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2001). Nevertheless, several lines of experimental controls and results support our conclusion that

the observed connectivity was not due merely to sensory afferent inflow.

The most direct evidence in support of a primary role for intrinsic spinal sources as opposed to a

primary contribution from sensory afferent feedback comes from the peripheral nerve (Figure 9).

Recording from the sciatic nerve proximal to its bifurcation (Figure 9a, site #1), we found no evi-

dence of spontaneous action potential discharge in fibers innervating the L4, L5, or L6 spinal seg-

ments (Figure 9b). The overall magnitude of spontaneous baseline ENG was also negligible, as

evidenced by the 16.7� greater ENG amplitude observed during induced sensory transmission

(Figure 9c–f). Importantly, the magnitude of ENG was also effectively constant when sensory stimu-

lation was not being delivered, revealing no underlying multi-unit activity. The amplitude and stan-

dard deviation of the spontaneous baseline ENG in our preparation were also unchanged by

pharmacological nerve block – a form of temporary deafferentation – further suggesting that latent

sensory feedback was minimal (Figure 9f).

We next return to the finding of connectivity within and between the IG and VH. These regions

would not be expected to receive meaningful direct afferent input in our preparation. The primary

source of such input would be proprioceptive muscle and joint afferents, in particular the 1a, 1b, and

group II fibers. While 1a afferents indeed synapse directly onto motoneurons, in our preparation

muscle length was held constant. Activity in 1b and Group II afferents would likewise be negligible

in our preparation, as muscles were not developing tension and were held in a neutral, unstrained

position. Importantly, Figure 9c and e highlight the differences between spontaneous baseline ENG

(i.e., as during the intraspinal recordings) and ENG during periods of proprioceptive feedback,

revealing an absence of proprioceptive transmission outside of periods in which it was specifically

induced.

Another argument against an exclusive role of sensory feedback driving our connectivity results

and in support of a role for persistent activity in an intrinsic network is that sDH and dDH connectiv-

ity was robust in animals anesthetized with urethane. As mentioned in Results, we chose urethane

specifically for its documented ability to block spontaneous dorsal root activity (Daló and Hackman,

2013; Hara and Harris, 2002). It is also worth reiterating that we chose an electrode implantation

site whose corresponding dermatome primarily included the glaborous skin of the plantar surface of

the hindpaw. This region had no physical contact with the surgical field, instruments, etc., further

minimizing undue afferent feedback. Although physical deafferentation would have wholly elimi-

nated natural sensory afferent activity, it could have paradoxically increased discharge in the residual

dorsal roots, second-order neurons, or local dorsal horn neurons (Eschenfelder et al., 2000).

A counterpoint to this interpretation would be that the activity we observed within and between

the IG and VH is related to polysynaptic activation of premotor interneurons and other interneurons

intercalated amongst motor pools from latent connections to the sDH and dDH. We addressed this

potential confound by characterizing functional connectivity in a separate cohort of rats anesthetized

with isoflurane, an anesthetic known to preferentially depress VH cells relative to the dorsal horn

cells, including premotor interneurons (Kim et al., 2007; Kohno and Wakai, 2005). We found that

functional connectivity in the IG and VH (as well as the sDH and dDH) persisted largely unchanged in

animals administered isoflurane, and therefore choice of anesthetic agent could not explain our find-

ings. In fact, we find the spatiotemporal patterns of connectivity to be remarkably consistent across

the two anesthetic agents. This finding, in conjunction with other experimental controls, further sup-

ports the notion that the results are not merely an epiphenomenon or primarily reflective of afferent

transmission.

Separate from afferent feedback, some degree of spontaneous, possibly random, neural transmis-

sion would presumably be expected in the spinal cord regardless of whether a structured intrinsic

network is active during unconsciousness. Therefore, it was important to understand how the

observed proportion of functionally connected units and their topology compared to that which

might be expected in populations of statistically similar interconnected neurons spiking randomly.

We developed a series of large synthetic datasets to address these questions, finding an average of

105% more pairs of functionally connected units across rats in the observed compared to the syn-

thetic datasets. This comparison is the most direct application of our synthetic datasets, and our

findings indicate that the observed proportion of functionally connected units was unlikely to have

occurred by chance. It also reinforces the view that the spinal cord indeed possesses intrinsic net-

works active during unconsciousness, which could be involved in multimodal neural processing.
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Regarding topological aspects of the correlated units, we also find a marked departure from a

random structure. One of the most pronounced topological features of the observed data, particu-

larly compared to theoretical benchmarks, was the different proportion of within-region vs.

between-region connectivity. Indeed, we found significantly greater within-region connectivity than

between-region connectivity overall (~70 vs. ~30%), opposite our prediction. However, interpreting

whether the observed between-region connectivity is more or less than what would be expected at

random is challenging because of uncertainties introduced by the nature of our experiments, and we

urge caution in this regard. The primary reason for this uncertainty is that it is not possible to know

what percentage of the total population of spontaneously active neurons our sample represents,

which may also be affected by anesthetic depth – a variable we did not systematically explore. Com-

prehensively estimating what types of neurons and anatomical regions are most likely to exhibit

spontaneous activity is likewise not possible.

From a practical standpoint, the apparently increased prevalence of within-region connections

compared to between-region connections could also be driven in part by the sDH. While the sDH

contains the most theoretical between-region connections, it is a particularly challenging region to

study in vivo using implanted microelectrode arrays. Indeed, its proximity to the electrode insertion

site increases the likelihood of tissue damage, which is compounded by the small size and fragility of

the cells it contains (e.g., in the substantia gelatinosa). The sDH also contains a preponderance of

between-region circuits dedicated to transmission of nociceptive neural activity from the periphery,

but nociception was not a component of our protocol. These considerations presumably reduced

the overall proportion of between-region connections we observed, which was shifted further

towards a majority of within-region connections by the fourfold overrepresentation of VH-VH

connections.

Several other factors also contribute. For example, in any neural system, one would predict

increased synchrony amongst spatially co-localized neurons and less synchrony between spatially dis-

tant neurons. Thus, our ability to detect between-region connectivity using individual spike trains is

presumably not uniform. The lack of overt stimuli and neural drive in our preparation also suggests

that the discharge rate of spontaneously active units was likely lower than it would have been during

awake, behaving conditions, rendering temporal correlation analyses more difficult due to fewer

chances to observe coincident spikes. An additional consideration is that we did not characterize or

predict higher-order connectivity patterns (e.g., 3, 4, 5 link connections). Together, these factors

would have contributed to a preferential underestimation of between-region connectivity compared

to within-region connectivity and could underlie a portion of the differences we see in the observed

vs. synthetic datasets.

Thus, while we can conclude that the observed proportions of regional connectivities are non-ran-

dom, non-zero, and that multiple local and distant regions are functionally connected (i.e., rejecting

the null hypotheses of the analyses), we cannot delineate the specific pathways through which these

connections are mediated nor can we directly contextualize the relative magnitude of the propor-

tions themselves. Despite all of the above considerations, however, it is worth reiterating that

approximately one in every five observed connections spanned sensory-dominant and motor-domi-

nant regions.

Possible function(s) of neural transmission in intrinsic spinal networks
during unconsciousness
One potential explanation for the presence of persistent activity during unconsciousness could be

reactivation of salient experience-dependent patterns of neural transmission to stabilize circuit-level

synaptic connectivity. During sleep, for example, specific patterns of hippocampal and cortical acti-

vation emerge that mirror those experienced during wakefulness (Puentes-Mestril and Aton, 2017;

Wei et al., 2016). Persistence of these patterns is believed to be integral to memory encoding and

consolidation. It is reasonable to think that such a mechanism might be a generalized feature of

complex neural circuits.

Several of our findings are consistent with this idea and suggest putative mechanisms by which it

could occur. First, our finding of functional connectivity between superficial and deep regions indi-

cates that the pathways nominally required for stabilization of multimodal patterns of neutral trans-

mission remain active during unconsciousness. Next, we find a substantial portion of connection

latencies compatible with mono- and disynaptic interactions, offering a link between broad,
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network-level neural synchrony and the millisecond-timescale synaptic interactions necessary for driv-

ing plasticity and shaping behavior (Brzosko et al., 2019; Feldman, 2012). And finally, we show

that both excitatory and inhibitory connections with the full complement of latencies are widely dis-

tributed throughout the gray matter, providing another mechanism for bidirectional modification of

synaptic interactions (besides spike-timing-dependent plasticity) to precisely shape circuit-level neu-

ral transmission and behavior.

Although our study cannot confirm or refute whether this is indeed the purpose of the persistent

network activity we observed, it is a useful framework for developing new hypotheses to probe this

potential functionality. For example, we would hypothesize that if a specific salient pattern of neural

transmission was introduced and reinforced prior to unconsciousness, whether naturally or as part of

a targeted, plasticity-promoting rehabilitation intervention (Jo and Perez, 2020; McPherson et al.,

2015; Thompson et al., 2013), we may find evidence of this pattern in the topology of active neu-

rons during unconsciousness. We would also hypothesize that specific patterns of functional connec-

tivity during unconsciousness may play a role in the chronification process after trauma or disease.

Here, network activity could potentially lead either to adaptive or maladaptive reinforcement of (in)

appropriate patterns of neural activity, contributing to amelioration or persistence of debilitating

sensory and motor impairments (e.g., spinal cord injury-related neuropathic pain; movement impair-

ments after stroke, spinal cord injury, or multiple sclerosis).

Other possible functions of persistent spontaneous connectivity during unconsciousness also

exist. For example, it could reflect latent activity in spinal central pattern generators (although evi-

dence for unconscious activity in these circuits has yet to be introduced to the literature). Alterna-

tively, it could play a role in mediating inattentive physiological processes, qualitatively analogous to

the default mode (or task-negative) network in the brain (Fox et al., 2005; Greicius et al., 2003;

Raichle et al., 2001) or interoceptive networks (Damasio and Carvalho, 2013; Gilam et al., 2020;

Sternson, 2020). However, it is difficult to extrapolate our results to these latter two constructs

because we interrogated rather granular connectivity within a single spinal segment and did not

directly consider transmission between spinal and supraspinal centers or sympathetic outflow. Stud-

ies of spinal BOLD signaling may offer additional evidence in support of or against these theories. It

is also possible that the persistent spontaneous activity is not directly involved in synaptic stabiliza-

tion or in maintenance of ongoing physiological processes. Rather, it may reflect a nominal basal

state of activity required simply to prevent undue extinction of learned patterns of neural

transmission (Dunsmoor et al., 2015). Nevertheless, our results suggest that structured spontaneous

activity during unconsciousness is a fundamental property of complex neural systems and is not con-

fined to supraspinal networks.
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