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Abstract

Introduction

Obstructive sleep apnea syndrome (OSAS) is associated with an increased cardiovascular

risk. The underlying mechanisms are largely unclear. MicroRNAs (miRNAs) are RNAs circu-

lating in the blood that can be released into the bloodstream during hypoxia. In the present

study, we investigate if OSAS-induced hypoxia results in a release of miRNAs that may

mediate OSAS-associated cardiovascular damage.

Methods

Blood was sampled from 23 OSAS patients before and after a polygraphically monitored

night. Total circulating RNA was isolated from the plasma and quantified using real-time

qPCR. Using a Taqman miRNA array, the levels of 384 different miRNAs were

compared between evening and morning after polysomnography. The most highly upregu-

lated miRNA (miRNA-505) and four additionally upregulated miRNAs (miRNA-127, miRNA-

133a, miRNA-145, and miRNA-181a) were then quantified in a bigger patient cohort

individually.

Results

Apnea/Hypopnea-Index (AHI) was evaluated and averaged at 26 per hour on nocturnal

polygraphy. In an initial miRNA array, a total of 4 miRNAs were significantly regulated. A sig-

nificant increase of miRNA-145 was observed in the larger patient cohort. No significant

changes in concentration were detected for miRNA-127, miRNA-133a, miRNA-181a, and

miRNA-505 in this larger cohort.

Conclusion

OSAS results in the nocturnal release of miRNAs into the bloodstream. Our collected data

may indicate a hypoxia-induced release of miRNAs into the bloodstream of OSAS-patients.
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In vitro experiments are needed to confirm the secretion of these miRNAs under hypoxia

and evaluate the effect on the cardio vasculature.

1 Introduction

Obstructive sleep apnea syndrome (OSAS) is a sleep-related breathing disorder that occurs in

large proportions of the population. It is by far the most common sleep disorder with a rising

prevalence, accounting for 85% of all cases of sleep apnea [1]. OSA is caused by a blockage of

the upper airway during existing respiratory effort. In OSA patients, a collapse of the pharyn-

geal muscles leads to phases of reduced oxygen supply followed by brief arousals. Typical

symptoms to be expected in OSA patients include heavy, irregular snoring and pronounced

daytime sleepiness, breathing cessation during sleep, lethargy and reduced work performance

[2]. Risk factors for the development of OSA include obesity/high BMI (body mass index),

alcohol consumption, craniofacial anatomy, age, gender, smoking and family history [1, 3]. In

the definition of OSA, a distinction is made between apnea and hypopnea phases. In apnea

phases, there is a reduction in respiratory flow of at least 90% over a period of at least 10 sec-

onds. Hypopnea phases are defined as a reduction in respiratory flow of more than 30% for

more than 10 seconds, combined with an oxygen desaturation of at least 4% or an arousal [1,

4]. The apnea-hypopnea index (AHI), which measures apnea and hypopnea phases per hour

of sleep, is used to classify the severity of OSA. The diagnosis of OSA can be made with an

AHI>5 in combination with typical symptoms. An AHI of 5–15 is considered to be mild. Val-

ues between 15–30 indicate a moderate OSA, while an AHI of more than 30 can be diagnosed

as severe OSA [3]. Treatment options for patients with OSA include the use of continuous pos-

itive airway pressure (CPAP), variable/bilevel positive airway pressure (BiPAP), dental appli-

ances and surgeries such as uvulopalatopharyngoplasty (UPPP) or maxillomandibular

advancement (MMA) [1].

The association of OSA with hypertension, heart failure, coronary artery disease and atrial

fibrillation has been repeatedly reported. In patients with severe OSA (AHI>65) and severe

oxygen desaturations (SaO2 <65%), the risk of cardiac arrythmias increases [5, 6]. Further-

more, the increased cardiovascular mortality of any cause, an increase of the risk of stroke, dia-

betes and hypertension have been associated with untreated OSA [7, 8]. Additionally, it has

been shown that 50% of patients with OSA have a history of hypertension, and between 30–

40% of patients with hypertension had OSA when tested for it [5]. The exact underlying patho-

mechanisms regarding increased cardiovascular risk are still largely unclear. It has been sus-

pected that intermittent hypoxemia and re-oxygenation, arousals and the resulting changes in

intrathoracic pressure contribute to the pathomechanisms triggered by OSA [5].

MicroRNA (miRNA) are short, non-coding RNAs with a length of 19 to 23 nucleotides

which are known for key gene regulatory activities in numerous contexts [9]. MiRNAs are not

converted into protein products, but rather regulate the conversion of genes to protein prod-

ucts and have thus been suspected of being involved in the pathogenesis of diseases such as pri-

mary hypertension. In many types of cancer, hypoxia is a hallmark of the tumor

microenvironment and can trigger the release of miRNAs into the extracellular matrix and the

bloodstream [10]. Patients with OSA have been shown to display a dysregulated miRNA pro-

file, when compared to non-OSA controls [11], however an analysis of microRNA profiles in

OSA patients before and after a polographically-monitored night, has not yet been undertaken.

It is likely that intermittent nocturnal hypoxia, as displayed by patients with OSA, can lead to a

differential secretion of hypoxia-induced miRNAs.
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2. Material and methods

2.1 Study population

23 patients with suspected OSA were included in this study. Blood was drawn from all patients

before and after a polygraphically monitored night. One patient did not meet the OSA criteria

and was excluded from further analysis, thus 22 patients were further investigated. Written

informed consent was obtained from all patients. The study protocol was approved by the eth-

ics committee of the University Hospital Cologne (No. 19–425).

2.2. Sample acquisition and preparation

Citrate blood was drawn on the evening before and the morning after a polygraphically moni-

tored night from a peripheral vein. The sample was transported to the laboratory on ice and

centrifuged 2 times at 2500 g (4˚C, 15 min) to remove cells and debris and once more at 3000

g (4˚C, 15 min) to generate platelet-free plasma. Citrate plasma samples where then frozen and

stored at—80˚C until further analysis.

2.3. Total blood RNA isolation and polymerase chain reaction

Total blood RNA was isolated with a TRIzol (#15596026 ThermoFisher Scientific) and phenol-

based protocol. After purification RNA was diluted in DNAse/RNAse free water and RNA

concentration was measured via NanoDrop (ThermoFisher Scientific). For reverse transcrip-

tion we utilyzed TaqMan microRNA Reverse Transcription Kit (#4366596, ThermoFisher Sci-

entific) and microRNA specific primers. Quantitative polymerase chain reaction was carried

out on 7900HT thermo cycler (Applied Biosystems). CDNA was diluted to 1ng/μl and 9μl

were pipetted per well. 1μl primer was mixed with another 10μl of Universal MasterMix II

(#44-400-49 ThermoFisher Scientific). CT values above 40 cycles were defined as undetectable.

Data was analysed using the ddCT method.

2.4 miRNA analysis

5 patients were selected randomly for initial array experiments. RNA was converted to cDNA

by priming with a mixture of looped primers (MegaPlex PreAmp Primers, Human Pool;

MegaPlex RT primers, Human Pool; Applied Biosystems, Foster City, CA, USA). TaqMan

Array miRNA Cards (#4444913, Applied Biosystems) were used containing a total of 384

unique assays specific to human miRNAs under standard qRT-PCR conditions. qRT-PCR was

carried out on an Applied Biosystems 7900HT thermocycler using the manufacturer’s recom-

mended program. Analysis of data was performed using Expression Suite V1.1 program

(Applied Biosystems). Cycle of threshold (CT) values above 40 were defined as undetectable.

U6snRNA was chosen as housekeeping gene, due to stable expression across all samples. CT

values were exported to Microsoft excel (Microsoft Corporation, Albuquerque, NM, USA) and

CT and ddCT levels were calculated. Evaluation of results was performed with GraphPad

Prism 7 (GraphPad Software Inc., San Diego, CA, USA). Statistical analysis was performed

using multiple T-Testing with Bonferroni-Dunn method for multiple comparisons and detec-

tion of false positives.

2.5. Statistical analysis

For statistical analysis, GraphPad Prism was applied. Mann-Whitney significance testing was

performed for patient samples. Error bars in graphs indicate standard error of the mean

(SEM).

PLOS ONE MicroRNAs in sleep apnea

PLOS ONE | https://doi.org/10.1371/journal.pone.0263747 March 4, 2022 3 / 11

https://doi.org/10.1371/journal.pone.0263747


2.6 Ethics statement

Written informed consent was obtained from all patients. The study protocol was approved by

the ethics committee of the University Hospital Cologne (Nr. 19–425).

3. Results

3.1 Patient cohort and baseline characteristics

One patient did not meet the study criteria and was excluded from the analysis. 19 male and 3

female patients were included in this study (Table 1, Fig 1). The mean age was 44 and the

mean AHI 28/h. The mean ESS score was 9,9 with an IQR of 6,5. In the polygraphy, 4 patients

(18,2%) were diagnosed with mild OSA (AHI 5-15/h). 8 patients (36,4%) were diagnosed with

moderate OSA (AHI 15-30/h) and 10 patients (45,5%) with severe OSA (>30). The mean

Table 1. Baseline characteristics.

Demographic summary

Number (%) Median Age (y) BMI

Total 22 44 28,7 kg/m2

Female 3 (14%) 30,2 30,1 kg/m2

Male 19 (86%) 44,1 28,4 kg/m2

Polysomnography findings

mean ESS 9,9 IQR ESS 6,5

mean AHI (/hr) 28,3 IQR AHI 21,55

mean ODI (/hr) 21,7 IQR ODI 19,125

mean O2 Sat Nadir (%) 79,1 IQR O2 Sat nadir 9,25

OSA Severety

Mild Moderate Severe

4 (18%) 8 (36,4%) 10 (45,6%)

Cardiovascular Riskfactors (n)

art. Hypertension 5

Hyperlipoproteinemia 0

Diabetes 0

CAD 1

PAD 1

Smoking 4 (5–20 py)

Laboratory parameters

mean

Kreatinin (mg/dl) 0,92

GFR (mL/min) 96,7

Leucocytes (x1E9/l) 7,7

CRP (mg/l) 6,7

Medications on admission (n)

ACE inhibitor 4

Angiotensine receptor blockers 2

Beta blockers 3

Calcium channel blockers 2

Diuretics 2

Statins 3

Nitrates 1

https://doi.org/10.1371/journal.pone.0263747.t001
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oxygen desaturation index (ODI) was 21,7/h with a minimum oxygen saturation (O2 sat

nadir) of 79,1%. Most patients in this study were overweight, 7 patients had a BMI >30 kg/m2.

Only 4 patients had a BMI below 25 kg/m2 and the mean BMI of all patients was 28,7 kg/m2. 6

patients had pre-existing cardiovascular risk factors: 5 patients had been diagnosed with arte-

rial hypertension, 1 patient had a coronary artery disease and 1 patient had peripheral arterial

disease. 4 patients that were included in this study were smokers.

Fig 1. A Study design, B timeframe of analysis: First peripheral blood sample at t1 (before night), second peripheral blood

sample at t2 (after night).

https://doi.org/10.1371/journal.pone.0263747.g001
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3.2 MiRNAs are dysregulated in patients with sleep apnea

Peripheral patient blood samples were obtained before and after sleep and polysomnographic

analysis to evaluate hypoxia-induced miRNAs. Five patients were included for initial miRNA

array analysis. Patients displayed a significant increase of one (miRNA-505) miRNA and a sig-

nificant decrease of 3 circulating miRNAs (miRNA-598, miRNA-326, miRNA-432) (Fig 2).

The significantly upregulated miRNA (miRNA-505) as well as four further, upregulated miR-

NAs (miRNA-127, miRNA-133, miRNA-145 and miRNA-181) were selected for validation in

a larger cohort of patients.

3.3 Validation of miRNA candidates

To examine the levels of the selected miRNA candidates, single reverse-transcription quantita-

tive polymerase chain reaction (RT-qPCR) analyses were performed in a larger patient cohort

(n = 22) (Fig 3B and 3C). In this cohort, the levels of circulating miRNA-145 were significantly

upregulated. There was no significant dysregulation of the other four candidates, including

miRNA-505.

4 Discussion

Obstructive sleep apnea is clearly associated with cardiovascular disease and mortality, but the

underlying pathomechanisms are yet poorly understood [12]. Hypoxic conditions are able to

trigger the release of miRNAs from mother cells into the extracellular matrix or the blood

stream [10]. MiRNAs are non-coding RNAs, which can alter the gene expression of the parent

cell by inhibiting protein transcription via binding to target mRNA, leading to its degradation

via the RNA-induced Silencing Complex (RISC) [13]. MiRNAs can be secreted in the blood

stream (either via extracellular vesicles or bound to RNA-binding proteins like Ago-2) and

then be taken up by target cells, where they can affect genotype as well as phenotype by altering

Fig 2. Micro RNA array from total blood RNA, n = 5. A heat map (shortened for better overview), B. Volcano plot.

https://doi.org/10.1371/journal.pone.0263747.g002
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the target cells protein translation [13, 14]. MiRNAs can therefore function as paracrine/endo-

crine signaling molecules [15]. The involvement of miRNAs in the pathogenesis of many car-

diovascular diseases has been proven in the last years [16]. Especially endothelial and vascular

smooth muscle cell functions can be altered through dysregulated miRNA expression [17].

Since OSA has been shown to be an independent risk factor for multiple cardiovascular disor-

ders, and a hypoxic desaturation is a major attribute of OSA, we sought to analyze the circulat-

ing miRNA levels in patients with OSA before and after a polygraphically monitored night to

determine the changes in miRNA profiles after intermittent nocturnal hypoxia. Studies, inves-

tigating miRNA profiles in patients with OSAS as a potential biomarker of disease, have been

undertaken. Santamaria-Martos and colleagues identified 6 differentially expressed miRNAs

in patients with OSAS, when compared to patients without OSAS. Furthermore, normalization

of these miRNAs after 6 months of continuous positive airway pressure (CPAP) treatment

could be observed [11]. Freitas et al. sought to link differentially expressed miRNAs in patients

with OSAS to heart failure, myocardial ischemia, and cancer proliferation. In this study, severe

OSA was independently associated with the levels of circulating miRNAs known to be involved

in cancer cell proliferation, heart failure, and myocardial ischemia/reperfusion (miR-1254,

miR-320e; miR-1254; and miR-320e, respectively) [18]. In a study analyzing expression pro-

files of three cardiac-specific biomarkers (miR-1-3p, miR133-3p, miR-499) only miR-499

showed the potential of being used as a biomarker for disease. Limitations of this study are the

lack of unbiased screening methods (e.g. next generation sequencing/miRNA array) for the

Fig 3. QPCR validation of identified miRNA targets. A Individual miRNA changes displayed as CT-Values before and after the

polygraphically monitored night. B Relative miRNA expression. Different patient numbers due to outlier deletion, undetectable

targets or low RNA input amount. All values displayed ± SEM, Outlier test Prism8; Mann-Whitney significance test, � P<0.05.

https://doi.org/10.1371/journal.pone.0263747.g003
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identification of potentially useful biomarkers [19]. Howerver, to our knowledge, no study has

investigated the nocturnal changes of circulating miRNA profiles in patient before and after a

polysomnographically monitored night. Of the 23 included patients included in this study, 22

patients displayed an AHI allowing the diagnosis of OSAS (4 mild, 8 moderate, and 10 severe).

Initial miRNA arrays from 5 patients blood samples revealed a differential regulation of circu-

lating miRNAs before and after the polygraphically monitored night. MiRNA-505 was signifi-

cantly upregulated and miRNA-598, miRNA-326, miRNA-432 were significantly

downregulated (Fig 2). To validate our findings, we chose the only significantly upregulated

miRNA (miRNA-505) as well as four other promising candidates (miRNA-127, miRNA-133a,

miRNA-145, miRNA-181b) that were upregulated in the initial array, but failed to achieve sta-

tistical significance herein, for further analysis in the whole OSA cohort (n = 22). MiRNA-127

has been shown to protect proximal tubule cells against ischemia/reperfusion injury [20].

MiRNA-133a has been identified to mediate hypoxia-induced apoptosis in cardiomyocytes

[21], while hypoxia induced miRNA-181b was shown to regulate angiogenesis of retinoblas-

toma cells [22]. In human umbilical vein endothelial cells (HUVECs), hypoxia-induced

changes in miRNAs levels also included miRNA-505 [23]. Especially the downregulation of

miRNA-145 has been found to be an independent factor regarding the pathogenesis of pri-

mary hypertension [24]. In patients with pulmonary hypertension, circulating miRNA-145

levels are increased, and mice that have been exposed to hypoxia also display an increase in cir-

culating miRNA-145 [25]. In our validation cohort, we identified miRNA-145 as the only sig-

nificantly upregulated miRNA. MiRNA-145 belongs to the miRNA-143/145 cluster and is a

well-studied miRNA, which can act on multiple cells and exert beneficial or detrimental

effects. Dysregulation of the cluster, or one of its members, occurs during essential hyperten-

sion, atherosclerosis, coronary artery disease (CAD) and pulmonary arterial hypertension [25–

28]. Patients with stable CAD show lower levels of circulating miRNA-145 than healthy con-

trols, but patients with unstable angina display elevated levels and miRNA-145 levels correlate

with infarct size during myocardial infarction [29–31].

In regards to hypoxia, miRNA-145 has been shown to function as cardio-protective in myo-

cardial ischemic injury by ameliorating inflammation and apoptosis by negatively regulating

CD40 [32]. MiRNA-145 was also shown to be upregulated in cardiomyocytes after hypoxic

treatment and seems to protect cardiomyocytes from apoptosis. On the other hand, when

exposing a bladder cancer cell line (RT4 cells) to hypoxic conditions, the most upregulated

miRNA was miRNA-145. This miRNA is not only a direct target of hypoxia inducible factor

1α (HIF-1α), but also harbors 2 hypoxia response elements upstream of the miRNA transcript

[33]. Overexpression of miRNA-145 in this cell line led to an increase in apoptosis in normoxic

conditions and inhibition of miRNA-145 decreased apoptosis under hypoxic conditions, dem-

onstrating a role for miRNA-145 in hypoxia-induced apoptosis [33].

Mechanistically, it is currently unclear, if miRNA-145 exerts a beneficial or detrimental

effect on the cardio vasculature in patients with OSAS. Furthermore, due to the small sample

size of the overall study cohort, our findings will have to be validated and analyzed in a larger

patient cohort. In-depth mechanistic studies are necessary to identify a possible role of

miRNA-145 during the pathogenesis of OSAS-associated cardiovascular disease.

5 Conclusion

Circulating miRNAs are dysregulated after nocturnal intermittent hypoxic events in patients

with OSAS. We identified miRNA-145 to be significantly upregulated in patients with OSAS.

Further mechanistic studies have to be performed to elucidate a possible function of miRNA-

145 in the context of OSAS-associated cardiovascular disease.
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