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Allogeneic hematopoietic cell transplantation (HCT) is a curative treatment for hematologic
malignancies, bone marrow failure syndromes, and inherited immunodeficiencies and
metabolic diseases. Graft-versus-host disease (GVHD) is the major life-threatening
complication after allogeneic HCT. New insights into the pathophysiology of GVHD
garnered from our understanding of the immunological pathways within animal models
have been pivotal in driving new therapeutic paradigms in the clinic. Successful clinical
translations include histocompatibility matching, GVHD prophylaxis using cyclosporine
and methotrexate, posttransplant cyclophosphamide, and the use of broad kinase
inhibitors that inhibit cytokine signaling (e.g. ruxolitinib). New approaches focus on naïve
T cell depletion, targeted cytokine modulation and the inhibition of co-stimulation. This
review highlights the use of animal transplantation models to guide new
therapeutic principles.
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EARLY HISTORY

In 1956, two groups observed that mice exposed to lethal dose of total body irradiation (TBI) and
administered allogeneic splenocytes survived for a shorter time than those transplanted with
syngeneic splenocytes (1–3). The recipients of allogeneic cells exhibited diarrhea, weight loss, skin
lesions, and died (1, 4). This syndrome was initially designated as “secondary disease”, which was
later renamed as graft-versus-host disease (GVHD). In 1963, Mathé and colleagues reported the first
case of a human allogeneic bone marrow transplantation (BMT) recipient that survived beyond a
year. This patient had complete engraftment and the development of a lethal “secondary disease”
was described (5). Subsequently, the clinical and pathological characteristics of GVHD was
described (6). The outcomes for the initial 200 patients transplanted prior to 1967 were
disparaging; all patients died of either graft failure, GVHD, infection, or leukemia relapse (7).
These poor outcomes reflected a limited understanding of histocompatibility matching and the
requirement for immune suppression after BMT to control GVHD (8).

Although many investigators lost their enthusiasm for BMT, several groups increasingly utilized
animal models to gain a better understanding of the allogeneic barrier with regard to both GVHD
and graft rejection. Studies of allogeneic BMT in Seattle using dog models in the 1980s provided the
scientific groundwork for the field leading to the concepts of histocompatibility matching,
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conditioning regimens and pharmacological GVHD prophylaxis
(9–13). These findings were soon translated to the clinic and
successful clinical BMT was established (14), subsequently
leading to E. Donnall Thomas being awarded the Nobel prize
within Physiology or Medicine in 1990 (see Figure 1 for
a timeline).

For a detailed discussion of the various mouse models of
GVHD currently available and the penetrance of disease therein,
we refer the reader to some of the excellent reviews on this
subject (15–17).
ACUTE GVHD

Donor T Cells
In the 1970’s and 1980’s, Korngold and Sprent performed
extensive studies in a series of mouse models across MHC and/
or minor histocompatibility antigen mismatches demonstrating
the role of donor T cells in the etiology of GVHD. They showed
that donor-derived T cells were causative of GVHD and identified
T cell subsets (CD4 versus CD8) responsible for the induction of
GVHD in each model (18–20). Following the observation that T
cell depletion prevented GVHD in mice (18), clinical studies
confirmed that GVHD also failed to develop following rigorous
donor T cell depletion with CD34 positive selection of the donor
inoculum and the administration of anti-thymocyte globulin
(ATG); none developed GVHD even without posttransplant
immunosuppression (21, 22).

Donor T cells exert graft-versus-leukemia (GVL) effects. In
1956, Barnes et al. reported that leukemia-bearing mice receiving
Frontiers in Immunology | www.frontiersin.org 2
allogeneic cells eventually died of GVHD without evidence of
leukemia (2). Mathe et al. proposed a concept of GVL effect (23),
which was soon demonstrated clinically (24–27). Importantly, pan
T-cell depletion was shown to reduce GVHD at the expense of an
increased risk of opportunistic infection and leukemia relapse (28).
Shlomchik and colleagues refined our understanding of the subsets
of mature T cells responsible for GVHD, demonstrating that naïve
T cells rather than memory T cells played the major role in
inducing GVHD in mice (29, 30). Early clinical trial data of naïve
T cell-depleted PBSCT has shown promising results (31), but
definitive randomized data is needed to confirm a role of naïve
versus memory T cells in GVHD and GVL.

The predominant expansion of Th1/Tc1 and Th17/Tc17
cells in mice and the cytokines derived from these cells
suggests that acute GVHD is primarily driven by Th1/Tc1-
and Th17/Tc17-associated immune reactions (32–35). There is
a crosstalk between GVHD and infection; GVHD-associated
immunodeficiency, dysbiosis, and disruption of epithelial and
mucosal barrier are risks for infections, while bacterial and viral
infections are risks for GVHD by activating innate immunity
(36). Neutrophils activated by translocation of intestinal bacteria
can also accelerate GVHD early after BMT via tissue injury (34).
Mechanistically, bacteria and virus-derived molecules behave as
pathogen-associated molecular patterns (PAMPs) that accelerate
allogeneic T cell responses. Candida colonization is a risk for
acute GVHD and fluconazole prophylaxis is associated with
reduction of severe acute GVHD (37, 38). In mouse models,
fungal cell wall components such as sugar polymers, are
recognized by macrophages and promote Th17 differentiation
that exacerbate GVHD (39). These results highlight importance
of infection prophylaxis in the control of GVHD.
FIGURE 1 | Timeline of major experimental concepts that have translated into clinical practice. GVHD was initially described as a wasting syndrome in transplanted
mice in 1956. Early clinical bone marrow transplantation was associated with high mortality due to GVHD, infection and relapse. Recognition of T cells as the
mediators of GVHD and GVL and initiating rudimentary tissue-typing. Conditioning and GVHD prophylaxis regimens were developed in dog models in the 1980s that
led to reduced intensity and non-myeloablative conditioning in the 1990s. Stem cell mobilization following cytokine administration was developed in the early 1990s
and gained widespread clinical translation. New approaches to GVHD prophylaxis, including post-transplant cyclophosphamide (PT-Cy) and naïve T (Tn) cell
depletion developed in the 2000s and are increasingly utilized in the clinic. In the last decade the widespread use of gene editing, initially in T cells, has been widely
translated to modulate GVHD and GVL. Figure generated with biorender.com.
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Unfortunately, it is impossible to discern cause and effect
from human microbiota studies which generate associations
between bacterial taxa typically derived from 16s ribosomal
sequencing and transplant outcomes (40). The use of shotgun
sequencing allows for the imputation of various functional
properties of bacterial species (e.g. the likely ability to generate
various metabolites) which provide further granularity and
allows hypothesis generation (41). Recently, gnotobiotic and/or
antibiotic decolonized mice have allowed true cause and effect to
be ascertained whilst permitting dissection of the mechanisms
by which microbiota invoke GVHD, both at initiation and
amplification phases of the disease (42, 43).

Regulatory T cells (Treg) defined by the transcription factor
FoxP3 are pivotal for the maintenance of self-tolerance and the
induction of tolerance after allogeneic hematopoietic stem cell
transplantation (HCT). Depletion of CD25+ cells from the donor
inoculum exacerbates acute GVHD and infusion of CD4+CD25+

Treg inhibits GVHD in mice (44–46). Mogamulizumab, anti-
CCR4 antibody, eliminates Treg, in which CCR4 is highly
expressed (47). Pretransplant administration of mogamulizumab
is a risk for severe acute GVHD (48). Following the link between
Treg and acute GVHD, early phase clinical studies of Treg infusion
demonstrate safety of Treg infusion (49–54) but definitive data on
efficacy is awaited. The use of epigenetic modifiers such as histone
deacetylase inhibitors has been shown to attenuate acute GVHD
and enhance regulatory T cell activity in preclinical systems (55).
Promising activity in subsequent early phase clinical GVHD
prophylaxis studies has also been seen (56). Additional
immunomodulatory effects of these agents have recently been
reviewed elsewhere (57).

GVHD prophylaxis using calcineurin inhibitors (cyclosporin
or tacrolimus) reduce the expansion of effector T cells (Teff) by
blocking IL-2 and prevent acute GVHD, but fail to reduce
chronic GVHD (58–60). Calcineurin inhibitors regulate Teff at
the expense of Treg inhibition and the major challenge of GVHD
prophylaxis is to selectively control Teff, while preserving Treg.
In addition, calcineurin inhibitors are not sufficient in isolation
to control GVHD in HLA-mismatched HCT (61, 62). Alternative
approaches have been explored in preclinical systems. A study in
the early 1960’s showed that high-dose cyclophosphamide (Cy)
prolonged murine skin allograft survival only when given shortly
after transplant (63). Mayumi and Nomoto then continued studies
to elucidate mechanisms of tolerance induction by post-transplant
Cy (PTCy) in mice (64). Tolerogenic effects of PTCy were exerted
through selective elimination of alloreactive T cells, while
preserving bystander T cells and Treg (65–67). Subsequently, the
Johns Hopkins group translated PTCy to the clinic and confirmed
a low incidence of both acute and chronic GVHD, even after
haploidentical HCT (68, 69). GVHD prophylaxis using PTCy is a
standard of care in haploidentical HCT and also potentially in
HLA-matched related and unrelated donor transplantation, either
with bone marrow or peripheral blood stem cell sources (70, 71).

Role of the Conditioning Regimen
In the setting of BMT, donor T cells are infused into recipients
that have potentially experienced tissue injury by prior
Frontiers in Immunology | www.frontiersin.org 3
treatments of the underlying malignancy, infections, and more
immediately, pre-transplant conditioning. The inflammatory
environment invoked by these therapies predispose to a state
of enhanced alloantigen-presentation. Johnson and Truitt
demonstrated that delayed infusion of donor T cells induced
less severe GVHD (72). The Ferrara group demonstrated that the
conditioning regimen, particularly total body irradiation (TBI),
induced proinflammatory cytokine secretion (e.g. IL-1 and TNF)
and increased the severity of acute GVHD in animal models (73,
74). These studies demonstrated that GI tract injury and
associated pathogen-derived danger signals are critical to the
propagation of the ‘‘cytokine storm’’ characteristic of acute
GVHD (75). In humans, clinical studies clearly show that
myeloablative conditioning, particularly TBI is a risk for acute
GVHD (76, 77). Given this link between conditioning intensity
and acute GVHD, non-myeloablative and reduced intensity
conditioning regimens were developed by Storb and colleagues
in dog models (78). The translation of these to humans were
associated with reduced incidence of acute GVHD although
later-onset acute GVHD, occurring after day 100 was noted (79).

Antigen Presentation
In 1999, Shlomchik et al. demonstrated in preclinical mouse
systems that recipient antigen presenting cells (APCs) were
responsible for donor T cell activation and the induction of
acute GVHD (80). They subsequently showed that although host
APCs were much more potent, reconstituting donor
hematopoietic APCs were necessary to invoke the full spectrum
and severity of acute GVHD (81). They also demonstrated that
these donor APCs could cross-present host antigens to induce
chronic GVHD (82, 83). These hematopoietic (or professional)
recipient or donor APCs were predominantly dendritic cells (DCs)
(84, 85). Unexpectedly, Koyama et al. showed that non-
hematopoietic recipient APCs exhibited a potent capacity to
induce lethal acute GVHD (86) and consistent with this,
depletion of recipient professional CD11c+ or CD11b+ APCs do
not prevent GVHD (86, 87).

Subsequent mouse studies have demonstrated that intestine is
a critical site for alloreactive T cell activation by APCs (86, 88,
89). Importantly, the pathogenic donor APCs in the colon are
GM-CSF dependent, providing a potential therapeutic target
[reviewed in (90)]. Intestinal epithelial cells highly express
MHC class II and thereby regulate tolerance to intestinal
commensals while inducing immunity against pathogens (91).
Koyama et al. have demonstrated that prior to HCT, intestinal
epithelial cells (IEC) express MHC class II in the ileum and can
stimulate donor T cells and initiate acute GVHD, defining the
lineage of the non-hematopoietic APC that initiates lethal
GVHD (43). Both microbiota and conditioning invoke
IL-12p40 dependent generation of interferon (IFN)-g to
mediate these effects by IEC (43). A translational clinical study
has now commenced blocking IL-12p40 prior to conditioning in
an attempt to prevent the initiation of MHC class II dependent
GVHD within the GI tract (NCT04572815) (see also below).

Other mouse studies have been shown that intestine is a
critical site for alloreactive T cell activation by APCs (86, 88). The
August 2021 | Volume 12 | Article 715424
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a4b7 integrin-MAdCAM (mucosal addressin cell adhesion
molecule) -1 pathway is critical for T cell homing to the
intestine (88). Such a pathway found in mice has clinical
potential for translation. Maraviroc is a small-molecule drug
that block CCR5. However, addition of Maraviroc to standard
GVHD prophylaxis composed of tacrolimus and methotrexate
failed to reduce incidence of acute GVHD (92). Vedolizumab
and Natalizumab, a humanized monoclonal antibody specifically
target a4b7 integrin showed potentially promising results in
phase I/II studies (93, 94), and these agents are currently tested in
larger studies.
Co-Stimulation
The activation, proliferation and differentiation of donor T cells
requires recognition of alloantigen presented within MHC in the
context of additional signals, usually a cognate costimulatory
signal (characteristically CD40L – CD40 and CD28 – CD80/86
on the T cell and APC, respectively) and a differentiation signal
in the form of cytokine as defined above. The recognition of the
importance of cognate costimulatory signals has led to the
investigation of the relative ability of inhibitory antibodies that
block these pathways in preclinical models. Thus CTLA-4-Ig that
inhibits CD80 and CD86, anti-CD28 and anti-CD40 have all
been shown to attenuate GVHD in preclinical models (95–97).
The clinical reagent abatacept (CTLA-4-Ig) has also shown
promise in preventing acute GVHD in early phase clinical
studies (98, 99). Additional pathways such as OX40L and
ICOSL may also be clinically tractable [reviewed in (100)].
Cytokines
Cytokines play a pivotal role in the pathogenesis of GVHD. Many
inflammatory cytokines (e.g. IL-1, IL-6, TNF, HMGB1) are
generated in response to chemoradiotherapy during conditioning
and promote the activation of APCs. Other cytokines act in a
costimulatory role to promote pathogenic T cell differentiation (e.g.
IL-12, IL-6). Finally pivotal T cell derived cytokines (e.g. IFNg, GM-
CSF, IL-17) can in turn invoke target tissue apoptosis and
secondary myeloid cell migration to amplify GVHD [reviewed in
(100)]. Initial studies in experimental GVHDmodels suggested that
cytotoxicity mediated by cytotoxic T lymphocytes (CTLs) have a
central role in GVHD target tissue injury through the Fas/Fas
ligand pathway and perforin/granzyme pathways (101–104).
Subsequent studies demonstrated that inhibition of inflammatory
cytokines such as TNF, IL-1 and IL-6 also ameliorated GVHD (74,
105–109). In 2002, Teshima et al. formally demonstrated that
cytokines alone could generate the typical acute GVHD
pathology in the absence of cognate cell-to-cell dependent
cytotoxic mechanisms (110). These studies facilitated clinical
trials of cytokine blockade for acute GVHD. However, individual
cytokine blockade (e.g. TNF-a, IL-1, and IL-2) did not demonstrate
significant benefits in randomized trials, suggesting considerable
redundancy in these pathways and a likely requirement to inhibit
multiple cytokines to gain clinical efficacy (111, 112). With this
concept in mind, Ruxolitinib inhibits the signaling of multiple
Frontiers in Immunology | www.frontiersin.org 4
cytokines involved in the pathogenesis of experimental GVHD
(113, 114) and a recent randomized study has demonstrated the
efficacy of this agent in the treatment corticosteroid-refractory acute
GVHD (115). This represents the first successful randomized study
for the treatment of acute GVHD and highlights the successful
translation of our understanding of the role of cytokines in GVHD
from preclinical models. Ruxolitinib also targets Jak2, which relays
signals for growth and differentiation of hematopoietic cells, in
addition to Jak1, which relays inflammatory cytokines. Although it
remains to be determined which pathway is critical for GVHD
mitigation, animal studies suggest that neutrophils recruited to GI
tract in response to bacterial translocation enhance intestinal
GVHD via tissue damage (34). a1-Antitrypsin (ATT) inactivates
serine proteases produced from neutrophils and macrophages and
protect tissues from proteolytic degradation. Administration of
AAT ameliorates murine acute GVHD via multiple mechanisms
(116, 117). A phase 2 study of ATT shows promising results (118)
and ATT is currently tested in larger studies.
Tissue Homeostasis in GVHD
The pathophysiology of GVHD beyond donor effector T cells is
now better understood. Damage to the intestine plays a central
role in propagating a proinflammatory cytokine milieu and
amplifying systemic GVHD. Indeed, intestinal GVHD is the
major cause of non-relapse mortality after allogeneic HCT (75).
Intestinal GVHD is characterized by severe villous atrophy and
crypt degeneration; the latter has long been thought of as the
cardinal and pathognomonic feature of intestinal GVHD (119–
121). Recent data indicate that intestinal stem cells (ISCs) and
their Paneth cell niche are targeted in GVHD, resulting in
dysregulation of intestinal homeostasis and associated microbial
ecology (122–124). Goblet cells are also significantly reduced in
GVHD, resulting in disruption of inner mucus layer of the colon
and increased bacterial translocation into colonic mucosa (125). In
humans, reduced Paneth-cell numbers in duodenal biopsies and
Goblet-cell numbers in colon biopsies correlate with the severity of
GI-GVHD and transplant outcome (125, 126). Patients who
undergo allogeneic HCT exhibit dysbiosis characterized by loss
of diversity and expansion of potentially pathogenic bacteria (127–
129). The microbiota and their metabolites shape the immune
system and intestinal homeostasis (130). Lower microbial diversity
and Enterococcus domination are associated with increased
GVHD and poor survival across diverse ethnicity (40, 42). In
addition, recent studies suggest an unexpected association between
fungal and viral colonization and GVHD (39, 131). However,
there are many open questions to be addressed in this field (132).
What are the most important microbes that control transplant
outcomes? Should we consider microbiota stewardship in addition
to antibiotic stewardship in our transplant teams? Can we use
interventions that modify the microbiome to improve transplant
outcomes? What is the role of skin microbes in skin GVHD?

The sensitivity of target tissues to GVHD may be modulated
by tissue-intrinsic resilience and homeostasis. Thus, integration
of both immune tolerance and tissue tolerance could optimize
GVHD treatment (133). In the 1990’s, Ferrara’s group proposed
August 2021 | Volume 12 | Article 715424
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a concept of using cytokine shields to prevent target tissue
damage in the GI tract. IL-11 and keratinocyte growth factor
(KGF) protect gut injury from TBI and have anti-inflammatory
properties. In mice, IL-11 and KGF ameliorated GVHD
(134–136). However, a clinical trial of IL-11 was halted by
unexpected severe side effects (137). This trial highlighted that
clinical toxicity cannot always be estimated in mice and
subsequent studies have also utilized primate models to study
efficacy and toxicity (138). Protection of the ISC-niche and
modification of the intestinal microbiota and metabolome to
restore intestinal homeostasis may also represent a novel
approach to modulate GVHD and also infection. In mice,
IL-22 and R-Spondin are growth factors for ISCs that
ameliorate GVHD in mice (122, 123, 139, 140). Glucagon-like-
peptide-2 (GLP-2) is an enteroendocrine tissue hormone.
Administration of GLP-2 promoted regeneration of ISCs and
Paneth cells and restored intestinal homeostasis, resulting in
amelioration of GVHD (141). IL-25 protects Goblet cells and
also could improve transplant outcome (125). ISCs and
Paneth cells express IFN-g receptors. IFN-g secreted by donor
T cells induces ISC and Paneth cell death in vitro (142,
143). Ruxolotinib inhibits IFN-g signaling and protects ISCs
and Paneth cells (142, 143), which may be an additional
mechanism of ruxolitinib’s action in intestinal GVHD (113,
144). Despite the promising mouse data, it remains to be
elucidated whether modification of GVHD target tissue
sensitivity can attenuate clinical GVHD.

Although most studies of tissue stem cell injury in GVHD
have focused on the intestine, a recent study demonstrated that
skin stem cells are injured in GVHD in association with impaired
skin homeostasis (145). Topical corticosteroids suppressed skin
inflammation but failed to protect skin stem cells and restore
skin homeostasis. In contrast, topical ruxolitinib protected skin
stem cells, resulting in restoration of hair regeneration and
wound healing (145). These results in animals deserve further
clinical scrutiny but will promote to open a new avenue for
improved tissue homeostasis in GVHD beyond the GI tract.
CHRONIC GVHD

Chronic GVHD, a pleiomorphic syndrome, is the major cause of
nonrelapse mortality and severely impairs the quality of life in
long-term survivors of allogeneic HCT. The highly variable
clinical manifestations of chronic GVHD frequently involve
the skin, liver, eyes, mouth, upper respiratory tract, esophagus,
and less frequently serosal surfaces, lower gastrointestinal tract,
female genitalia, and fascia (146). The biological mechanisms
leading to chronic GVHD are not yet as well understood as those
leading to acute GVHD, complicated by the fact that chronic
GVHD can present with more heterogenous phenotypes than
acute GVHD. Individual mouse models have dominant disease
manifestations that typically involve a limited number of organs.
The B6 into B10.BR model induces chronic GVHD primarily
presenting as bronchiolitis obliterans (147). The B10.D2 into
Frontiers in Immunology | www.frontiersin.org 5
BALB/c model induces scleroderma as the primary manifestation
(148). G-CSF-mobilized SCT (bothB6 into B6D2F1 and Balb/c to B6
mouse models) generate scleroderma, liver disease and Sjogren’s
features (149). Using these preclinical models, significant progress has
beenmade in the last decade andmousemodels have demonstrated a
critical role for donor Treg defects, germinal center B cell expansion
and alloantibody secretion, and dysregulated Th17/Tc17 and T
follicular helper (Tfh) differentiation in the development of chronic
GVHD (150–157). Ibrutinib, an inhibitor of Bruton’s tyrosine kinase,
has showed clinical efficacy in a phase II clinical trial and was
approved for chronic GVHD, representing the first such agent
(158). Treg are numerically decreased and dysfunctional in patients
with chronic GVHD (159, 160). Low-dose IL-2 preferentially
stimulates proliferation, function, and survival of Treg; low-dose
IL-2 administration to patients has been shown expands Treg and
ameliorates chronic GVHD in a proportion of patients (161, 162).　
Efavakeukin-a, IL-2 mutein, is currently tested in a clinical trial.
Ruxolitinib suppresses dysregulated inflammatory cytokine
responses in chronic GVHD and is effective in patients with
chronic GVHD (144); results of a prospective phase 3 trial of
ruxolitinib for steroid refractory chronic GVHD are expected
soon. Tfh and germinal center B cells (GCB) play a role in the
development of chronic GVHD and bronchiolitis obliterans
syndrome (152, 153, 163). The rho-associated coiled-coil
kinase 2 (ROCK2) inhibitor, belumosudil (KD025), inhibits the
differentiation of Th17 and Tfh together with GCB, and
alloantibody generation (164). Syk inhibition induces apoptosis
of activated B cells and ameliorates chronic GVHD (165, 166).
Belumosudil and the Syk inhibitor Fostamatinib are currently
being tested in clinical trials. Tissue fibrosis, the main
manifestation of chronic GVHD, is characterized by increased
deposition of collagen fibers secreted from activated fibroblasts
in response to profibrotic cytokines such as TGF-b and PDGF-a
secreted by CSF-1R-dependent macrophages (157, 167–172)
[reviewed in (173)]. This pathological cascade of fibrosis
defined in mice, has given rise to a number of new potential
targets, including TGF-b, PDGF-a and CSF-1R; CSF-1R
antibody axatilimab, which inhibits signaling through CSF-1
and IL-34, is currently undergoing assessment in clinical
trials (NCT04710576).
CONCLUSIONS

Mouse models of GVHD faithfully recapitulate the pathological
lesions seen in clinical disease and allow the dissection of
pathogenic versus protective immunological mechanisms of
action and tissue resistance. While the ability to tightly control
MHC and minor antigen barriers is a strength, the inbred nature
of these systems may overlook variables present in outbred
human populations (e.g. microbiota, age, obesity, prior
therapy, comorbidities, conditioning, immune suppression).
Some of these limitations can be overcome by more thorough
study of these variables in mice (e.g. age, obesity, conditioning,
concurrent immune suppression) and/or the use of non-human
August 2021 | Volume 12 | Article 715424
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primates or dog models (especially pharmacological immune
suppression). Additional limitations include the widespread use
of cell lines to study graft-versus-leukemia effects and the lack of
relevant models to study pathogen-specific immunity in the
context of new therapies, at least until recently. Nevertheless,
to date almost all effective therapeutic paradigms that are now
established in humans have their genesis in animal models,
suggesting that these systems will continue to provide valuable
insights and therapeutic advances to the field. Importantly, it
would seem critical that well-established preclinical systems are
utilized to analyze the effects of various therapeutic interventions
before they are translated into early phase clinical trials.
Frontiers in Immunology | www.frontiersin.org 6
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