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Abstract

Plant defense responses to biotic stresses are complex biological processes, all governed
by sophisticated molecular regulations. Induced systemic resistance (ISR) is one of these
defense mechanisms where beneficial bacteria or fungi prime plants to resist pathogens or
pest attacks. In ISR, the defense arsenal in plants remains dormant and it is only triggered
by an infection, allowing a better allocation of plant resources. Our group recently described
that the well-known beneficial bacterium Paraburkholderia phytofirmans PsJN is able to
induce Arabidopsis thaliana resistance to Pseudomonas syringae pv. tomato (Pst) DC3000
through ISR, and that ethylene, jasmonate and salicylic acid are involved in this protection.
Nevertheless, the molecular networks governing this beneficial interaction remain unknown.
To tackle this issue, we analyzed the temporal changes in the transcriptome of PsJN-inocu-
lated plants before and after being infected with Pst DC3000. These data were used to per-
form a gene network analysis to identify highly connected transcription factors. Before the
pathogen challenge, the strain PsJN regulated 405 genes (corresponding to 1.8% of the
analyzed genome). PsJN-inoculated plants presented a faster and stronger transcriptional
response at 1-hour post infection (hpi) compared with the non-inoculated plants, which pre-
sented the highest transcriptional changes at 24 hpi. A principal component analysis
showed that PsJN-induced plant responses to the pathogen could be differentiated from
those induced by the pathogen itself. Forty-eight transcription factors were regulated by
PsJN at 1 hpi, and a system biology analysis revealed a network with four clusters. Within
these clusters LHY, WRKY28, MYB31 and RRTF1 are highly connected transcription fac-
tors, which could act as hub regulators in this interaction. Concordantly with our previous
results, these clusters are related to jasmonate, ethylene, salicylic, acid and ROS pathways.
These results indicate that a rapid and specific response of PsdN-inoculated plants to the
virulent DC3000 strain could be the pivotal element in the protection mechanism.
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decision to publish, or preparation of the Introduction
manuscript.
Plants face a myriad of pathogens and pests in their natural environment resulting in tremen-

dous annual crop losses worldwide, ranging from 20 to 40% of potential crop yield [1,2]. Addi-
tionally, the cost of finding and developing new agrochemicals has risen from US$184 to US
$286 million since 2000 [3]. Thus, in the context of a growing human population, elucidating
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the mechanisms of plant defense has become extremely important. Plant defense responses to
biotic stresses are complex biological processes, involving numerous changes at the biochemi-
cal, physiological, and molecular (transcriptional) level, all governed by an intricate grid of
hierarchical and regulatory interactions [4]. These defense mechanisms are triggered partly by
the hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) [5-10]. Typically, SA
is involved in resistance against biotrophic pathogens [11], while JA and ET participate in the
regulation of defense response against necrotrophic pathogens and insects [12,13].

The induced systemic resistance (ISR) is one of these sophisticated defense strategies that is
elicited by selected beneficial microorganisms, i.e., some plant growth-promoting rhizobac-
teria (PGPR) or beneficial fungi. Hence, plants that have previously interacted with these bene-
ficial microorganisms deploy an enhanced defense response during subsequent pathogen or
insect attacks, in a phenomenon known as priming [14-18]. In an ISR response, the defense
arsenal in primed plants remains dormant and is only activated under a pathogen infection,
allowing a better allocation of the plant’s energy budget [19]. Recently, a complex interplay
between ISR and plant nutrient starvation responses, together with the regulation of the rhizo-
sphere associated microbial components has been proposed [20,21]. Thus, a better under-
standing of the molecular mechanisms underlying ISR may foster the use of these beneficial
microorganisms as a sustainable tool not only for plant disease management but also to cope
with some nutrient related agricultural issues [22-24].

Paraburkholderia phytofirmans PsJN (formerly Burkholderia, [25]) is a PGPR which is able
to produce positive effects in horticultural crops such as tomato, potato, grape [26-31], and
also in switchgrass [32] and Arabidopsis [33-35]. This bacterium also induces physiological
changes in plants, enhancing their adaptation to environmental stresses such as cold, salinity,
and drought [26,27,33,36-40].

We recently reported that P. phytofirmans Ps]N reduces disease susceptibility in Arabidop-
sis thaliana plants to the virulent strain Pseudomonas syringae pv tomato (Pst) DC3000,
through the activation of ISR, by means of SA, JA and ET dependent signaling pathways [41].
Thus, it is possible to hypothesize that specific gene regulatory networks, associated with these
hormonal signaling pathways, underlie plant protection induced by strain PsJN. Nevertheless,
the molecular networks that govern ISR and specifically, the primed state of Arabidopsis plants
colonized by P. phytofirmans PsJN are still unknown. To tackle this issue we analyzed the tem-
poral changes in global gene expression during Pst DC3000 infection in A. thaliana plants that
were inoculated or non-inoculated by strain PsJN. This information was used to develop a
gene network analysis, which allowed identification of key transcription factors (TFs) that may
be controlling the ISR response in this study model.

Materials and methods
Plant growth conditions and bacterial inoculation

P. phytofirmans Ps]N (obtained from our laboratory stock) was grown in minimal saline
medium [42], containing 10 mM fructose, in an orbital shaker (120 rpm) at 30°C. Cell suspen-
sions were subsequently collected and adjusted to 1x10® colony forming units per milliliter
(CFU/ml), as determined by plate counting. Col-0 Arabidopsis thaliana seeds were obtained
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from the Arabidopsis Biological Resource Center (ABRC). The seeds were surface sterilized
with 50% sodium hypochlorite (100% commercial laundry bleach) containing 0.1% Tween 20,
rinsed four times with sterile water, and kept at 4°C for four days to promote uniform germi-
nation. To prepare the inoculated square Petri dishes for gnotobiotic assays, the initial inocu-
lum of strain PsJN (1x10® CFU/ml) was homogenously diluted in half strength Murashige and
Skoog medium (50% MS) 0.8% agar [43] just before gelling, to reach a final inoculum of 1x10*
CFU/ml of medium, as this concentration was previously reported by Poupin et al. [34] as the
optimum to induce positive effects in A. thaliana plants. Then, eight sterilized and synchro-
nized seeds were sown per plate, in plates that were inoculated or non-inoculated with the
strain, and placed vertically in a growth chamber at 22°C with a photoperiod of 16/8 h (light/
dark).

Infection of plants and RNA isolation

A graphical representation of the experimental design is presented in Fig 1A. Briefly, Pst
DC3000 (obtained from Loreto Holuigue’s Laboratory) was grown on King’s B medium in an
orbital shaker (120 rpm) at 28°C, supplemented with 50 ug/ml of rifampicin and 50 pg/ml of
kanamycin, as selection antibiotics. Thirteen days after sowing (13 DAS), A. thaliana plants
with four visible leaves (LP.04 stage [44]), inoculated or non-inoculated with P. phytofirmans
PsJN, were sampled and stored in 1.5 ml Eppendorf tubes containing RN Alater (Ambion, Aus-
tin, TX) according to the manufacturer’s instructions. These treatments correspond to 0 hours
post-infection (0 hpi). Then, in the remaining plants, rosettes were infected by spraying 100 pl
per plate of Pst DC3000 at 1x10° CFU/ml in 10 mM MgCl, (Fig 1A). One and 24 h after Pst
DC3000 infection (1 and 24 hpi), five pools with four plants each were collected per treatment
(non-inoculated plants/Pst and strain PsJN-inoculated plants/Pst) and stored in RNAlater
(Ambion, Austin, TX) until RNA extraction (according to the manufacturer’s instructions).
For RNA extraction, plants were ground with an electronic pestle in the Eppendorf tube with-
out the RNAlater solution. Then, the total RNA of each sample was extracted using the Trizol
reagent (Invitrogen, Carlsbad, CA) according to the manufacturer’s recommendations.

Microarray hybridization

Three biological replicates, consisting of four plantlets of 13 DAS each, non-inoculated or
PsJN-inoculated treatments, infected or not with Pst DC3000, were used for global gene
expression analysis using the GeneChip Arabidopsis ATH1 Genome Array (Affymetrix, Santa
Clara, CA). RNA samples were quantified and analyzed using a NanoDrop (Thermo Scientific,
USA) spectrophotometer, according to the manufacturer’s instructions. For RNA processing,
we used the GeneChip 3’ IVT Express Kit (Affymetrix, Santa Clara, CA), following the manu-
facturer’s instructions. First-stranded cDNA synthesis was achieved with 0.5 pg of RNA from
each sample, using T7 oligo(dT) Primer and the First-strand enzyme mix (Affymetrix, Santa
Clara, CA). Subsequently, IVT biotin-labeled aRNA (cRNA) was generated using the second-
stranded cDNA as a template and following the manufacturer’s specifications. Later, the bio-
tin-labeled aRNAs were fragmented (between 35 and 200 bases in length) and hybridized on a
GeneChip Arabidopsis ATH1 Genome Array using standard procedures (45°C for 16 h). The
arrays were finally washed and stained in a Fluidics Station 450 (Affymetrix, Santa Clara, CA).

Affymetrix data processing and analysis

ATHI1 arrays were scanned with the GeneChip scanner 300 and the images were analyzed
using the GeneChip Operating Software. GeneChip arrays data were first evaluated using a set
of standard quality control steps described by the manufacturer. Raw data were normalized by
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Fig 1. Transcriptomic changes induced by Paraburkholderia phytofirmans Ps]N in Arabidopsis thaliana plants infected with Pseudomonas
syringae DC3000. (A) Graphical explanation of the experimental design where A. thaliana seeds were inoculated (strain PsJN-inoculated) or non-
inoculated at sowing, and 13 days after that (DAS) a group of plants were sampled and analyzed (0 hours post infection, hpi) and the remaining plants
were infected with P. syringae pv. tomato DC3000, to collect and analyze samples at 1 and 24 hpi (B) Number of A. thaliana genes that were either up-
or down-regulated by P. phytofirmans Ps]N before (0 hpi) and after P. syringae DC3000 infection (1 and 24 hpi) in comparison to non-inoculated
plants (Rank-product, adjusted p<0.05) (C) Venn diagrams of the data presented in (B) showing the overlap of genes that were up- or down-regulated
in Arabidopsis plants inoculated with strain PsJN before (0 hpi) and after the infection with Pst DC3000 (1 and 24 hpi).

https://doi.org/10.1371/journal.pone.0221358.9001

RMA (Robust Multi-Array Average) [45] using the affy R package [46]. RMA expression val-
ues (log2-transformed) for each set of biological replicates were evaluated using Pearson corre-
lation and ranged from 0.96 to 0.99. The data analyzed in this work were deposited in NCBI’s
Gene Expression Omnibus (GSE124475) [47]. Differentially expressed genes (DEGs) in
response to Pst DC3000 infection influenced by strain PsJN inoculation were determined in
normalized data using a two-way analysis of variance (ANOVA) with an adjusted p<0.01 by
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Benjamini, and Hochberg false discovery rate correction [48] by the Multiple Experiment
Viewer (MEV) software [49]. We used a multiple regression with expression Y of a given gene
i calculated as Yi = B0 + B1Pst + B2PsJN + B3Pst/Ps]N + €, where B0 is the global mean, and
B1, B2, and B3 are the effects of the Pst DC3000 infection, PsJN inoculation and the interaction
between these two factors, respectively. The variable € corresponds to the unexplained vari-
ance (noise). To identify DEGs between two experimental conditions (e.g., non-inoculated
and strain PsJN-inoculated at one hpi Pst DC3000-infection), we used the Rank-Product anal-
ysis (p<0.05) in the group of selected DEGs by ANOVA [50]. We also performed a principal
component analysis (PCA) using Log2 normalized expression data across each sample, as
described before [51], and two-dimensional coordinates were plotted using MEV software.
For functional analysis, the Virtual-Plant [52] and Revigo [53] platforms were used. For those
Affymetrix IDs that represent more than one locus, all of them were considered for further
functional analyses. Gene Ontology terms (GO) that were statistically overrepresented were
calculated using the BioMaps tool in the Virtual-Plant platform (Fisher Exact Test, p< 0.01
with FDR correction). For graph purposes, the REVIGO platform was used to reduce semanti-
cally redundant GO terms [53]. Additionally, MapMan software [54] was used to provide a
graphic representation of DEGs involved in the biotic stress metabolic pathway before and
after the infection with Pst DC3000.

TFs identification and Gene Network analysis

To identify the regulated genes corresponding to TFs encoding genes, we selected the group of
DEGs in the treatment with the largest transcriptional changes, corresponding to plants at 1
hpi with Pst DC3000, where 645 DEGs were up- and down-regulated by strain PsJN. Then,
this list of genes was intersected, using the VirtualPlant platform [52], with a list of 2273 TFs
obtained from Jin et al. [55] and Pérez-Rodriguez et al. [56]. Gene families were assigned using
the TAIR platform (https://www.arabidopsis.org).

For Gene Network analysis, we also selected the group of DEGs identified by Rankproduct
between non-inoculated and inoculated with strain PsJN at 1 hour after the infection with Pst
DC3000 (p<0.05). We included the following information: (1) a gene co-expression network
from the ATTED-II database [57], where the co-expression values were calculated using
weighted Pearson’s correlation coefficient, as described by Obayashi et al. [58]; (2) the protein-
DNA interactions described in DAP-seq database [59], where we filtered by the over-represen-
tation of the TF binding site in the upstream gene region (1000 bp) (two standard deviations)
above the mean occurrence in all the upstream sequences in the genome, and by the TFs/target
pairs for which co-expression values were significantly correlated (adjusted p<0.05 by FDR) in
our microarray experiment. Then, we used the Cytoscape software [60] for visualizing the
resulting network, where nodes represented genes and they are connected by edges that repre-
sent putative regulatory interactions. The network topology was described using a community
cluster (Glay) analysis in Cluster-Maker tools [61]. This analysis recognizes functional groups
within nodes and finds densely connected regions [62]. Finally, statistical overrepresentation
in biological functions in each cluster was identified using a hypergeometric analysis in Clue-
GO tools (adjusted p<0.01 by FDR) [63].

qRT-PCR Analyses

To perform qRT-PCRs analyses, the same RNAs used for Affymetrix analyses were used to
prepare cDNA from the samples collected at 1 and 24 hpi (Fig 1A); cDNA was prepared using
1 pg of total RNA (previously treated with DNAse I RQ1, Promega, USA), random hexamer
primers and the Improm II reverse transcriptase (Promega, USA), according to the
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manufacturer’s instructions. Real time RT-PCRs were performed using the Brilliant SYBR
Green QPCR Master Reagent Kit (Agilent Technologies, USA) and the Eco Real-Time PCR
detection system (Illumina, USA) as described by Poupin et al. [34]. The PCR mixture (10 pl)
contained 4.75 pl of template cDNA (diluted 1:10) and 140 nM of each primer. Amplifications
were performed under the following conditions: 95°C for 10 min, followed by 40 cycles of
94°C, 30 s; 57-60°C, 30 s; and 72°C, 30 s, followed by a melting cycle from 55 to 95°C. Primer
pairs used were described in [64] and in [34], standard quantification curves with serial dilu-
tions of PCR products were constructed for each amplicon to calculate the amplification effi-
ciency (E) of each primer set, according to the equation: E = 10C V/51op) _ 1 [65]. Gene
expression levels were calibrated for each time (1 or 24 hpi) using the average value in the sam-
ples of non-inoculated plants. TIP4 was used as a housekeeping (HK) gene since it showed a
high stability with a standard deviation of 0.6 (n = 30). Then, an accurate ratio between the
gene of interest (GOI) and the HK gene expression was calculated for each sample, using the
equation:

1+ E(GOI)%CtGOI—ctGOI calibrated)
1+ E(HK)—(ctHK—ctHK calibrated)

Efficiency values for each primer set were close to 1 and R” values were over 99% [66]. All
experiments were performed in three biological (four plants each), and two technical
replicates.

Results

Transcriptional changes regulated by P. phytofirmans PsJN during
systemic resistance to a virulent infection in Arabidopsis

To get a better understanding of the molecular changes underlying the ISR triggered by strain
PsIN in Arabidopsis plants infected with a virulent bacterium, a transcriptome-profiling assay
using non-inoculated plants and strain PsJN-inoculated (0 hpi) plants was performed. Addi-
tionally, the analyses included samples 1 and 24 h after a challenge with P. syringae pv. tomato
DC3000 (1 and 24 hpi) (Fig 1A). The complete list of genes regulated by strain Ps]N in the dif-
ferent treatments and times is presented in S1 Table. To first analyze the transcriptional changes
induced only by strain PsJN inoculation, the regulated genes were compared between strain
PsJN-inoculated and non-inoculated plants (0 hpi). The presence of strain Ps]N significantly
up-regulated 134 genes and down-regulated 271 genes (Rank-Product method; p<0.05) (Fig
1B; 0 hpi). Transcriptional changes were transiently intensified at 1 h after the challenge with
Pst DC3000 (Fig 1B, 1 hpi), where 347 genes were significantly up-regulated and 298 down-reg-
ulated by the previous inoculation with strain PsJN. Finally, at 24 h after Pst DC3000 infection,
204 genes were significantly up-regulated and 216 down-regulated by the PGPR (Fig 1B).

To analyze gene co-regulation by the different treatments, the list of DEGs were compared
as shown in Fig 1C. Only 22.5% of the genes that were up-regulated in strain PsJN-inoculated
plants at 1 hpi were also up-regulated before the infection; 25.4% of the up-regulated genes at 1
hpi remained in that condition at 24 hpi, and 39 genes were up-regulated in all the measured
times, independently of the infection and seem to be related exclusively to the presence of
strain PsJN (Fig 1C). Regarding the down-regulated genes, 70 genes were affected in all the
measured times and could be associated with a specific response to strain PsJN, corresponding
to 32.4% of the reaction triggered at 24 hpi (Fig 1C).

Since the largest transcriptional changes were observed at 1 hpi in inoculated plants, a gene
ontology (GO) term enrichment analysis (p<0.01) was performed at this time using the
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BioMaps tool, in the VirtualPlant platform [52]. To simplify interpretation and avoid redun-
dancy, significant GO term lists were reduced using REVIGO tools, but full lists of all signifi-
cant GO terms with the group of DEGs included in each term are presented in S2 Table. Thus,
the GO terms in the group of up-regulated genes that were statistically overrepresented in
comparison with those represented in the Arabidopsis genome arrays were “Response to stim-
ulus”, “Response to stress”, “Response to biotic stimulus”, “Response to oxidative stress”, and
“Response to other organisms” (S1A Fig). Likewise, genes implicated in “cellular response to
nutrient levels” were predominantly up regulated in strain PsJN-inoculated plants at 1 hpi,
suggesting a better use of plant nutrients or energy. For genes that were down-regulated, the
most significantly enriched GO terms in biological process were “Response to stimulus”,
“Response to stress”, “Response to abiotic stimulus”, “Response to organic substance”,
“Response to hormone”, and “Secondary metabolic process” (S1B Fig).

A PCA (Fig 2) showed that the first principal component (PC1) accounted for 26.9% of the
total variation and grouped the samples based on time (0 h, 1 and 24 hpi), regardless of the
infection with Pst DC3000. On the other hand, PC1 also allows the differentiation between
non-inoculated and strain PsJN-inoculated plants at 1 hpi, which is in agreement with the
highest transcriptional changes observed at this time (Fig 1B and 1C). The second principal
component (PC2) accounted for 11.8% of the variation, and differentiated strain PsJN-inocu-
lated and non-inoculated plant samples in all the measured times.

The MapMan software [54] was utilized to have an overview of the pathways related to biotic
stress which were affected by strain PsJN inoculation before Pst DC3000 infection and at 1 and
24 hpi. Before the pathogen infection (Fig 3A), plants inoculated with strain PsJN showed par-
tial activity of auxin, ET, brassinosteroids (BR), and JA signaling; as well as regulation of genes
related to the cell wall; redox state; peroxidases, signaling, PR proteins and ERF, WRKY and
MYB TFs. At one hpi, a high increase in the regulation of signaling related genes, abiotic stress,
secondary metabolites, heat shock proteins and proteolysis was observed (Fig 3B). Additionally,
a tendency towards an up-regulation (compared to 0 hpi) was observed in ET, redox state, per-
oxidases, and with the ERF, bZIP, MYB and WRKY TFs (Fig 3B). Accordingly to the previous
analyses, the transcriptional changes decreased at 24 hpi in comparison to at 1 hpi (Fig 3C).

Then, and to isolate the effects of Pst DC3000 infection, the transcriptional data were com-
pared using the infection as a factor inside each group of PsJN-inoculated or non-inoculated
plants (S3 Table; Fig 4). While non-inoculated plants showed a stronger response at 24 hpi than
at 1 hpi (646 vs 159 genes, respectively), strain Ps]N-inoculated plants responded earlier, regu-
lating 560 genes at 1 hpi and showing a lower response magnitude at 24 hpi (415 genes) (Fig
4A). Thus, at 24 hpi, the magnitude of transcriptional changes was slightly lower (64%) in strain
PsJN-inoculated plants compared with the non-inoculated ones (Fig 4A). Moreover, at one hpi,
13% of the genes regulated by strain PsJN inoculation were also regulated in non-inoculated
plants and could be related only to the strain DC3000 infection; this shared response was 29.7%
at 24 hpi (Fig 4B). When GO that are overrepresented are compared between the treatments,
different patterns related with PsJN inoculation can be observed (Fig 4C). For instance, at 1 hpi
regulation of SA and JA was only observed in PsJN inoculated plants, as well as defense response
and cell wall organization (Fig 4C). A similar situation was observed at 24 hpi, were GO are
qualitatively different in plants that were previously inoculated with PsJN (Fig 4C).

TFs regulated by P. phytofirmans PsJN, and their associated networks,
during ISR response to a virulent pathogen

To identify the TFs regulated in this ISR response, the DEGs at 1 hpi in inoculated plants (the
treatment with major transcriptional changes) were compared with the Arabidopsis TFs
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described in Jin et al. [55] and Pérez-Rodriguez et al. [56] using the Virtual Plant platform
[52]. Thirty-one TFs coding genes were identified as up-regulated, belonging to several gene
families, and 17 genes were down regulated. Table 1 indicates their fold changes and p-values
at 0, 1 and 24 hpi. Here, some gene families possessed genes both up- and down-regulated,
such as, bBHLH, ERF/AP2, MYB, and NAC, whereas families such as WRKY presented only
up-regulated members and others only down-regulated ones (i.e. C2H2).

Then, a network inference analysis was performed with DEGs in Ps]N-inoculated plants at
1 hpi. We included protein-DNA interactions based on the DAP-seq database [59] and a gene
co-expression database [58]. As shown in Fig 5, a network comprising 500 genes with 975
interactions was generated with the DEGs, showing their putative regulatory interactions.
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Fig 3. Biological processes affected by Paraburkholderia phytofirmans Ps]N inoculation in Arabidopsis plants
before and after the challenge with Pseudomonas syringae DC3000. MapMan software visualization of the defense
functions affected in response to P. phytofirmans Ps]N in A. thaliana plants before the challenge with P. syringae
DC3000 (A); at 1-hour post infection (B) or at 24 hours post infection (C). Differential expressed genes were binned to
MapMan functional categories with regard to pathogen/pest attack and Log?2 fold changes values for each gene are
represented. Up-regulated and down-regulated transcripts are shown in green and red, respectively.

https://doi.org/10.1371/journal.pone.0221358.9003
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Fig 4. Gene regulation induced by Pseudomonas syringae DC3000 in Arabidopsis plants inoculated or non-inoculated with Paraburkholderia
Pphytofirmans PsJN. Number of regulated genes at 1 and 24 hours post-infection (hpi) with Pst DC3000 in plants that were previously inoculated with
strain PsJN (PsJN-inoculated plants, right panel in A) or were not inoculated with the same strain (Non-inoculated plants, left panel in A), all data were
compared to 0 hpi (Rank-product, adjusted p<0.05) (B) Venn diagrams of the data presented in (A) showing the overlap of genes that were either up-
or down-regulated in Arabidopsis plants inoculated or non-inoculated with strain PsJN at 1 and 24 hpi of Pst DC3000 infection. Panel (C) shows
biological processes affected by Pst DC3000 infection in PsJN- and non-inoculated plants (right and left panel, respectively) at 1 (upper figures) or 24
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https://doi.org/10.1371/journal.pone.0221358.9004
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Table 1. Transcription factors coding genes regulated by Paraburkholderia phytofirmans Ps)N at 1 hour post infection (hpi) with Pseudomonas syringae Pst
DC3000 in Arabidopsis thaliana plants, and their fold changes and p-values before the infection (0 hpi) and at 24 hpi.

Fold change (Log2)/p value

Gene family Locus Name 0 hpi 1 hpi 24 hpi
ARR Atlg67710 | ARRII NS 0.88/0.02 NS

ARR Atl1gl9050 | ARR7 NS 0.78/0.04 NS
bHLH At2g43140 | BHLHI29 NS 1.99/0 1.18/0.01
bHLH Atl1g05805 | AKS2 NS 1.07/0.01 0.71/0.05
bHLH At5g15160 | BHLHI134, BNQ2 1.19/0 1.04/0.01 NS
bZIP At5g49450 | ATBZIPI1 NS 0.78/0.05 1.25/0.01
bZIP Atlgl3600 | ATBZIP58 NS 0.77/0.04 NS
CCCH At2g05160 | CCCH-type zinc finger family protein with RNA-binding domain-containing protein | 0.7/0.04 1/0.01 NS
ERF/AP2 At3g16770 | ATEBP, EBP, ERF72, RAP2.3, RELATED TO AP2 3 0.76/0.03 0.82/0.03 NS
ERF/AP2 At4g39780 | member of the DREB subfamily A-6 of ERF/AP2 transcription factor family NS 1.11/0.01 NS
ERF/AP2 At3g60490 | member of the DREB subfamily A-4 of ERF/AP2 transcription factor family NS 1.04/0.01 NS
ERF/AP2 Atlg06160 | ERF59, ORA59 NS 0.98/0.02 NS
ERF/AP2 Atlg36060 WIND3 NS 0.9/0.04 NS
GARP Atlgl13300 TNIGT1, HRS1, NIGT1.4 NS 0.87/0.02 NS
GATA At2g45050 | GGATA2 NS 0.79/0.03 NS
KANADI At5g42630 | KAN4, KANADI 4 NS 0.92/0.02 NS
MYB Atl1g74650 | ATMYB31 NS 1.1/0.01 NS
MYB-like At5806800 | myb-like HTH transcriptional regulator family protein NS 0.8/0.04 NS

NAC At3g04070 | ANAC047 NS 2.16/0 NS

NAC At1g69490 | ANAC029 0.83/0.03 1.02/0.02 NS

NAC At3g15500 | ANACO055, ATNAC3 NS 0.85/0.04 NS
PLATZ At1g76590 | PLATZ transcription factor family protein NS 1.2/0.01 NS
WRKY At5g07100 | ATWRKY26 NS 1.51/0 NS
WRKY At4g18170 | ATWRKY28 NS 0.94/0.04 NS
WRKY At5g52830 | ATWRKY27 NS 0.79/0.04 NS
WRKY At4g01720 | ATWRKY47 NS 0.78/0.05 NS

U Atl1g32540 | LOLI 1.14/0 1.08/0.01 0.88/0.22
U At5g02810 | APRR7 NS 0.91/0.02 NS

U At2g19810 | ATOZF1, ATTZF2 NS 0.8/0.04 NS

U At4g29190 | ATOZF2, TZF3 NS 0.76/0.04 NS

U At4g29080 | IAA27, PAP2 NS 0.69/0.05 NS

B-BOX ZINC FINGER | At2g21320 BBX18 NS -0.78/0.04 | NS

bHLH At5g04150 BHLHI101 -3.13/0 -3.73/0 -2.7710

bHLH At3g56980 BHLH039, ORG3 -3.31/0 -3.96/0 -3.26/0

C2H2 At5g59820 | ATZATI2, RHL41, ZAT12 NS -0.89-0.02 | NS

CCAAT-HAP5 Atlg56170 | ATHAP5B, HAP5B, NF-YC2 NS -0.9/0.02 -1.12/0.01

ERF/AP2 At5g25190 | ESE3 NS -0.79/0.04 | NS

ERF/AP2 At4g34410 | ERF109, RRTF1 NS -0.8/0.03 NS

ERF/AP2 Atl1g74930 ORA47 NS -1.51/0 NS

HSF At2g26150 | ATHSFA2 NS -1.35/0.01 NS

MYB At5g07690 | ATMYB29, PMG2, RAO7 NS -1.09/0.01 NS

MYB At1gl8710 | ATMYB47 NS -1.34/0 NS

MYB-like Atlg01520 | ASG4, REV3 NS -0.83/0.03 -1.06/0.02
(Continued)
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Table 1. (Continued)

Fold change (Log2)/p value

Gene family Locus Name 0 hpi 1 hpi 24 hpi
MYB-related Atl1g01060 | LHY, LHY1 NS -0.91/0.02 | NS

NAC At1g01720 | ANAC002, ATAF1 NS -0.95/0.01 | -1.24/0.01
NAC At5g63790 | ANACI02 -0.94/0.03 | -1.02/0.01 -1.23/0.01
NAC Atlg77450 | ANAC032 -1.67/0 -1.74/0 NS

U At1g19180 | ATJAZI, TIFY10A NS -0.77/0.04 | NS

U: Undetermined (gene families were assigned using TAIR). NS: Non-statistically significant. Genes in bold are those identified as central hubs in network analyses.

Families marked with the same color have members both up- and down-regulated.

https://doi.org/10.1371/journal.pone.0221358.t001

Genes were represented as nodes that are connected by edges based on their regulatory inter-
actions. We identified four co-expression clusters using the community cluster (Glay) algo-
rithm in ClusterMaker tools [61; 62]. LHY1, WRKY28, MYB31 and a Redox-responsive TF
(RRTF1/ERF109) were the most connected and central TFs within each co-expression cluster
(Fig 5). Additionally, inside each module we found several TFs and other signaling compo-
nents. In addition, statistically overrepresented biological functions in the four modules using
a hypergeometric test in Clue-GO tools (adjusted p<0.05 by FDR) [63] were described. Cluster
1, containing 130 genes putatively regulated by WRK28, was statistically enriched in genes
associated with ethylene biosynthesis process, response to JA and defense response. Consistent
with this functional analysis, MYB47, ANAC102 and ANAC047 were comprised within this
module. These TFs have been shown to be involved in JA/ET signaling pathways [67-69].
Therefore, this module also includes the TFs MYB29 and WRKY47, associated with stress and
defense response, respectively [70,71]. Remarkably, the network includes important functions
for plant defense against pathogens, such as the responses to chitin and reactive oxygen species
(clusters 2 and 3). Moreover, genes related to abscisic acid (ABA) and SA stimulus, ET signal-
ing, light response and detoxification were also identified as overrepresented in these modules.

The same RNAs used for the transcriptome-profiling assay were used to analyze the expres-
sion of five TFs by qRT-PCR, and their expression patterns were studied at 1 and 24 hpi (Fig
6). Similar expression patterns were obtained in comparison with the data obtained by Affy-
metrix (Table 1), except with WRKY28, which was not detected by qRT-PCR. Here MYB31
was up regulated by PsJN at 1 hpi and non-regulated at 24 hpi (Fig 6A). LHY, BHLH039 and
RRTF1/ERF109 showed a down-regulation pattern at 1 hpi (Fig 6B). Concordantly with the
Affymetrix analysis, BHLH039 remained down regulated at 24 hpi (Fig 6B). Additionally, the
expression pattern of PDF1.2 (PLANT DEFENSIN 1.2) was also analyzed, as a marker that has
been associated to PsJN inoculation in our previous studies [34, 41], finding an up-regulation
(not-statistically significant) at 1 hpi (Fig 6A).

Discussion

A fast and specific molecular response support strain PsJN-induced
resistance to P. syringae DC3000

It is well documented that some PGPR can increase plant resistance to several pathogens
through ISR, in a manner that is highly dependent on the combination of the particular PGPR
strain, the plant species and even the pathogen [13,72]. However, the molecular mechanisms
underlying these complex inter-kingdom interactions are far from being elucidated. Some
studies have reported transcriptomic changes in plants after the inoculation with a beneficial
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https://doi.org/10.1371/journal.pone.0221358.9005
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https://doi.org/10.1371/journal.pone.0221358.9006

microorganism (usually Pseudomonas) that are able to induce ISR [21,73-79]. Still, just a few
have described the molecular changes after the challenge with a pathogen [74,80-82] and as far
as we know, none of these studies report the molecular changes in the early stages of the prim-
ing response (i.e. 1 hpi).

As sessile organisms, plants have to adapt themselves, using their molecular armory, in
order to tolerate or resist several kinds of environmental stresses. In these responses, it seems
that the celerity to respond is the pivotal element between success and failure [83-85]. For
instance, P. phytofirmans Ps]N accelerates the reaction to salt stress from 24 to 1 hour in Arabi-
dopsis plants, inducing the accumulation of protective osmolytes, regulating ABA and JA sig-
naling pathways and affecting the transcription of specific ion transporters [33]. All these
accelerated responses are associated with better performance and recovery under short-term
or sustained salt-stress in plants [33].

We previously demonstrated that the same strain protects Arabidopsis plants from the viru-
lent pathogen P. syringae DC3000 trough ISR [41]. Here, we found that strain PsJN regulates
405 genes 13 days after sowing, which is in agreement with the transcriptional changes reported
by Poupin et al. [34] in the same plant model. These genes correspond to approximately 1.8% of
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the analyzed Arabidopsis transcriptome, and could partly explain the primed state in the strain
PsJN-inoculated plants. The highest transcriptional changes occurred 1 hour after the challenge
of these plants with the pathogen, where strain PsJN regulated 645 genes (1 hpi); later that regu-
lation was reduced to 420 genes (24 hpi). Recently, Wang et al. [78] compared the molecular
responses of Arabidopsis plants to the ISR-inducing strain, Bacillus cereus AR156 with those to
flg22, a pathogen-associated molecular pattern able to induce plant immunity. They found that
both treatments co-regulate a high number of genes, suggesting that the defense responses trig-
gered by AR156 are similar to the basal defense responses triggered by this molecular pattern.
Here, a PCA showed a clear separation between the plant responses to infection associated to a
previous inoculation with PsJN (Fig 2), and only 13% and 29.7% of the DEGs were co-regulated
by PsJN and Pst DC3000 at 1 and 24 hpi, respectively (Fig 4B). Concordantly, a PsJN mutant
strain lacking its flagella (PsJN AfliA) is still able to significantly protect Arabidopsis plants from
an infection with strain DC3000 [41]. In this context, two hypotheses arise, (1) strain PsJN is
accelerating the same response that occurs later in non-inoculated plants (24 hpi), and basically
the regulated genes are the same or (2), strain Ps]N triggers a different plant response, in time
and quality, when plants face the pathogen. Interestingly, when the DEGs are compared having
Pst DC3000 as the factor inside each group of strain PsJN- and non-inoculated plants (as shown
in Fig 4), only 11 genes that were regulated by strain PsJN at 1 hpi were also regulated at 24 hpi
in non-inoculated plants, supporting the second hypothesis (S3 Table, intersection). Of these
eleven genes, two were up-regulated; the first one corresponds to LEGUME LECTIN FAMILY
PROTEIN (LEC), which is associated to the JA/ET signaling pathways [86]. The second gene
was AZI1, which is involved in the plant immune defense priming not only under biotic stress
(Systemic acquired resistance, SAR) [87] but also under abiotic stresses such as drought [88].
AZII encodes for a lipid transfer protein (LTP)-like protein, belonging to the EARLY ARABI-
DOPSIS ALUMINIUM-INDUCED GENEI (EARLII) gene subfamily [89] and its role for long-
distance signals related to SAR is the best documented so far [90]. Cecchini et al. [87] demon-
strated that after inoculation of roots with the PGPR P. fluorescens, only the wild type plants but
not the azil-1 mutants, showed a significant reduction of P. syringae growth in distal-infected
leaves, indicating an essential role for this gene also in ISR. In our model, AZI1 was up regulated
as fast as at 1 hpi (fold change Log2: 2.22) in strain PsJN-inoculated plants, but this up-regula-
tion was only observed at 24 hpi in non-inoculated plants (fold change Log2: 2.47) (S2 Table).

Recently, a central role for N-hydroxy-pipecolic acid (NHP) was proposed as a mobile sig-
nal for SAR in Arabidopsis [91,92]. FMO1, FLAVIN-DEPENDENT MONOOXYGENASE 1,
can synthesize NHP from pipecolic acid in planta and is indispensable for SAR induction [93].
Plant FMOs are divided into three clades and clade I contains FMOI and a pseudogene [94].
In our study, no changes were detected in FMO1 expression either with or without a previous
inoculation with PsJN, which suggests that, at least at a transcriptional level, this pathway
might not be involved in this ISR defense mechanism.

A role for the plant hormones SA, JA, and ET has been raised in ISR where, again, the pre-
dominance of each signaling pathway will strongly depend on the players that are interacting
[95]. For instance, the PGPR B. cereus AR156 requires both the SA and JA/ET signaling path-
ways and NPR1 to activate ISR against the biotrophic pathogen Pst DC3000 [96], but only the
JA/ET hormonal pathways to trigger ISR against the necrotrophic pathogen B. cinerea [13]. In
our previous report [41], we established that P. phytofirmans PsJN induces systemic resistance
to Pst DC3000 trough a mechanism dependent of SA, JA and ET, since protection is only abol-
ished when a triple mutant of these pathways is used. In this work, we found that strain PsJN
induced transcriptional changes related to these hormonal pathways even before the challenge
with Pst DC3000 (Fig 3A), and that these changes (especially with ET) are increased at 1 hpi
(Fig 3B). This is in agreement with Poupin et al. [35] where it was reported that the ET
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signaling pathway is crucial for the plant growth-promotion effects associated with strain PsJN
in Arabidopsis.

Network analysis identifies functional relationships associated with strain
PsJN induced systemic resistance

In addition to hormones, plant defense responses require diverse types of TFs modulating the
expression of a vast number of responding genes. A better understanding of how these TFs
underlie ISR could be helpful to identify key molecular players in this important defense
response. Additionally, as TFs within the same family are evolutionarily closely related, they
are likely regulated by common mechanisms [97]. Then, the recognition of general features of
the regulation of whole TFs’ families can provide useful clues to better characterize the func-
tion of these members in a specific plant response. TFs’ families such as bZIP, bHLH, ERF/
AP2, MYB, MYC, NAC, and WRKY have been related to disease resistance [98]. Here, we
report that strain PsJN regulates the expression of 48 TF-coding genes at 1 hpi (Table 1). One
of the families that presented only up-regulated genes was WRKY. WRKY TFs are one of the
largest families of transcriptional regulators found exclusively in plants; they can act as tran-
scriptional activators or repressors and are related to defense responses, abiotic stress response
and developmental-associated processes [99,100]. Regarding defense responses, WRKY pro-
teins have been linked not only to SAR but also to ISR. For instance, WRKY70 and WRKY11
were reported as regulators in B. cereus AR156-induced systemic resistance to P. syringae
DC3000 in Arabidopsis [101]. Here, we found that WRKY26, 27, 28 and 47 were up-regulated
at 1 hpi in plants with induced systemic resistance, suggesting an important role of this family
in the regulation of this ISR mechanism.

Allu et al. [102] suggested a role for ANAC32 in the response to strain DC3000 in Arabidop-
sis, where this TF would induce SA signaling, thus repressing JA responsive genes, such as
PDF1.2. We determined that ANAC32 is down regulated in strain PsJN-inoculated plants at 1
hpi, and more interestingly, this down-regulation started before the challenge (0 hpi) and
remained at 24 hpi. Concordantly, PDFI.2 showed an up-regulation 0 hpi as was also reported
previously [34,41]. The GCC-box is a binding site for members of the AP2/ERF family of TFs
[103], such as ERF1 and ORA59, which are both important activators of PDF1.2 [104]. Van
der Does et al. [105] reported that SA reduces ORA59 protein accumulation, and that overex-
pression of ORA59 negatively affects the ability of SA to suppress PDF1.2 gene expression, giv-
ing ORA59 an important role in the outcome of the SA/JA antagonism. Similarly, Pangesti
etal. [106] found that Pseudomonas simiae WCS417r (formerly P. fluorescens) mediated ISR in
Arabidopsis against the herbivore Mamestra brassicae inducing ORA59, which favors the JA/
ET signaling pathways over JA pathway regulated by MYC2. We described that ORA59 was up
regulated at 1 hpi in PsJN-inoculated plants, highlighting the importance of a specific cross-
regulation between SA and JA in this defense process. Additionally, the Redox Responsive
Transcription Factorl (RRTF1/ERF109) is regulated by JA, and in Arabidopsis it is induced
rapidly and transiently by H,O,, as well as by biotic- and abiotic-induced redox signals [107].
In Arabidopsis, Matsuo et al. [107] showed that the inactivation and up-regulation of this gene
reduces and increases reactive oxygen species (ROS) accumulation under stress, respectively.
ROS act as a second messenger in stress response, but also their accumulation prompts to oxi-
dation of several molecules and cell damage [108,109]. When ROS accumulate at later stages,
or are formed as a consequence of mitochondrial damage, JA synthesis is over induced
together with an autocatalytic oxidative burst [83]. We report here that RRTF1 was down regu-
lated by strain PsJN under the challenge with Pst DC3000 at 1 hpi (Table 1). This correlates
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with the reduced superoxide anion accumulation that is observed in strain PsJN-inoculated
plants after the infection with Pst DC3000 in comparison with the non-inoculated plants [41].

MYB?72 has a significant role in ISR induced in Arabidopsis by the y-proteobacterium
P. simiae WCS417 [110], where this TF is involved in iron uptake and can modulate the
root microbiome assembly [111]. In our study, MYB72 was not transcriptionally affected
in any of the treatments and measured times. Therefore, at least with our experimental
strategy, a role for this regulator cannot be suggested in the systemic defense induced by
this B-proteobacterium.

Network inference could be a valuable tool to uncover central hubs, gene regulatory sub-
networks and functional relationships in a transcriptome response. Hence, with data from co-
regulatory networks, it is possible to highlight novel clusters of plant genes contributing to the
same biological processes or signal transduction pathways [112]. For instance, Weston et al.
[76] described different plant co-expression in response to two P. fluorescens strains, finding
that even though both strains co-regulated some genes; there was strain dependence in the net-
work architectures. By means of system biology strategies, here we inferred a gene network of
500 interconnected genes that clustered in four co-expression modules or clusters, where
LHY1, WRKY28, MYB31 and a Redox-responsive TF (RRTF1/ ERF109) were the most con-
nected and central TFs (Fig 5). Of these, RRTFI and LHY were down regulated and WRKY28
and MYB31 were up regulated. Further analysis of the resulting clusters confirmed the biologi-
cal identity of these sub-networks as pathways or processes controlled by ISR. For example,
defense response, detoxification, induced systemic resistance, response to chitin, and oxidative
stress were overexpressed in our network analysis, showing the importance of these processes
in plant resistance triggered by strain PsJN. Moreover, the potential role of JA and ET was
again evident from the gene network analysis. As mentioned before, these hormones are key
for ISR induced by strain PsJN [41]. Interestingly, genes associated with SA and ABA
responses were also regulated by the infection (1 hpi) in inoculated plants. These results sup-
port a model in which strain PsJN regulation of plant hormone response is complex and may
allow the plant tolerance to several stress conditions, as shown in Pinedo et al. [33], where a
role for ABA was proposed to salt-stress tolerance induction by strain PsJN in Arabidopsis
plants.

This study showed that WRKY28, which is known to be up-regulated under drought and
oxidative stress in Arabidopsis [113], was up-regulated at 1 hpi. Moreover, previous studies in
plants overexpressing AtWRKY28 and AtWRKY?75 suggested that these TFs are transcrip-
tional regulators of SA and JA/ET-dependent defense signaling pathways in Arabidopsis [114].
Consistent with this idea, we found that several TFs, belonging to NAC and WRKY families
and associated to SA and JA/ET pathways, grouped with WRK28, suggesting a regulatory sub-
network based on these hormones. Within another cluster of the network, we found that
MYB31 was also up regulated at 1 hpi. It has been described that this TF is induced in response
to auxin [115]. LHY1 is a down-regulated TF predicted as a central regulator in cluster 3. Con-
cordantly, APRR7, which is a transcriptional repressor of LHY [116] showed an up-regulation
at 1 hpi. Given that LHY1 has a central role controlling the circadian rhythm [117,118], this
gene and its targets may be integrators of internal metabolism and environmental conditions
under PsJN induced resistance.

In summary, we found that strain PsJN induces a rapid and specific molecular response
that is strongly related to jasmonate, ethylene, salicylic acid and ROS signaling pathways and
that supports plant resistance to P. syringae. Additionally, the network analysis suggests a
mechanism for both transcriptional induction and repression of TFs, with a highly coordi-
nated regulation and potential roles for specific TF as hubs controlling the priming effect of P.
phytofirmans Ps]N in Arabidopsis, in the context of a biotic stress.
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Supporting information

S1 Fig. Gene Ontology (GO) terms enriched in up- and down-regulated genes in Parabur-
kholderia phytofirmans PsJN-inoculated plants one hour after Pseudomonas syringae
DC3000 infection. The VirtualPlant platform [1] was utilized in order to determine which
GO terms were statistically overrepresented in comparison with the GO term represented in
the Arabidopsis genome arrays (Fisher Exact Test with FDR correction, p<0.01). Bars denote
the proportion of differentially expressed (DEGs) genes in each term relative to the total num-
ber of DEGs up- (A, blue) or down-regulated (B, orange) in strain PsJN-inoculated plants one
hour after Pst DC3000 infection, in comparison to control plants (without strain PsJN inocula-
tion) equivalently infected with Pst DC3000. To avoid redundancy, significant GO term lists
were reduced using REVIGO [2], but full lists of significant GO terms, including differentially
expressed genes that map to each term, are presented in S3 Table.

(PDF)

S1 Table. Complete list of Arabidopsis genes regulated by Paraburkholderia phytofirmans
Ps]N before and after the challenge with Pseudomonas syringae pv. tomato DC3000.
(XLSX)

S2 Table. Full lists of significant Gene Ontology (GO) terms enriched in up- and down-reg-
ulated genes in Paraburkholderia phytofirmans Ps]N-inoculated plants one hour after
Pseudomonas syringae pv. tomato DC3000 infection, including differentially expressed
genes that map to each term.

(XLSX)

$3 Table. Complete list of genes regulated by Pseudomonas syringae pv. tomato DC3000 in
Arabidopsis plants that were inoculated or non-inoculated with Paraburkholderia phytofir-
mans PsJN.

(XLSX)
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