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Lung adenocarcinoma is the most common subtype of non-small cell lung cancer 
(NSCLC). With the discovery of epidermal growth factor receptor (EGFR) mutations, 
anaplastic lymphoma kinase (ALK) rearrangements, and effective targeted therapies, 
therapeutic options are expanding for patients with lung adenocarcinoma. Here, we 
review novel therapies in non-squamous NSCLC, which are directed against oncogenic 
targets, including EGFR, ALK, ROS1, BRAF, MET, human epidermal growth factor 
receptor 2 (HER2), vascular endothelial growth factor receptor 2 (VEGFR2), RET, and 
NTRK. With the rapidly evolving molecular testing and development of new targeted 
agents, our ability to further personalize therapy in non-squamous NSCLC is rapidly 
expanding.
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inTRODUCTiOn

In recent years, advances in lung cancer are occurring at an accelerated pace. With several new 
 targeted therapies approved last year for non-squamous non-small cell lung cancer (NSCLC) 
alone, it is now one of the most active areas in oncology. Approvals include one vascular endothe-
lial growth factor receptor 2 (VEGFR2) inhibitor, two EGFR-targeting drugs, one anaplastic 
lymphoma kinase (ALK)-targeting drug, and one ROS1 inhibitor. This review summarizes break-
throughs that have already happened, and some promising ongoing areas of investigation where 
new drug approvals are anticipated.

ePiDeRMAL GROwTH FACTOR ReCePTOR

Identification of oncogenic epidermal growth factor receptor (EGFR) mutations in NSCLC has 
ushered a new era of targeted therapies in metastatic NSCLC. These mutations lead to activation 
of EGFR, now effectively targeted by an ever-increasing list of tyrosine kinase inhibitors (TKIs). 
Exon 19 deletion and exon 21 L858R substitutions account for 90% of all EGFR + NSCLC (1). 
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Activating EGFR mutation occur in ~10% Caucasians (2), 
higher in never smokers (30%) vs. ex-smokers (5%) and current 
smokers (3%) (2, 3).

Erlotinib and gefitinib are FDA-approved, first-generation 
reversible inhibitors of both wild-type and mutant EGFR. These 
are accepted first-line therapies in patients with known EGFR-
sensitizing mutations in metastatic NSCLC and have shown 
overall response rate (ORR) up to 75% and advantage in pro-
gression-free survival (PFS) over chemotherapy in several clinical 
studies (4–6). Class side effects with these agents are primarily 
skin rash and diarrhea. Despite high ORR and improved PFS, 
long-term impact of such therapies is limited by the development 
of resistance.

Afatinib, a second-generation irreversible inhibitor of EGFR 
and human epidermal growth factor receptor 2 (HER2), also 
FDA-approved, is used as a frontline therapy in metastatic 
NSCLC patients with EGFR-sensitizing mutations. Side-effect 
profile is similar to the first-generation drugs. Two phase III 
trials, LUX-Lung 3 and LUX-Lung 6, have shown improved PFS 
and ORR with first-line afatinib compared to chemotherapy (6, 
7). Recent subgroup analysis from LUX-Lung 3 and LUX-Lung 6 
trials showed significantly improved OS in patients with exon 19 
deletion treated with afatinib compared to chemotherapy: 33.3 vs. 
21.1 months and 31.4 vs. 18.4 months (8). This OS difference was 
not seen in patients harboring L858R mutation (8). LUX-lung 7 
is a phase II trial comparing afatinib with gefitinib in advanced 
NSCLC. Preliminary analysis showed that patients treated with 
afatinib had 27% reduction in risk of progression compared to 
patients treated with gefitinib. The benefits were seen in both 
L858R and exon 19 deletion subgroups (9).

The mechanisms of acquired resistance to first-generation 
EGFR inhibitors can be divided into three groups: secondary 
mutations, bypass signaling, and phenotypic alterations. The most 
common resistance mechanism seen in ~50% cases is the devel-
opment of genetic alterations of EGFR, commonly a secondary 
mutation like T790M, a threonine to methionine substitution in 
exon 20. This mutation leads to an enhanced affinity for ATP and 
steric hindrance, reducing the ability of ATP-competitive, revers-
ible EGFR TKIs to bind to the tyrosine kinase domain of EGFR 
(10–14). The second mechanism is the activation of additional 
signaling pathways, including MET, HER2, and CRKL amplifica-
tion, AXL overexpression, and KRAS and BRAF mutations (15, 
16). The third mechanism is histologic transformation into SCLC 
(17). In ~30% cases, resistance mechanisms are unknown.

One potential way to overcome T790M mutation is the use 
irreversible EGFR inhibitor afatinib. However, clinical studies 
with afatinib in patients progressing on the first-generation TKIs 
have shown a modest ORR of ~10% and PFS of ~4 months (18). 
Afatinib in combination with cetuximab showed an improved 
ORR of 30% in T790M+ patients after progression on first-
generation TKIs; however, toxicity was a significant concern with 
this combination (19).

Rociletinib and osimertinib are third-generation TKIs with 
specificity for EGFR T790M over wild-type EGFR. Osimertinib 
showed response rate of 60% in phase I/II studies in T790M+ 
tumors and ~30% in tumors negative for T790M in previously 
treated EGFR + NSCLC (20). This is a significant advancement 

over chemotherapy or afatinib/cetuximab combination, which 
leads to FDA approval of the drug for EGFR T790M+ patients 
progressing on first/second-generation TKIs (21–24). Rociletinib 
is another EGFR T790M selective TKI, awaiting FDA approval. 
Initial rociletinib phase I/II data reported an ORR of 60% and dis-
ease control rate (DCR) of 90%; however, initial data contained 
immature findings, including unconfirmed responses, and the 
revised ORR was significantly lower at 28–34% (25, 26). Both 
drugs have a lower incidence of grade 3/4 rash and diarrhea. The 
most common toxicity with rociletinib is hyperglycemia second-
ary to IGF1 inhibition (25). ASP8273 and HM61713 are third-
generation EGFR TKIs currently in development (NCT02500927, 
NCT02485652, and NCT02588261).

As with the first- and second-generation EGFR TKIs, tumor 
evolution leads to resistance to third-generation TKI’s. So far, 
the data for resistance to third-generation EGFR TKI’s is mostly 
preclinical. Niederst et al. showed additional C797S EGFR muta-
tions in EGFR T790M cell lines made resistant in vitro to third-
generation TKIs. They showed resistant cell lines, harboring 
C797S and T790M mutations in cis-allelic conformation, were 
resistant to all types of TKIs; however, if these two mutations were 
expressed in trans conformation, the cells became resistant to 
third-generation TKIs but retained sensitivity to first-generation 
TKIs. Similarly, EGFR C797S mutant but T790M wild-type 
cell lines retained sensitivity to first-generation TKIs (27). In a 
separate study of 12 T790M+ patients who underwent tumor 
biopsy post-progression on rociletinib, 6 patients became T790M 
wild-type, 2 T790M wild-type cancers underwent SCLC transfor-
mation, 3 T790M-positive cancers acquired EGFR amplification, 
and 1 patient had T790 wild-type and mutant cell populations 
coexisting in the tumor (28). Other proposed mechanisms of 
third-generation TKI resistance include epithelial mesenchymal 
transition (EMT) (21), activation of the MAPK kinase pathway 
(22), and IGF1R bypass signaling (23).

Combination of an EGFR TKI with VEGF inhibitor, such as 
bevacizumab, has been studied in patients with EGFR-sensitizing 
mutations. In a phase II trial comparing erlotinib (E) to erlotinib 
plus bevacizumab (E + B), median PFS was 16 months compared 
to 9 months in the E arm (24). E + B combination has shown 
activity in T790M+ NSCLC, and a recent study showed a median 
PFS of 16 months in T790M+ NSCLC compared to 10.5 months 
in T790M wild-type patients (29).

MET amplification occurs in ~3–7% of untreated patients 
and ~21% patients previously treated with EGFR TKIs (30, 31). 
Tivantinib is a MET TKI, which was studied in combination 
with erlotinib compared to erlotinib alone. Combination showed 
improvement in PFS without advantage in OS; subgroup analysis 
showed a trend for OS advantage in high MET expression sub-
group (32). INC280, another MET TKI, has shown promise in the 
initial dose escalation and combination phase I study with first-
generation EGFR TKI, ongoing in patients who have progressed 
on EGFR TKI monotherapy (NCT01610336).

AnAPLASTiC LYMPHOMA KinASe

The EML4–ALK fusion oncogene arises from an inversion on the 
short arm of chromosome 2 [Inv (2) (p21p23)] that joins exons 
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1–13 of EML4 to exons 20–29 of ALK (33). The EML4 fusion 
partner mediates ligand-independent dimerization and/or 
oligomerization of ALK, resulting in constitutive kinase activity. 
ALK+ NSCLC represents ~4–5% of NSCLC patients and is much 
higher among never/light smokers, up to 22% (34, 35).

Crizotinib is a small-molecule that competes with ATP tyros-
ine kinase activity. Initially developed as a c-MET inhibitor, it 
was later found to have potent inhibitory activity against ALK 
and ROS1 (36, 37). In phase I/II studies, crizotinib demonstrated 
ORR in ~60% of patients with ALK-positive NSCLC and PFS of 
7–10 months (38–40). In a recent phase III study, crizotinib was 
compared to chemotherapy in untreated patients with ALK+ 
NSCLC, demonstrating a significant improvement in ORR and 
PFS. No significant OS benefit was shown since 70% of patients 
crossed over to crizotinib arm after progression on chemotherapy 
(41). Crizotinib is an FDA-approved, first-line therapy in ALK+ 
NSCLC metastatic patients.

In spite of the dramatic initial responses, patients develop 
resistance to crizotinib after a median of 8.9–10.5 months (42). 
In particular, central nervous system (CNS) is a common site of 
relapse in patients with ALK+ metastatic NSCLC (43). In a study 
of 28 patients treated with crizotinib, 13 developed CNS relapses 
(44). Nevertheless, recent update from the crizotinib phase III 
trial showed a delay in the onset of CNS relapse compared to 
chemotherapy (41).

Crizotinib resistance mechanisms can be ALK-dependent or 
-independent. ALK-dependent resistance includes ALK ampli-
fication/copy number gain and additional genetic alterations, 
including secondary mutations of the ALK kinase domain that 
preserve ALK signaling (45, 46). Of these, a secondary muta-
tion L1196M, which interferes with binding of crizotinib, is the 
most common (47). This is very similar to T790M mutation in 
EGFR+ NSCLC. Additional resistance mutations that occur less 
frequently include G1269A, C1156Y, L1152R, G1202R, S1206Y, 
1151Tins, F1174C, and D1203N.

The ALK-independent mechanisms of resistance involve 
activation of bypass signaling pathways, such as the EGFR, 
HSP90, MET, KRAS, or KIT. Analysis of 16 NSCLC patients 
treated with crizotinib and re-biopsied at progression showed 
ALK amplification in 13%, ALK mutations in 31%, and KRAS or 
EGFR pathway activation in 31%; 19% patients had HSP90, KIT, 
or HER2  activation (46).

In 2014, FDA approved ceritinib, a second-generation ALK 
inhibitor, when impressive results from a single-arm study of 163 
patients with ALK+ positive metastatic NSCLC showed median 
ORR of 44%. Majority (91%) patients had progressed on prior 
crizoitinb. This trial also included patients with baseline brain 
metastasis (60%) (47). Two phase III trials comparing ceritinib to 
chemotherapy in treatment naïve and previously treated patients 
are ongoing (NCT01828099, NCT01828112).

Alectinib is another FDA-approved, second-generation ALK 
inhibitor with activity in crizotinib-resistant ALK+ metastatic 
NSCLC. A phase II study with 138 patients progressing on crizo-
tinib had 50% ORR and DCR of 79% (48). In a frontline, phase I/
II study of crizotinib-naive patients with ALK+ NSCLC treated 
with alectinib showed an impressive ORR of 93.5% (49). Alectinib 

has shown activity in patients with CNS metastasis; one study 
showed an intracranial ORR of 52% in patients progressing on 
crizotinib (50). A phase III clinical trial comparing alectinib 
and crizotinib upfront was stopped early as it met its primary 
endpoint (ALEX trial, NCT02075840).

Mechanisms of resistance to ceritinib and alectinib are 
undergoing active investigation. G1202R ALK mutation is pan-
resistant to crizotinib, ceritinib, and alectinib (43, 51). Multiple 
ALK and ROS1 inhibitors are in development. Lorlatinib 
(PF-06463922) is an ALK/ROS1 novel CNS-penetrant inhibi-
tor with preclinical activity against the G1202R mutation that 
demonstrated encouraging activity in resistant patients: 40% PRs, 
including patients progressing following crizotinib ±  ceritinib; 
intracranial responses were also observed (52, 53). Brigatinib 
(AP26113) is an exciting TKI with dual activity against EGFR 
T790M and ALK L1196M mutations. The results from phase  
I/II showed significant activity in ALK+ patients. Of 72 evaluable 
pts, 72% responded: 45/65 (69%) with prior crizotinib and all 
7 crizotinib-naive pts. Median duration of response (DOR) was 
49 weeks (54).

ROS1

The ROS1 oncogene encodes an orphan receptor tyrosine kinase 
related to ALK. ROS1 rearrangements occur in ~1–2% of patients 
with NSCLC, mainly non-smokers or light smokers (55). Phase 1 
expansion trial with crizotinib in ROS1 rearrangement-positive 
NSCLC patients demonstrated marked antitumor activity with 
72% ORR and 17.6 months median DOR, which led to its FDA 
approval in 2016 (56). Similar to experience with EGFR and 
ALK, crizotinib resistance develops with acquired mutations, 
such as G2032R and L2155S, in ROS1 kinase domain (57, 58). 
Preclinical studies with lorlatinib look encouraging, as it has 
shown activity against novel mutations in both ALK and ROS1, 
which cause resistance to first- and second-generation TKIs (52). 
In phase I/II trial, 22 patients with ALK+ or ROS1+ NSCLC 
received lorlatinib, which was well tolerated with encourag-
ing clinical activity (59). Phase II part of this trial is ongoing 
(NCT01970865).

BRAF

Oncogenic BRAF mutation is found in ~3–4% of NSCLC, usu-
ally non-overlapping with other oncogenic driver mutations 
with ~50% cases harboring the characteristic V600E mutation 
(60, 61). Unlike EGFR and ALK, BRAF mutations commonly 
occur in smokers (60–62). Vemurafenib and dabrafenib are 
BRAF-targeting TKIs, approved in BRAF-mutated metastatic 
melanoma. They have shown promise in early-phase trials in 
NSCLC. A basket phase II trial looking into the efficacy of vemu-
rafenib in different tumors harboring BRAF mutations included 
20 patients with advanced NSCLC. The ORR was 42%, superior 
to other cancers types (63). Dabrafenib showed a ORR of 32% 
in 78  patients with BRAF-mutated NSCLC; 2-stage phase II 
study with the second phase evaluating the combination of MEK 
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inhibitor trametinib and dabrafenib is ongoing. Interim analysis 
showed an encouraging ORR of 63% in 24 patients (64).

c-MeT inHiBiTORS

The MET amplification is oncogenic in 3–7% of NSCLC and 
confers resistance to EGFR in ~21% cases (31, 32). In addition 
to amplification, MET gene alterations, namely exon 14 internal 
deletions and mutations, are oncogenic in a small fraction of 
NSCLC patients (65). MET receptor tyrosine kinase and its ligand 
hepatocyte growth factor (HGF) are implicated in tumor cell pro-
liferation, invasion, and angiogenesis in NSCLC (66). Responses 
with anti-MET TKIs, such as crizotinib and cabozantinib, in MET 
mutant and amplified NSCLC have been reported (67, 68).

Glesatinib (MGCD265, Mirati) is an oral TKI targeting MET 
and AXL. A phase I/II trial has been initiated in MET mutant or 
MET-amplified NSCLC. Early data from phase Ib part had shown 
confirmed PRs and significant tumor reductions; phase II part is 
ongoing (NCT02544633).

INC280 is a highly selective small-molecule MET inhibitor 
with preclinical activity in human tumor models; early-phase 
trial is initiated of INC280 alone or in combination with chemo-
therapy or erlotinib (NCT02468661).

vASCULAR enDOTHeLiAL GROwTH 
FACTOR ReCePTOR 2

Blockade of VEGFR2 signaling inhibits formation, proliferation, 
and migration of new blood vessels (69). Ramucirumab is a 
human IgG1 monoclonal antibody that targets the extracellular 
domain of VEGFR2, FDA-approved in metasatic NSCLC, in 
combination with docetaxel, after a phase III trial demonstrated 
OS benefit over docetaxel alone (69).

Cabozantinib is a VEGFR2/MET inhibitor assessed in a 
phase II trials in pretreated patients with NSCLC (n  =  125). 
Cabozantinib alone or in combination with erlotinib signifi-
cantly improved PFS over erlotinib in pts with EGFR wild-type 
NSCLC (70).

HUMAn ePiDeRMAL GROwTH FACTOR 
ReCePTOR 2

Human epidermal growth factor receptor 2 (ERBB2) belongs to 
ErbB receptor tyrosine kinase family along with EGFR (HER1), 
HER3, and HER4. Ligand binding and subsequent homo and 
heterodimerization of these receptors activate EGFR, HER3, and 
HER4. In this regard, HER2 is unique, as no HER2 ligand has 
been identified. HER2 is the preferred binding partner of ERBB 
receptors, in particular EGFR. HER2/EGFR heterodimers have 
an increased potential for signaling than EGFR homodimers (71). 
HER2 overexpression (~35%) and amplification (~20%) have been 
reported in NSCLC (72–74). Clinical results with HER2-directed 
therapy in these patients have not been convincing (75–77). 
HER2 mutations, including exon 20 insertions, are oncogenic 
in breast and lung cancer (77–81). HER2 mutations occur in 

~2–5% of NSCLC, more commonly in Asian, non-smoker, and 
female populations (80, 81). HER2-targeted therapies in HER2-
mutant population are an ongoing area of research. The largest 
retrospective study looking at HER2-targeted agents in this 
population demonstrated 50% ORR among 16 HER2-mutant 
patients, primarily treated with trastuzumab and afatinib (82). A 
trial (NCT02369484) initiated with afatinib in HER2 mutation-
positive NSCLC is ongoing.

Neratinib is another irreversible pan-HER inhibitor, which 
has shown activity in trastuzumab-resistant breast cancer (83). It 
was evaluated in a phase I study in combination with temsiroli-
mus (mTOR inhibitor) and showed activity in 2/6 HER2-mutant 
NSCLC (84). Based on these results, a phase II study of neratinib 
with and without temsirolimus is ongoing (NCT01827267).

Dacomitinib, an irreversible pan-EGFR inhibitor, demon-
strated ORR of 13% in HER2-mutant NSCLC patients in a 
phase II study (85).

ReT

The RET gene encodes a RET family receptor tyrosine kinase. 
Activating somatic point mutations in RET occur in medullary 
thyroid cancer (86). Recurrent translocations between RET and 
various fusion partners occur in ~12% NSCLC (87–89). The 
prevalence is higher among non-smokers, negative for other 
driver mutations (90).

Cabozantinib showed encouraging results in a phase II study 
of 16 patients with RET fusion-positive disease, 7/16 had PR 
with median PFS of 7 months and OS 10 months (91). Studies 
in RET+ NSCLC with lenvatinib (NCT01877083), apatinib 
(NCT02540824), vandetinib (NCT01823068), and ponatinib 
(NCT01813734) are ongoing.

nTRK

NTRK gene encodes for tropomyosin receptor kinase (Trk) 
protein. Vaishnavi et  al. in their pioneering work have shown 
MPRIP–NTrk1 and CD74–NTrk1 fusions leading to constitu-
tive TrkA activity in 3.3% patients with NSCLC (92). In the 
same study, authors reported oncogenic TPM3–NTRK1 fusion 
that has also been reported in a small fraction of colon cancer 
(93). Stransky et al. reported TRIM24–NTRK2 gene fusion in a 
NSCLC patient (94).

Entrectinib (RXDX-101) is a highly potent inhibitor of TRK 
as well as ROS1 and ALK. In a phase I trial, entrectinib has 
demonstrated clinical activity in TRK-fusion-positive advanced 
solid malignancies. Trials with this drug and other novel NTRK 
inhibitors are ongoing [(95), NCT02576431, NCT01639508].

COnCLUSiOn

Advances in targeted therapy for metastatic non-squamous 
NSCLC have now expanded from EGFR and ALK to additional 
oncogenic targets, including ROS1, BRAF, RET, HER2, NTRK, 
and MET. Testing for these genes is now standard in many 
centers and is recommended by the NCCN (96). Identification 
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TABLe 1 | Selective ongoing non-squamous nSCLC targeted therapy trials.

Drug class and target investigational agent Comparator arm Trial iD number Phase

EGFR inhibitors ASP8273 – NCT02500927 II
HM61713 (BI 1482694) – NCT02485652 II
Gefitinib + INC280 – NCT01610336 Ib/II
Osimertinib + navitoclax – NCT02520778 Ib
Erlotinib + bevacizumab (BELIEF trial) – NCT01562028 II

ALK inhibitors PF-06463922 (ALK/ROS1 inhibitor) – NCT01970865 I/II
AP26113 – NCT01449461 I/II
TSR-011 – NCT02048488 I/IIa
RXDX-101 – NCT02097810 I/IIa
X-396 – NCT01625234 I/II
Alectinib (ALEX study) Crizotinib NCT02075840 III

EGFR or ALK inhibitor + combination 
checkpoint inhibitor

Ipilimumab/nivolumab plus erlotinib or crizotinib – NCT01998126 IB

BRAF/MEK Dabrafenib ± trametinib (MEK inhibitor) – NCT01336634 II
Vemurafenib – NCT02314481 II

C-MET Cabozantinib – NCT02132598 II
Glesatinib (MGCD265) – NCT02544633 II
INC280 + erlotinib – NCT01911507 I
INC280 + gefitinib – NCT01610336 Ib/II

VEGFR2/3 Famitinib – NCT02356991 II
Apatinib Placebo NCT02332512 III

HER2 Neratinib ± temsirolimus – NCT01827267 II
Afatinib – NCT02369484 II
Trastuzumab emtansine – NCT02289833 II

RET Lenvatinib – NCT01877083 II
Apatinib – NCT02540824 II
Vandetinib – NCT01823068 II
Ponatinib – NCT01813734 II

NTRK Cabozantinib (trial includes RET or ROS1 fusion-
positive, increased MET, and AXL NSCLC)

– NCT01639508 II

Entrictinib (basket trial for solid tumors, including 
ROS1 or ALK gene rearrangement)

– NCT02568267 II
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of new drivers leading to effective personalized therapy is an 
exciting but challenging task in today’s world. As we know, 
most targetable mutations are rare, and therefore development 

of standardized therapies calls for innovative ways to improve 
our clinical and translational knowledge. In basket trials, 
patients are included based on molecular aberration regardless 

FiGURe 1 | Targeted pathways for nSCLC.
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