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Background: Different feeding regimens in infancy alter the gastrointestinal (gut) microbial
environment. The fecal microbiota in turn influences gastrointestinal homeostasis
including metabolism, immune function, and extra-/intra-intestinal signaling. Advances
in next generation sequencing (NGS) have enhanced our ability to study the gut
microbiome of breast-fed (BF) and formula-fed (FF) infants with a data-driven
hypothesis approach.

Methods: Next generation sequencing libraries were constructed from fecal samples of
BF (n=24) and FF (n=10) infants and sequenced on an Illumina HiSeq 2500. Taxonomic
classification of the NGS data was performed using the Sunbeam/Kraken pipeline and a
functional analysis at the gene level was performed using publicly available algorithms,
including BLAST, and custom scripts. Differentially represented genera, genes, and NCBI
Clusters of Orthologous Genes (COG) were determined between cohorts using count
data and R (statistical packages edgeR and DESeq2).

Results: Thirty-nine genera were found to be differentially represented between the BF
and FF cohorts (FDR ≤ 0.01) including Parabacteroides, Enterococcus, Haemophilus,
Gardnerella, and Staphylococcus. A Welch t-test of the Shannon diversity index for BF
and FF samples approached significance (p=0.061). Bray-Curtis and Jaccard distance
analyses demonstrated clustering and overlap in each analysis. Sixty COGs were
significantly overrepresented and those most significantly represented in BF vs. FF
samples showed dichotomy of categories representing gene functions. Over 1,700
genes were found to be differentially represented (abundance) between the BF and
FF cohorts.

Conclusions: Fecal samples analyzed from BF and FF infants demonstrated differences
in microbiota genera. The BF cohort includes greater presence of beneficial genus
Bifidobacterium. Several genes were identified as present at different abundances
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Abbreviations: COG, Clusters of Ortholog
fed; NGS, next generation sequencing.
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between cohorts indicating differences in functional pathways such as cellular defense
mechanisms and carbohydrate metabolism influenced by feeding. Confirmation of gene
level NGS data via PCR and electrophoresis analysis revealed distinct differences in gene
abundances associated with important biologic pathways.
Keywords: metagenomics, next generation sequencing, gut microbiome, whole genome, breast-feeding, infants
1 INTRODUCTION

Early dietary content is an important consideration in the long-
term development of immunologic, metabolic, and many
chronic disorders (Singhal and Lanigan, 2007; Cox et al., 2014;
Rodriguez et al., 2015; Clapp et al., 2017; Davis et al., 2017; Davis
et al., 2020; Turroni et al., 2020; Sarkar et al., 2021). Analyzing
the infant fecal microbiome to understand the effects on the
gastrointestinal (gut) microbiota conferred by early feeding/diet
could help elucidate the mechanism underlying the development
of these phenotypes. Next generation sequencing (NGS) is a
technique that enables deep probing of both meta-taxonomy of
the gut flora as well as the metagenomics signature of the
microbiome. Dietary differences may have a long-lasting effect
on the gut microbiome by impacting the composition and
biological functions of the organisms present. This study seeks
to contrast taxonomic variation between breast-fed (BF) and
formula-fed (FF) infants at the genera level to identify
orthologous gene clusters that may be in differential abundance
between the cohorts. Additionally, the study attempts to
characterize the metagenome composition and differences
between BF and FF cohorts.

Previous studies, including work from our laboratory,
demonstrate differences in the gut microbiome of BF versus FF
infants (Lee et al., 2015; Schwartz et al., 2012; Bäckhed et al.,
2015; Baumann-Dudenhoeffer et al., 2018; Stewart et al., 2018; Di
Guglielmo et al., 2019). These studies highlight species diversity
between differently fed infants using a 16S ribosomal RNA
analysis (Schwartz et al., 2012; Bäckhed et al., 2015; Lee et al.,
2015) and identify key genera abundance dissimilarities between
FF and BF very young infants. Key findings include a significant
predominance of the Bifidobacterium genus in BF infants and
more abundant Enterococcus and Escherichia genera in FF
samples. Additional metagenomic analysis using a shotgun
approach, versus a 16S ribosomal RNA approach, indicates a
diversity of gut microbiota at both the genera and gene level
(Baumann-Dudenhoeffer et al., 2018; Stewart et al., 2018; Di
Guglielmo et al., 2019).

Formula feeding influences the persistence of a more diverse,
but not necessarily beneficial, gut microbiota (Davis et al., 2020).
Prior work in our laboratory demonstrate differential levels of
bacterial genes in each cohort showing a relative lower
abundance of seven genes in the FF infants contrasted with
364 genes with a higher relative abundance. The most notable
change in gene abundance is the lack of one gene (CRISPR-Cas9)
ous Genes; BF, breast-fed; FF, formula-
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in FF fecal samples. CRISPR-Cas9 is a key component of
bacterial cellular defense mechanisms for protecting against
both pathogenic mutations and antibiotic resistance. Overall,
the specific genes in question suggest a biological explanation for
gut microbiota acting differently on the intestinal epithelium in
the development of pathogenic strains, drug resistance, and
biofilm formation.

Other studies demonstrate that different short-chain fatty
acids dominate in BF versus FF infant fecal samples (Fukuda
et al., 2012; den Besten et al., 2013; Cox et al., 2014). These
metabolic differences may reflect the gut microbiota composition
that generates these small molecules and the downstream effects
on host gastrointestinal, immunologic, and neurologic functions.
Further analysis of these microbiome differences is required to
expand our understanding of how diet early in life impacts the
gut microbiota and microbiome.

Research on the infant microbiome has demonstrated both
pliability as well as susceptibility to external influence (Singhal
and Lanigan, 2007; Cox et al., 2014; Davis et al., 2020; Sarkar
et al., 2021). Particular microbiota species are known to be
dominant in BF infants (Pannaraj et al., 2017). Studies of the
genus Bifidobacterium suggest a critical symbiotic role of human
milk oligosaccharides in breast milk and the genus of organisms
that metabolize them (Sela et al., 2008; Bode, 2012; Ruiz-Moyano
et al., 2013; Garrido et al., 2015; Lewis et al., 2015). The long-term
health implications of microbiome changes may not be subtle. If
a more pro-inflammatory or pro-pathogenic environment is
fostered in the gut of young infants due to dietary influences
that change micro-organisms, gene expression, and carbohydrate
metabolism, individuals may develop increased immune
disorders (Schwartz et al., 2012), the need for broad-spectrum
antibiotics (Taft et al., 2018; Casaburi et al., 2019), and
gastrointestinal and neurologic disorders (Clapp et al., 2017;
Kang et al., 2017; Kang et al., 2019). Clinical care of young
patients could be directed to protect the beneficial gut microflora
and focus efforts on influencing it early in life when the
microbiome is still adaptable; long-term benefits on adolescent
and adult health may follow (Singhal and Lanigan, 2007; Cox
et al., 2014; Davis et al., 2020; Sarkar et al., 2021).

To better understand the importance of both taxonomy and
differential gene abundance, the present study employs whole-
genome fecal metagenomic next-generation sequencing and a
computational pipeline previously used in our laboratory (Di
Guglielmo et al., 2019). The goal of this manuscript is to expand
the prior analysis in size and interpretation of the metagenomics
data and create a refined and more accurate picture of the
metataxonomic profile of the cohorts studied. Each Clusters of
Orthologous Genes (COG) pattern that emerges from the
March 2022 | Volume 12 | Article 816601
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analysis of gene abundance can suggest functional roles.
Coupling taxonomic differences with gene abundance as a
proxy for functional and biological significance allows a
hypotheses for testing future interventions that could modify
the gut microbiota in a beneficial way for the health of patients.
2 MATERIALS AND METHODS

2.1 Subject Enrollment
The study was approved by the Nemours Institutional Review
Board #1458092 and #822736. Parental permission was obtained
from each infant’s parent or guardian. The FASTQ data will be
deposited online at SRA (or equivalent). Thirty-four healthy term
infants between 5 days and 100 days of age who were exclusively
breast fed (n=24; age range 5-95 days) or formula fed (n=10; age
range 10-100 days) were recruited. Infants were excluded if they
had any other sources of nutrition, dietary restrictions (e.g.,
hypoallergenic formula), consumed higher density formula (>20
calories/ounce), had exposure to antibiotics, or had any
gastrointestinal infection or disease that affected the integrity of
the intestinal mucosa. Fecal samples and clinical data on infants
were collected, including demographic information, maternal and
paternal age (years) at infant’s birth, maternal and paternal height
and weight, delivery method, maternal antibiotic use (breast-
feeding mothers only), and maternal over the counter or
prescription medications taken during pregnancy.

2.2 Sample Collection
Soiled diapers were sampled within 12 hours of defecation. Stool
was collected by application of two duplicate swabs (Copan
Diagnostics, Murrieta, CA) for metagenomics sequencing. The
containers were placed immediately into a dry ice ethanol bath
and then transferred to a -80°C freezer until processing.

2.3 DNA Extraction and Sequencing
DNA extraction and sequencing were completed at the
Microbiome Center at the Children’s Hospital of Philadelphia.
DNA was extracted from samples using the DNeasy PowerSoil
kit using the manufacturer’s instructions (Qiagen, Germantown,
MD). Libraries were generated from 1 ng of DNA using the
NexteraXT kit (Illumina, San Diego, CA) and sequenced on the
Illumina HiSeq 2500 using 2x125bp chemistry in high output
mode. Extraction controls (no template) and DNA free water
were included to empirically assess environmental and reagent
contamination. Laboratory-generated mock communities
consisting of DNA from Vibrio campbellii, Cryptococcus
diffluens, and Lambda phage were included as positive controls.

2.4 Bioinformatics Analysis
Microbiome NGS library analysis was performed using the same
pipeline as our previous study (Di Guglielmo et al., 2019) with a
few modifications. Briefly, the “QC” part of the Sunbeam pipeline
(Clarke et al., 2019) was used to remove adapters, human, and
PhiX contamination before the Sunbeam “Classify” portion used a
Kraken1 (Wood and Salzberg, 2014) database built on October 23,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
2018 to classify the decontaminated reads. Trimmed mean of M-
values normalization and statistical testing were performed with
edgeR (Robinson et al., 2010) and DESeq2 (Love et al., 2014) to
calculate statistically significant differentially represented genera.

Shannon diversity indexes were calculated via the VEGAN R
package (Dixon, 2003). Metagenome construction was done via
MEGAHIT (Li et al., 2015) using concatenated decontaminated
FASTQ files as inputs. Prodigal (Hyatt et al., 2010) and NCBI
COGs (Tatusov et al., 1997) were used for gene prediction and
annotation. STAR (Dobin et al., 2013) was used to map
individual samples’ decontaminated FASTQ files to the
metagenome. RSEM (Li and Dewey, 2011) was used to count
the number of reads mapping to unique genes, and a custom
script was used to count the number of reads mapping to unique
National Center for Biotechnology Information COGs. The
edgeR and DESeq2 packages were used to calculate statistically
significant differentially represented genes and COGs between
cohorts. Heatmaps were generated using the pheatmap R
package. NGS read depths are listed in Supplemental Table 1.

2.5 Direct PCR Validation
Specific genes that were more abundant or less abundant in
either cohort, or that mapped to specific COGs having
statistically significant differences in representation between
cohorts, were subjected to validation using primers specific for
each gene. The PCRs were performed using Takara (Takara Bio
Inc., Shiga, Japan) 50X Titanium Taq DNA polymerase. Each 25
µl PCR reaction contained 2.5 µl 10X Takara Taq buffer (S1793),
0.5 µl 10 mM dNTP mix (Sigma cat# D7295), 1 µl 10 µM oligos
IDT, 0.25 µl 50X Takara Titanium Taq DNA polymerase
(S1792), 1 µl DNA (extracted from fecal samples), and 19.75 µl
H2O. The PCR conditions are 5 minutes at 95°C for 1 cycle, 30
seconds at 95°C for 35 cycles, 30 seconds at 66°C for 35 cycles, 30
seconds at 72°C for 35 cycles, and 7 minutes at 72°C for 1 cycle.
Five microliters of each PCR were run on a 3% NuSieve agarose
gel in 1X TAE buffer and visualized using ethidium bromide
staining. NGS reads for the target genes are displayed in
Supplemental Table 2; qPCR primers used for the target genes
are listed in Supplemental Table 3.
3 RESULTS

3.1 Patient Demographics
Thirty-four subjects were enrolled, and duplicate fecal samples
were processed for each subject. Table 1 details demographic
information about subjects. Twenty-four infants were exclusively
breast fed and 10 were exclusively formula fed. No subjects were
exposed to antibiotics. There were no statistical differences noted
in the demographic data (Table 1) between the BF and FF cohort
except for delivery method (p-value <0.01).

3.2 Metagenomic Sequencing Beta-
Diversity and Genera Analysis
The genera abundance was analyzed per cohort, FF and BF,
and plotted as relative % abundance (Supplemental Figure 1A).
March 2022 | Volume 12 | Article 816601
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There were similarities noted in presence/absence of genera,
including Bacteroides, Klebsiella, Bifidobacterium, Escherichia,
and Veillonella; however, differences in abundances were noted
between the cohorts. Genera abundances were also plotted per
sample (Supplemental Figure 1B) and differences within a cohort
were noted. There were consistent patterns between cohorts, with
seven of the 20 most abundant genera (Figure 1A) having
abundance differences that were statistically significant
(asterisks). The distribution of the Shannon diversity index was
examined per each cohort and plotted as box-whisker plots
(Figure 1B), and a wider distribution was noted in the BF
cohort compared with the FF cohort, but the comparison did
not reach significance (Welch’s t-test p-value = 0.0613). In total, 39
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
genera exhibited differences in abundance that were statistically
significant between the FF and BF cohorts (p-value < 0.05 with an
FDR ≤ 0.01 for both edgeR and DESeq2) (Supplemental Table 4).
Consistent with our previous metagenomics work studying the
metagenome of FF versus BF infants (Di Guglielmo et al., 2019),
Parabacteroides, Haemophilus, Enterococcus, Staphylococcus, and
Phietavirus were differentially represented between the cohorts
(Supplemental Table 4, bold). To determine consistency of the
bio-replicates in the BF and FF cohorts, a Bray-Curtis dissimilarity
and Jaccard distance principal coordinate analysis were conducted
(Supplemental Figure 2). The Bray-Curtis plot (Supplemental
Figure 2A) demonstrated consistency between the bio-replicates
(circle and triangles) using species abundance data, and the
TABLE 1 | Subject Demographic and Anthropometric Data.

Breast Fed (n = 24) Formula Fed (n = 10) P

Sex, Female 54% 20% 0.07
Age, days (mean, SD) 48.4, 32.4 53.7, 24.3 0.59
Age, days (median, IQR) 37.5, 63 54, 18.8
Race, Caucasian 67% 70% 0.85
Ethnicity, Non-Hispanic 79% 80% 0.96
Delivery method, SVD 79% 30% <0.01
Birth weight, grams (mean, SD) 3317, 407 3335, 221 0.87
Enrollment weight, grams (mean, SD) 4519, 996 4554, 921 0.92
Maternal age, years (mean, SD) 30.9, 4.7 31.1, 6.2 0.92
Paternal age, years (mean, SD) 32.6, 6.1 33.4, 7.8 0.78
Maternal BMI, kg/m2 (mean, SD) 27.6, 7.5 26.6, 3.4 0.54
Maternal pre-pregnancy BMI, kg/m2 (mean, SD) 26.4, 7.9 26.3, 5.1 0.97
Paternal BMI, kg/m2 (mean, SD) 27.7, 8.2 28.7, 7.3 0.75
March 2022 | Volume 12 | Article 8
p values for categorical variables were calculated using Chi squared test, p values for numerical variables were calculated using Student’s t-test. SD, standard deviation; IQR, interquartile
range; SVD, spontaneous vaginal delivery; BMI, body mass index.
A B

FIGURE 1 | Differentially Represented Genera. Distribution of genera identified in the gut microbiome of breast-fed and formula-fed infants. (A) Boxplot of the
topmost abundant genera in breast-fed infants (red boxes) and the topmost abundant genera in formula-fed infants (blue boxes). The red asterisks represent the
genera that were statistically different between the breast-fed and formula-fed cohorts. The y-axis represents phylogenetic abundance (percentage), and each genus
is represented on the x-axis. Asterisk (*) represents some of the 39 genera in total that were differentially represented with FDR ≤ 0.01. (B) Shannon diversity index
comparing breast-fed and formula-fed infants.
16601
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Jaccard distance plot (Supplemental Figure 2B) demonstrated
consistency between bio-replicates (circle and triangles) using
binary (plus/minus) species data.

3.3 Gene Level Analysis
To determine potential functional differences in the metagenomes
between the FF and BF cohorts, a gene level analysis was conducted
by creating a co-assembly of all the sequencing data that was then
utilized to map and annotate individual level sample data. In total,
1,734 genes (annotated via Prodigal) were identified as statistically
different in abundance (count data) between the FF and BF cohorts
(Supplemental Table 5). Genes that were higher in abundance in FF
samples included functional annotations (NCBI COG) such as DNA
segregation ATPase, NADPH ubiquinone oxidoreductase subunit 4,
DNA topoisomerase IA, and a sugar phosphate permease
(Supplemental Table 5, bold). Genes that were higher in
abundance in BF samples included functional annotations such as
retron-type reverse transcriptase, type IV secretory pathway
(relaxase), beta-galactosidase/beta-glucuronidase, and OmpR family
(Supplemental Table 5, underline).

To determine if a higher-level analysis of the COGs would increase
the interpretation of the functional annotations, COGs were collapsed/
rolled up based on their functional hierarchy. The abundance
differences of 60 COGs were identified as statistically significant
when comparing the FF cohort with the BF cohort (Table 2). Using
COG count level data, genes and COGs were clustered and visualized
using a heatmap approach (Supplemental Figure 3).

A total of 21 COGs showed greater abundance in the BF group
and 39 exhibited higher abundance in the FF group (Figure 2).
Patterns of differences between the two cohorts for a variety of
COGs were observed. Four COG categories were significantly
overrepresented in BF samples: amino acid transport and
metabolism, defense mechanisms, mobilome, and inorganic ion
transport and metabolism. For FF samples, five categories were
significantly overrepresented: cell motility; nucleotide transport
and metabolism; replication, recombination, and repair; signal
transduction mechanisms; and transcription.

The COGs that were overrepresented in each cohort were
further analyzed using directed PCR to validate presence/absence
of specific genes within each identified COG (Figures 3A, B).
Specific primers were created to conduct gene/COG amplification
to 11 additional genes within the COG categories that were
suggested as having the most variance/difference between
cohorts (defense mechanism, carbohydrate metabolism, signal
transduction, and mobilome). Some genes were completely
absent in the samples tested, as expected; others were amplified
in both, though with incongruence between amplification and the
NGS raw reads (Figures 3A, B). The PCR are end point and
representative of differences between cohorts.

3.3.1 Specific Genes
To evaluate and validate the shotgun metagenomics data, we
conducted a polymerase PCR followed by gel electrophoresis on
candidate markers identified. Four samples were selected from
the BF cohort and four samples from the FF based on sample
availability for validations. The number of NGS reads supporting
the abundance for a given gene and sample are displayed under
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
the gel band. Figure 3A focuses on five genes identified in the
shotgun metagenomics analysis that are related to defense
mechanisms, carbohydrate metabolism, or signal transduction
pathways. As demonstrated in the gel pictures, the predicted
abundances from the NGS data correlated with the NGS read
counts. Gene ID 156409 was the only gene in which there was a
perfect absence (FF) and presence (BF) between cohorts.
Consistent with other metagenomic publications (Baumann-
Dudenhoeffer et al., 2018) it is not uncommon to detect
variability within a cohort, even when statistically significant
differences are noted at the population level (BF vs FF).

Figure 3B focuses on six genes identified in the shotgun
metagenomics analysis that are related to signal transduction
pathways, mobilome, and carbohydrate metabolism. Like the
genes analyzed in Figure 3A, the predicted abundances from the
NGS data correlated with the NGS read counts. Supplemental
Table 2 contains all the analyzed subjects ’ shotgun
metagenomics NGS read count data.
4 DISCUSSION

The metagenomic analysis presented here demonstrates a robust
and useful tool for analyzing fecal microbiomes early in life. In
the present study, a larger cohort expands the sensitivity of the
analysis from prior work (Di Guglielmo et al., 2019) and allows a
more in-depth analysis of COG and gene differences in the gut
microbiome between the two cohorts, FF and BF, of young
infants. Understanding whether these differences are biologically
significant, and whether they are permanent through childhood,
remain goals of both this study and a future longitudinal study.
The Bray-Curtis PCoA clustering implies an abundance of
species separation between cohorts, further reinforcing that
infant feeding even at early ages influences the gut microbiota
contrast and congruence.

4.1 Metataxonomic Trends and
Differences
The diversity and differentiation between cohorts is represented,
both summated, and by individual subject, in Supplemental
Figure 1. A wider distribution of diversity is seen in the BF
cohort; however, the index distribution values are lower
compared with the FF cohort. While some subjects stand out
as unique, the overall trend represents diversity differentiation,
with the FF cohort having a greater diversity (overall Shannon
diversity index approaching statistical significance). Specifically,
one subject in the FF cohort had a very high abundance of
Bacteroides, which was almost uniformly seen in the BF cohort
with increased abundance, likely skewing the Shannon diversity
index. A greater diversity in FF infants has been associated with
poorer health outcomes and dysbiosis and is contrasted by a
lower diversity in BF infants (Schwartz et al., 2012; Savage et al.,
2018; Davis et al., 2020).

Thirty-nine genera are differentially represented between
cohorts, with a similar pattern to our prior work (Di
Guglielmo et al., 2019). Of note, between our prior reported
March 2022 | Volume 12 | Article 816601
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TABLE 2 | Significant Abundance Differences of COG Between Formula-fed and Breast-fed infants.

COG Description Category logFC logCPM FDR-
edgeR

Padj-
DESeq2

COG3549 Plasmid maintenance system killer protein Defense mechanisms -6.303 4.665 1.47E-
03

1.52E-03

COG3914 Predicted O-linked N-acetylglucosamine transferase, SPINDLY family Posttranslational modification, protein
turnover, chaperones

-5.142 4.459 3.90E-
04

3.93E-08

COG4115 Toxin component of the Txe-Axe toxin-antitoxin module, Txe/YoeB
family

Defense mechanisms -4.391 9.353 6.97E-
04

1.33E-06

COG5527 Protein involved in initiation of plasmid replication Mobilome: prophages, transposons -4.302 12.060 2.95E-
04

5.59E-08

COG3256 Nitric oxide reductase large subunit Inorganic ion transport and metabolism -3.775 4.241 3.05E-
03

1.53E-05

COG5314 Conjugal transfer/entry exclusion protein Mobilome: prophages, transposons -3.698 7.229 6.07E-
03

2.46E-04

COG4292 Low temperature requirement protein LtrA (function unknown) Function unknown -3.635 3.580 1.15E-
03

3.74E-06

COG4132 ABC-type uncharacterized transport system, permease component General function prediction only -3.528 7.289 4.75E-
03

2.48E-04

COG4413 Urea transporter Amino acid transport and metabolism -3.527 4.633 8.87E-
03

3.16E-04

COG4146 Uncharacterized membrane permease YidK, sodium:solute symporter
family

General function prediction only -2.663 7.585 4.26E-
04

1.62E-06

COG3542 Predicted sugar epimerase, cupin superfamily General function prediction only -2.640 4.961 8.87E-
03

2.19E-04

COG2452 Predicted site-specific integrase-resolvase Mobilome: prophages, transposons -2.579 7.767 6.32E-
03

1.97E-04

COG5520 O-Glycosyl hydrolase Cell wall/membrane/envelope
biogenesis

-2.201 9.260 6.32E-
03

5.67E-04

COG4372 Uncharacterized conserved protein, contains DUF3084 domain Function unknown -1.888 10.155 1.24E-
03

5.57E-05

COG0728 Peptidoglycan biosynthesis protein MviN/MurJ, putative lipid II flippase Cell wall/membrane/envelope
biogenesis

-1.621 9.419 8.71E-
03

9.85E-04

COG1004 UDP-glucose 6-dehydrogenase Cell wall/membrane/envelope
biogenesis

-1.322 9.261 5.24E-
03

6.10E-04

COG0627 S-formylglutathione hydrolase FrmB Defense mechanisms -1.241 8.546 3.17E-
03

1.24E-04

COG0362 6-phosphogluconate dehydrogenase Carbohydrate transport and metabolism -1.118 9.309 5.19E-
03

6.79E-04

COG0657 Acetyl esterase/lipase Lipid transport and metabolism -1.051 10.130 7.05E-
03

6.64E-04

COG0110 Acetyltransferase (isoleucine patch superfamily) General function prediction only -0.885 9.518 6.32E-
03

1.92E-04

COG0738 Fucose permease Carbohydrate transport and metabolism -0.780 10.289 6.64E-
03

1.53E-04

COG1686 D-alanyl-D-alanine carboxypeptidase Cell wall/membrane/envelope
biogenesis

0.964 9.148 4.33E-
03

7.24E-03

COG3887 c-di-AMP phosphodiesterase, consists of a GGDEF-like and DHH
domains

Signal transduction mechanisms 1.201 7.785 8.87E-
03

6.00E-03

COG3857 ATP-dependent helicase/DNAse subunit B Replication, recombination and repair 1.239 8.504 4.71E-
03

3.88E-03

COG0301 Adenylyl- and sulfurtransferase ThiI, participates in tRNA 4-thiouridine
and thiamine biosynthesis

Coenzyme transport and metabolism 1.298 6.853 7.05E-
03

5.84E-03

COG3290 Sensor histidine kinase regulating citrate/malate metabolism Signal transduction mechanisms 1.377 9.331 1.60E-
03

2.26E-03

COG4932 Uncharacterized surface anchored protein Function unknown 1.412 11.054 8.60E-
04

1.20E-03

COG0825 Acetyl-CoA carboxylase alpha subunit Lipid transport and metabolism 1.423 6.612 3.75E-
03

2.32E-03

COG1199 Rad3-related DNA helicase Replication, recombination and repair 1.442 8.417 3.61E-
03

6.21E-03

COG2357 ppGpp synthetase catalytic domain (RelA/SpoT-type
nucleotidyltranferase)

Nucleotide transport and metabolism 1.444 6.705 3.05E-
03

1.50E-03

COG4720 Uncharacterized membrane protein Function unknown 1.509 6.663 1.12E-
03

3.33E-04

(Continued)
Frontiers in
 Cellular and Infection Microbiology | www.frontiersin.org 6
 Ma
rch 2022
 | Volume
 12 | Artic
le 816601

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Di Guglielmo et al. Early Feeding Differentiates the Infant Microbiome
TABLE 2 | Continued

COG Description Category logFC logCPM FDR-
edgeR

Padj-
DESeq2

COG1638 TRAP-type C4-dicarboxylate transport system, periplasmic component Carbohydrate transport and metabolism 1.572 8.267 3.90E-
04

7.41E-04

COG4109 Predicted transcriptional regulator containing CBS domains Transcription 1.808 5.657 8.92E-
04

3.78E-04

COG3688 Predicted RNA-binding protein containing a PIN domain General function prediction only 1.824 6.121 6.09E-
04

1.22E-04

COG1307 Fatty acid-binding protein DegV (function unknown) Lipid transport and metabolism 1.856 7.624 9.16E-
05

6.39E-05

COG3331 Penicillin-binding protein-related factor A, putative recombinase General function prediction only 1.864 4.516 4.87E-
04

1.18E-04

COG1001 Adenine deaminase Nucleotide transport and metabolism 1.889 7.376 3.10E-
03

3.36E-03

COG4753 Two-component response regulator, YesN/AraC family, consists of
REC and AraC-type DNA-binding domains

Transcription 1.900 7.971 3.17E-
03

4.88E-03

COG4709 Uncharacterized membrane protein Function unknown 1.913 4.692 1.88E-
03

9.03E-04

COG2179 Predicted phosphohydrolase YqeG, HAD superfamily General function prediction only 1.935 4.166 6.40E-
04

2.00E-04

COG1671 Uncharacterized conserved protein YaiI, UPF0178 family Function unknown 1.975 5.369 4.75E-
03

6.48E-03

COG1344 Flagellin and related hook-associated protein FlgL Cell motility 2.007 8.124 3.95E-
03

9.53E-03

COG0727 Fe-S-cluster containing protein General function prediction only 2.009 5.909 6.19E-
04

3.68E-04

COG1345 Flagellar capping protein FliD Cell motility 2.022 7.356 3.75E-
03

5.88E-03

COG4640 Uncharacterized membrane protein YvbJ Function unknown 2.153 5.735 2.94E-
03

2.87E-03

COG4717 Uncharacterized protein YhaN Function unknown 2.199 5.526 1.97E-
03

1.73E-03

COG3760 Uncharacterized protein Function unknown 2.206 4.658 6.19E-
04

5.54E-04

COG4862 Negative regulator of genetic competence, sporulation and motility Transcription 2.301 4.990 3.05E-
04

1.29E-04

COG2607 Predicted ATPase, AAA+ superfamily General function prediction only 2.381 5.081 3.17E-
03

4.87E-03

COG4728 Uncharacterized protein Function unknown 2.486 3.669 4.87E-
04

1.97E-04

COG3108 Uncharacterized conserved protein YcbK, DUF882 family Function unknown 2.545 6.373 3.05E-
04

6.34E-04

COG1775 Benzoyl-CoA reductase/2-hydroxyglutaryl-CoA dehydratase subunit,
BcrC/BadD/HgdB

Secondary metabolites biosynthesis,
transport and catabolism

2.592 6.286 4.54E-
04

6.34E-04

COG4509 Uncharacterized protein Function unknown 2.602 6.946 3.26E-
05

1.31E-05

COG1645 Uncharacterized Zn-finger containing protein, UPF0148 family General function prediction only 2.617 3.892 2.95E-
04

1.62E-04

COG4478 Uncharacterized membrane protein Function unknown 2.657 4.231 5.77E-
05

1.53E-05

COG1036 Archaeal flavoprotein Energy production and conversion 2.765 3.623 3.05E-
04

2.45E-04

COG4769 Uncharacterized membrane protein Function unknown 2.999 3.649 3.94E-
05

2.44E-05

COG4805 Uncharacterized conserved protein, DUF885 family Function unknown 3.142 5.282 2.84E-
03

5.28E-03

COG4223 Uncharacterized conserved protein Function unknown 3.541 4.149 1.46E-
03

5.42E-03

COG4939 Major membrane immunogen, membrane-anchored lipoprotein Function unknown 4.122 2.791 6.29E-
06

5.08E-05
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cohorts and our expanded cohort, the genera with statistical
significance between cohorts (Figure 1A, Supplemental Table 4)
are consistent: Parabacteroides, Haemophilus, Clostridioides, and
Staphylococcus. In the expanded cohort, Bifidobacterium,
Enterococcus, and Lachnoclostridium are also statistically
significantly different between cohorts. Breast-fed infants have
greater relative abundance of Bifidobacterium, a gram-positive
bacterium of phylum Actinobacteria, used in many probiotics. As
expected, the Bifidobacterium genus is highly abundant in the BF
cohort consistent with prior reports (Henrick et al., 2018; Karav
et al., 2018; Henrick et al., 2019). Bifidobacterium is strongly
associated with breast milk feeding and is therefore expected to
be found in the infant gut. Lachnoclostridium, a microbe in the
phylum Firmicutes, but of unknown pathogenic potential, is
more abundant in the FF cohort. The greater abundance in the
FF cohort of Enterococcus may also reflect a more pathogenic-
potential microbial shift in the gut of these infants. The trend
bears further investigation in terms of both gene abundance and
metabolic output to determine clinical and biological significance
for these infants (Fukuda et al., 2012; den Besten et al., 2013).
Caesarean section delivery was more frequent in the FF infants;
however, the mode of delivery influences the infant microbiota/
microbiome (Rutayisire et al., 2016; Korpela, 2021). In the cohort
genera metataxonomic analysis (Figure 1A), data show that
Bifidobacterium is comparable between cohorts, while
Klebsiella and Bacteroides are not. Escherichia was similar
between cohorts, while Veillonella was not. While differences
between delivery modes have been studied, the results in this
cohort are not completely aligned with prior studies. To ascertain
whether the influence on taxonomy alone of delivery is enough
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
to cause cohort differences, the more in-depth analysis available
with whole-genome metagenomics offers an advantage.

4.2 Metagenomic Observations and
Implications
Sixty COGs were significantly more abundant in either BF or FF
infants (Table 2). Examining those COGs that are significantly
overrepresented in either FF or BF cohorts (Figure 2) reveals
some notable patterns. There are COGs with specific functions
that are absent or present in each of the cohorts. Should these
COGs and the protein domains they represent result in the loss
or gain of protein function, the abundance differences may
influence metabolically active, beneficial, or pathologic proteins
within the gut. It is not yet clear if these changes are permanent
or whether they contribute to intra- or extra-intestinal disorders
in infancy and childhood.

Using the difference in abundance of these 60 COGs as
informed by the heatmap (Supplemental Figure 3), we focused
on four COGs: carbohydrate transport and metabolism; defense
mechanisms; mobilome—prophages, transposons; and signal
transduction mechanisms (Figure 2). In our prior work, we
observed some genes that were present only, or predominantly,
in one cohort vs. the other, namely CRISPR-Cas9 and
carboxypeptidase (Di Guglielmo et al., 2019).

For the current study, specific genes from each COG
demonstrate similar patterns as the NGS read counts and
shows alignment with abundance data (Figure 3). Five out of
five genes more abundant in the BF samples analyzed are entirely
or almost entirely absent from the FF samples. Four genes
(309214, 266471, 114703, 145511) that are more abundant in
FIGURE 2 | Clusters of Orthologous Genes (COG) Category Analysis. Statistically significant and overrepresented COGs are plotted by category and number from
the total 60 COGs listed in Table 2.
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FF infants are completely absent in the BF samples analyzed; two
genes (316412, 345373) that are more abundant in FF infants are
mostly absent from the BF samples with two BF samples detected
and two BF samples not detected (Figure 3; Supplemental
Table 2 contains the supporting NGS read count data). Of the
genes completely absent in our samples from either cohort, the
pattern indicates that defense mechanism genes are absent (two
of three) in FF samples while a carbohydrate metabolism gene,
two signal transduction genes, and a mobilome gene are absent
in some BF samples. For the defense mechanism genes, this
indicates that FF infant microbiota may lack the ability to thwart
DNA level changes that could confer greater susceptibility to
mutative changes. The implication is the potential in FF infants
for the introduction of pathologic or inflammatory proteins
affecting gut immune stability and overall homeostasis (Fallani
et al., 2010; Guaraldi and Salvatori, 2012; Schwartz et al., 2012;
Turroni et al., 2020; Sarkar et al., 2021). For the BF infant
microbiota, some of the genes in these categories may be
associated with reduced propensity for metabolic shifts that
confer dysbiosis or altered signal transduction. Regarding
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
mobilome genes, a loss or gain of horizontal gene transfer
through mobile genetic elements (Jørgensen et al., 2015;
Mancino et al., 2019; Carr et al., 2021), related to selection
pressure-driven changes, may facilitate or impede antibiotic
resistance in the differently fed cohorts.

Based on the function of these genes, and what they
contribute to in terms of either signaling, carbohydrate
metabolism, or health of the gut bacteria themselves, we may
be able to examine impact on metabolic (obesity), immunologic
(antibiotic-resistance), and other long-term health issues. Does a
more dysbiotic young infant gut lead to cellular stress or
inflammation that interferes with gut signaling? This is a
hypothesis that warrants further study. The gut may normalize
over time based on later infancy and toddlerhood diets such that
there is no permanent impact. Conversely, these microbial
influences and changes may be more permanent (Turroni
et al., 2020; Sarkar et al., 2021) because of the overabundance
or underabundance of certain key organisms, the genes they
express, and the proteins those genes encode. Ongoing work in
our laboratory aims to demonstrate short-chain fatty acid
A

B

FIGURE 3 | Gene Amplification. (A, B) Non-quantitative PCR was used to validate the results of the bioinformatic analysis for 11 genes. Four representative samples
from each cohort of breast-fed and formula-fed infants were analyzed using the purified DNA extracts. Next generation sequencing reads are shown under each
PCR panel, as well as corresponding cohort with a higher abundance of the Clusters of Orthologous Genes category. (A) 326538, toxin component of the Txe-Axe
toxin-antitoxin module, Txe/YoeB family; 156409, alkyl hydroperoxide reductase subunit AhpF; 309214, glycogen synthase; 316412, c-di-AMP phosphodiesterase,
consists of a GGDEF-like and DHH domains; 288014, S-formylglutathione hydrolase FrmB. (B) 266471, chemotaxis protein CheY-P-specific phosphatase CheC;
234035, conjugal transfer/entry exclusion protein; 114703, phage DNA packaging protein, Nu1 subunit of terminase; 145511, adenylate cyclase, class 3; 178095,
protein involved in initiation of plasmid replication; 345373, sensor histidine kinase regulating citrate/malate metabolism.
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differences that exist between cohorts as well as longitudinal
taxonomic and genera/COG/gene abundance differences
(Fukuda et al., 2012; den Besten et al., 2013).

4.3 Limitations
There are both strengths and limitations to the present study.
Shotgun metagenomics enables a non-biased approach that can
yield gene level data compared with 16S methods. This type of
method requires extensive bioinformatic pipelines (Di Guglielmo
et al., 2019) and generates data that enables gene level analysis that
can be utilized for functional interpretation, which is not possible
with the traditional 16S approach. The present study has a larger
sample size compared with our previous report. Limitations
include that our FF cohort is less than half the sample size as
our BF cohort, and thus outliers with different taxonomy or
metagenomes/COG could affect both statistical significance and
definitiveness of conclusions. The CRISPR-Cas9 gene from our
prior work was detected in samples in this study but the
abundance difference was not statistically significant, reflecting
the smaller FF cohort size. Of note, this gene is known to be
variable in different taxonomies (Crawley et al., 2018). Yet some
differences are striking enough to be worth reporting and pursuing
further. We cannot control for the maternal or environmental
microbiome and their impact/influence on even very young
infants, as we see no clear pattern in presence/absence of genera
of individual subject’s sample regardless of sex and age at sample
collection or delivery method. We acknowledge that delivery
method was statistically different between cohorts (Table 1),
which may present a confounding variable. In prior studies,
with small cohorts, Caesarean section delivery was either an
exclusion criterion with no data was presented to make a
comparison (Lee et al., 2015) or not mentioned at all (Schwartz
et al., 2012). We note that in our study, within a cohort, there was
variability in the relative abundances of genera between samples
from babies born via vaginal delivery and between samples from
babies born via caesarean section delivery. Nonetheless, the data
do show that there are notable summative differences in the
cohorts. In a potential future study with larger sample size, a
covariate regression analysis could be completed to ascertain the
role of delivery; however, in our study our sample size is not large
enough to make definitive statements about the impact of delivery.
Our group has banked additional samples from infants not
enrolled in this study who had the same dichotomous feeding
method but did not meet all inclusion criteria. Using the analysis
pipeline, and looking for similar patterns of abundance, diversity,
variance, and COG overrepresentation, we may be able to
elucidate patterns for each cohort beyond the strict criteria used
for this study. Longitudinal microbiome data from additional
collected samples on these patients will allow us to answer
questions about whether these early changes and differences are
temporary or permanent. Finally, metabolic data on these samples,
currently under analysis, will demonstrate, potentially, unique
characteristics by subject and cohort.

The present study demonstrates key differences between BF
and FF cohorts in both taxonomic signature of the gut
microbiota and metagenome. Several defense mechanism
genes are virtually absent in the FF cohort, as confirmed
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
by PCR validation. Gut bacteria in these infants, if more
susceptible to phage, virus, and other transformative changes
due to defense mechanism gene absence, could lead to
pathogenicity and/or specific dysbiotic characteristics such
as antibiotic resistance. With these changes can come
inflammation and other cellular stressors that alter the ability of
both microbiota, and host, to maintain homeostasis. Regardless of
whether the gut microbiome signature normalizes later in life, the
impact early on of gene abundance (or absence) as a proxy for
function cannot be ignored. This research may lead to solutions
for restoring gut health in FF infants, or those exposed to
antibiotics at an early age, with the intent to boost the
abundance of bacteria (Underwood et al., 2013; Karav et al.,
2018; Henrick et al., 2019) that return specific proteins and their
function to the gut.
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