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A B S T R A C T   

Monosodium glutamate (MSG) is one of the most commonly used feed additives which poses a threat to public 
health. Nigella sativa is a promising natural approach in this issue due to its antioxidant, hypolipidemic, and 
cytoprotective characters. Here, we investigated the potential protective effect of Nigella sativa seed (NSS) against 
MSG-induced hepatotoxicity in rats. To accomplish this objective, fifteen adult Wistar albino rats were randomly 
and equally divided into three groups for 21 days: the control group received no treatment, MSG group sup
plemented with MSG at a dose of 30 g/kg feed, and MSG + NSS group supplemented with MSG at the same 
previous dose together with NSS at a dose of 30 g/kg feed. NSS succeeded in boosting serum alkaline phos
phatase activity and total cholesterol, triglycerides, and glucose levels. It reduced lipid peroxides in the serum 
and down-regulated glutathione reductase and superoxide dismutase 2 immuno-expression in the hepatic cells. 
NSS intervention provided cytoprotection by improving the histo-architecture of the liver and reducing the 
number of apoptotic cells. NSS was effective in protecting against the hepatotoxicity of MSG through its anti
oxidant and anti-apoptotic effects. These findings are of utmost significance in directing the attention towards the 
incorporation of NSS in our food industry as well as a health remedy in traditional medicine to fight MSG-related 
hepatic abnormalities.   

1. Introduction 

Monosodium glutamate (MSG) is a naturally occurring sodium salt of 
glutamic acid that is widely used as a flavor enhancer in many processed 
foods, giving them an umami taste and improving their palatability 
(Foran et al., 2017; Zanfirescu et al., 2019). However, its safety as a feed 
additive remains highly debated. Although food safety regulatory or
ganizations considered MSG consumption is not related to health hazard 
problems, several studies have confirmed its deleterious effects in rela
tion to differences in dosage, route of administration, and duration of 
exposure (Chakraborty, 2019; Smriga, 2016). Nevertheless, 
MSG-induced hepatic impairment is evident by the detrimental changes 
in tissue damage biomarkers, carbohydrate and lipid metabolic path
ways, antioxidant profile, and histopathological features (Eid et al., 
2019; Elbassuoni et al., 2018; Quines et al., 2019). 

In the light of the extensive utilization of MSG in the modern feed 
industry, one of the research directions is to eliminate or reduce its side 
effects to an acceptable level. The use of natural agents became highly 
accepted as a realistic option to combat food-borne toxicants and gained 
popularity as a promising strategy instead of traditional therapeutic 
drugs (Anwar and Mohamed, 2015; El-Bahr, 2015; Karimi et al., 2019; 
Khalil et al., 2020; Lu et al., 2020). Nigella sativa seeds (NSS) is a dietary 
favorable candidate because of their wide range of safety, efficacy, and 
availability (Yimer et al., 2019). The healing powers of Nigella sativa 
were referred to by the Prophet Muhammad [Peace be Upon Him 
(PBUH)]: “In this Black seed a cure for every disease except death” 
(Al-Bukhari). The hypoglycemic, hypolipidemic, antioxidant, and 
anti-apoptotic properties of NSS (Abd-Elkareem et al., 2020; Abou Khalil 
et al., 2017; Ali and Blunden, 2003; El-Gindy et al., 2019; Hosseinian 
et al., 2018; Kotb et al., 2018) provide strong rationality in blocking the 
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multifaceted targets of MSG. 
The presence of a variety of bioactive constituents in NSS gives a 

strong driving force for many scientists to validate their historically 
claimed usage in combating hepatic dysfunction (Beheshti et al., 2018). 
Thymoquinone (TQ), one of the principal volatile oils in NSS, is sup
posed to protect against chemical toxicants via stimulating hepatic 
detoxification machinery and cellular proliferation, scavenging reactive 
oxidants, up-regulating enzymatic antioxidants, and counteracting 
apoptosis (Elbarbry et al., 2012; Ince et al., 2012; Ismail et al., 2010; 
Tabeshpour et al., 2019). The current study aims to investigate the 
possible protective effect of NSS against MSG-induced hepatocellular 
damage using an experimental rat model. 

2. Materials and methods 

2.1. Identification of phytochemical constituents 

Nigella sativa seeds were purchased from Imtenan Heath Shop 
Company, Obour City, Egypt. Phytochemical constituents of NSS were 
determined using gas chromatography/mass spectrophotometry in the 
previously published protocol (Abd-Elkareem et al., 2021). The gas 
chromatography/mass spectrophotometry of NSS showed the presence 
of 26 active phytochemical constituents. The major constituents were 9, 
12-octadecadienoic acid, hexadecanoic acid, and TQ (1.5%) (Abd-El
kareem et al., 2021). 

2.2. Animals and experimental groups 

Fifteen adult Wistar albino rats aged 2-3 months (233.8 ± 9.01 gm in 
weight) were obtained from the Animal House, Faculty of Medicine, 
Assiut University, Assiut, Egypt. They were housed at room temperature 
in polypropylene cages and were exposed to a natural 12 h light/dark 
cycle with free access to standard laboratory chow and water. The 
experimental procedures in this study were conducted following the 
internationally accepted principles for the Care and Use of Laboratory 
Animals and were approved by the Medical Ethics Committee, Faculty of 
Medicine, Assiut University (Approval Number: 17300469). After one 
week of acclimatization, rats were randomly divided into three groups 
(five rats each): the control group received no treatment, MSG group 
supplemented with MSG (Morgan Chemical industry, Egypt, purity 99%, 
NH2. CH(COOH). CH2. CH2.COONa.H2O) in the diet at a dose of 30 g/ 
kg feed for 21 days as this dose is known to impair hepatic functions 
(Kazmi et al., 2017). MSG + NSS group administrated MSG at the same 
previous dose together with NSS, after finely crushed by an electric mill 
mixer, and added to the diet as a powder at a dose of 30 g/kg feed for the 
same period. This dose provides cytoprotection against chemotoxic 
substances (Abd- Elkareem et al., 2020; Yousif et al., 2016). 

2.3. Sample collection 

At the end of the experiment, the blood samples were collected 
immediately from the retro-orbital sinus using microcapillary tubes by 
an experienced laboratory technician. Blood samples were collected, 
centrifuged at 3000 rpm for 15 min to obtain serum, and kept at − 20 ◦C 
until measurement of liver function parameters and lipid peroxides 
(LPO) level. Rats were euthanized by cervical dislocation for liver 
specimen collection. The liver was carefully dissected out and quickly 
fixed in 10% neutral buffered formalin to be used in the histological, 
histochemical, and immunohistochemical examination. 

2.4. Biochemical measurements 

Serum aspartate aminotransferase (AST), alanine aminotransferase 
(ALT), glucose, total cholesterol (TC), triglycerides (TG), total protein 
(TP), albumin, total bilirubin, urea, uric acid, and creatinine were 
assessed according to the manufacturer’s instructions using commercial 

colorimetric kits provided by Egyptian Company for Biotechnology, 
Cairo, Egypt. Serum direct (conjugated) bilirubin was calculated by 
subtraction of indirect bilirubin from total bilirubin (O’Malley et al., 
2015). Serum alkaline phosphatase (ALP) was measured by a kinetic 
method using a commercial kit (catalog number: 1051, Vitro Scient Co., 
Cairo, Egypt). Serum LPO was estimated according to the method of 
(Ohkawa et al., 1979). The biochemical parameters were measured 
using a spectrophotometer (S1200, Unico, USA). 

2.5. Histological examination 

The formalin-fixed livers were dehydrated in ascending grades of 
ethanol, cleared in methyl benzoate, and embedded in paraffin wax. 
Paraffin sections at 5 μm in thickness were cut and stained with the 
following histological stains:  

• Haematoxylin and Eosin for general histological examination of the 
liver (Bancroft and Gamble, 2008).  

• Periodic acid Schiff (PAS) technique for demonstration of glycogen 
(Bancroft and Gamble, 2008). 

• Crossmon’s trichrome technique for staining collagen fibers (Cross
mon, 1937). 

2.6. Immunohistochemistry of glutathione reductase and superoxide 
dismutase 2 in the liver 

For immunohistochemical detection of glutathione reductase (GR) 
and superoxide dismutase 2 (SOD2) in the liver, we used polyclonal anti- 
glutathione reductase and anti-superoxide dismutase 2 antibodies, 
respectively (Chongqing Biospes Co., Ltd, China) and Power-Stain™ 1.0 
Poly horseradish peroxidase (HRP) DAB Kit (Genemed Biotechnologies, 
Inc, 458 Carlton Ct. South San Francisco, CA 94080, USA). The protocol 
was used as the previously published protocol (Abd-Elkareem et al., 
2021). 

2.7. TUNEL assay 

Detection and quantification of apoptosis were carried out using In 
Situ Cell Death Detection Kit, Fluorescein (Sigma-Aldrich). TUNEL 
technology was based on labeling of DNA strand breaks which formed 
during apoptosis as a result of cleavage of genomic DNA. Sections (3–5 
μm) of paraffin-embedded tissues were dewaxed in xylene and rehy
drated through a graded series of ethanol and double-distilled water. 
Then the slides were rinsed in PBS (pH 7.4) (three times for 5 min each 
time). The slides were placed in a jar containing 100 ml 0.1 M citrate 
buffer (pH 6.0) and heated to near boiling (95-98 ◦C) in a water bath for 
30 min followed by cooling for 20 min at room temperature. Sections 
were then rinsed in PBS at a pH of 7.4 (three times for 1 min each time). 
TUNEL reaction mixture (500 μl) was prepared by adding 50 μl of 
enzyme solution to 450 μl of label solution. Then mixed well to equili
brate components. Slides were rinsed three times with PBS at 15 to 25 ◦C 
and excess fluid was drained off. Then drops of TUNEL reaction mixture 
were added to the samples and the slides were incubated overnight in a 
humidified atmosphere at 37 ◦C in the dark. Slides were rinsed three 
times with PBS and directly analyzed under a fluorescence microscope. 

All staining slides were examined by an Olympus BX51 microscope 
and the photographs were taken by an Olympus DP72 camera adapted 
into the microscope. 

2.8. Statistical analysis 

Data were expressed as the mean ± standard error of the mean 
(SEM). Statistical differences between groups were identified by one- 
way analysis of variance (ANOVA) followed by Duncan post-test. All 
statistical analyses were carried out using SPSS for Windows software, 
version 16.0. (SPSS, Inc., Chicago, IL, USA). A probability (p) value of <
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0.05 was considered statistically significant. 

3. Results 

3.1. Effect of NSS on the liver function parameters and LPO in MSG 
challenged rats 

As shown in Table 1, the impairment in the liver functions by MSG 
was evident by a significant elevation in serum ALP and ALT activities 
and TC and TG levels in comparison with the control group. Except for 
ALT activity, NSS was effective in returning all the above-mentioned 
parameters towards the control levels. MSG induced hyperglycemia 
which significantly subsided to the control level by dietary supple
mentation of NSS. On the other hand, there were no significant changes 
in serum AST activity, and total and direct bilirubin, TP, and albumin 
levels between all experimental groups. MSG-supplemented rats were 
characterized by an oxidant/antioxidant imbalance manifested by a 
significant elevation in serum LPO level which was significantly reduced 
to be comparable to the normal by dietary administration of NSS. 

3.2. Effect of NSS on the histopathological features of liver in MSG- 
challenged rats 

Histopathological examination of the liver of the control group 
showed a typical hepatic lobular architecture consisting of tightly 
packed plates of large polygonal hepatocytes with prominent round 
nuclei and eosinophilic cytoplasm and separated by hepatic sinusoids. 
Numerous hepatocytes were binucleated (Fig. 1a and b). The portal triad 
showed no change and consisted of branches of the hepatic artery, portal 
vein, and bile duct (Fig. 1c). Livers of the MSG group exhibited a focal 
area of necrosis characterized by increased cytoplasmic acidophilia and 
pyknotic nuclei (Fig. 1d and e). Sporadic hepatocytes showed degener
ation and necrosis with loss of nuclei (Fig. 1f and g). The liver paren
chyma also showed moderate multiple focal lymphoid cell aggregations 
(Fig. 1h). Additionally, there were mild multiple lymphoid cell aggre
gations in the portal area (Fig. 1i). Occasionally, periportal hemorrhage 
was observed (Fig. 1j). Mild to moderate diffuse congestion of the he
patic sinusoids was noticed along with mild Kupffer cell activation 
(Fig. 1k and l). On the other hand, NSS treatment alleviated these 
changes and restored the normal structure of the hepatic parenchyma 
and portal area. Hepatocyte degeneration and necrosis as well as the 
aggregation of lymphoid cells in the parenchyma and portal area were 
markedly regressed. In addition, congestion of hepatic sinusoids was 
markedly reduced (Fig. 1m-o). 

3.3. Effect of NSS on glycogen and collagen deposition in the liver of 
MSG-challenged rats 

Most of the hepatocytes in the liver sections of the control group 
exhibited cytoplasmic PAS-positive material (Fig. 2a and b). However, 
the PAS-positive material was severely reduced particularly in the per
iportal cells in the MSG group (Fig. 2e and f). However, the group 
treated with NSS showed noticeable restoration of the cytoplasmic PAS- 
positive material (Fig. 3i and j). Furthermore, the collagen was normal 
in amount and distribution in the liver of the control group (Fig. 2c and 
d). However, thick bundles of collagen fibers were seen around the 
central vein and in the periportal area in the MSG group (Fig. 2g and h), 
which were markedly improved in the liver of MSG-intoxicated rats 
treated with NSS (Fig. 2k and l). 

3.4. Effect of NSS on immuno-expression of GR and SOD2 in the liver of 
MSG-challenged rats 

Glutathione reductase and superoxide dismutase2 immunohisto
chemical investigation in the liver of the MSG group showed positive GR 
and SOD2 immuno-expression in some hepatocytes. Whereas GR and 
SOD2 immunolocalization in the MSG + NSS group showed a slight GR 
and SOD2 immunostaining in the hepatocytes and were nearly similar to 
the control group (Fig. 3). 

3.5. Effect of NSS on the number of apoptotic cells in the liver of MSG- 
challenged rats 

Using TUNEL assay in the paraffin sections of the liver, we observed 
that the MSG group showed a significant increase in the number of 
apoptotic cells compared to the control group. While the MSG + NSS 
group showed a significant decrease in the number of apoptotic cells 
which nearly returned to normal (Fig. 4a and b). 

The overall histopathological changes induced by SMG was of mild 
to moderate compared to the control. 

4. Discussion 

Monosodium glutamate intake was associated with multiple delete
rious effects. The determination of agents with a strong protective role 
against their health hazards with the potential natural occurrence and 
broad safety window represents a field of growing interest. In the pre
sent study, MSG induced hepatic dysfunction, redox imbalance, and 
apoptosis. Alternatively, NSS dietary intervention effectively mitigated 
these disturbances via its antioxidant and anti-apoptotic properties. 

The marked elevation in serum ALP and ALT activities following the 
MSG challenge is consistent with a previous report (Eid et al., 2019) and 
supports the degenerative changes in hepatocytes in our findings. 

Table 1 
Effect of NSS on the liver function parameters and lipid peroxides in serum of rats with MSG-induced hepatic dysfunction  

Group Parameter Control MSG MSG + NSS P value 

ALP activity (U/L) 190.250 ± 5.030b 250.520 ± 9.264a 177.975 ± 9.373b 0.000 
ALT activity (U/L) 22.457 ± 2.850b 36.156 ± 5.927a 39.073 ± 4.190a 0.033 
AST activity (U/L) 122.810 ± 10.23 136.660 ± 3.072 134.850 ± 2.286 0.258 
Glucose level (mg/dL) 92.233 ± 11.017b 152.730 ± 23.239a 100.590 ± 11.308b 0.024 
TC level (mg/dL) 37.323 ± 4.010b 51.698 ± 2.363a 34.935 ± 3.286b 0.003 
TG level (mg/dL) 50.917 ± 3.390b 66.192 ± 5.854a 53.555 ± 2.208b 0.042 
Total bilirubin level (mg/dL) 0.192 ± 0.052 0.200 ± 0.037 0.168 ± 0.030 0.851 
Direct bilirubin level (mg/dL) 0.062 ± 0.010 0.067 ± 0.020 0.058 ± 0.009 0.912 
TP level (g/dL) 3.126 ± 0.350 3.117 ± 0.337 2.387 ± 0.307 0.207 
Albumin level (g/dL) 2.015 ± 0.310 2.037 ± 0.345 1.666 ± 0.260 0.636 
LPO level (nmol/mL) 1.284 ± 0.095b 1.937 ± 0.283a 1.079 ± 0.078b 0.006 

MSG: monosodium glutamate; NSS: Nigella sativa seeds; ALP: alkaline phosphatase; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; TC: total 
cholesterol; TG: triglycerides; TP: total protein; LPO: lipid peroxides. 
Results are expressed as the mean ± SEM of 5 rats per group. a,b Different letters indicate significant differences between groups at p < 0.05 (one-way ANOVA followed 
by Duncan’s post-test). 
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Fig. 1. Histopathological changes of the liver in 
control-, MSG-, and NSS-treated groups. (a-c) 
Liver from the control group showed a normal 
arrangement of the hepatic cells (a), central 
vein (b), and the portal area containing 
branches of the hepatic artery, portal vein, and 
bile duct (c). (d-l) In the MSG-treated group, the 
liver sections showed a focal area of necrosis 
(star) (e) and degenerated and necrotic hepa
tocytes (arrows) (f and g). Focal lymphoid cell 
aggregations in the hepatic parenchyma (ar
rows) (h) and portal area (arrows) (i). The 
periportal area showed hemorrhage (arrow
head) (j). The hepatic sinusoids were congested 
(arrowheads) (k) and the kuppfer cells were 
mildly activated (arrows) (l). Note that 
numerous hepatocytes were still normal and 
healthy, and some were compensatory hyper
trophied (hp) in (Fig. k). (m-o) Liver from the 
NSS-treated group showed a normal arrange
ment of the hepatic cords in the parenchyma 
with minimally congested hepatic sinusoids 
(arrowheads) (m and n), a few degenerated and 
necrotic hepatocytes (arrows) (o), and a few 
lymphoid cell infiltrations in the portal area 
(arrowhead) (o). Hematoxylin and eosin stain. 
Scale bars in panels a, d, and m = 200 μm and 
panels b, c, e-l, n, and o = 50 μm.   

Fig. 2. Evaluation of the glycogen and collagen 
fibers in the liver using PAS and Crossmon’s 
trichrome stains, respectively. (a-d) Liver from 
the control group showed normal cytoplasmic 
PAS-positive material (a and b) and normal 
collagen amount and distribution (c and d). (e- 
h) The liver from the MSG-treated group 
showed decreased PAS-positive material in the 
periportal area (e and f) and dense collagen fi
bers (g and h). (i-l) The NSS-treated group 
showed improved PAS-positive material (i and 
j) and collagen fibers amount (k and l). PAS and 
Crossmon’s trichrome stain. Scale bars in panels 
a, c, d, e, g, h, i, k, and l = 100 μM and panels b, 
f, and j = 50 μm.   
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Dietary administration of NSS reversed the negative influences of MSG 
on ALP activity in agreement with the findings of(Beheshti et al., 2018), 
probably due to stabilizing of the physicochemical characters of the cell 
membrane by attenuating the degree of peroxidative stress, secondary to 
the enhancement of the antioxidant reservoir. The ability of some 
bioactive components in NSS to scavenge free radicals and up-regulate 
the expression of enzymatic antioxidants and cytoprotective proteins 
strengthens this assumption (Ismail et al., 2010; Kundu et al., 2013; 
Samarghandian et al., 2016). Squalene in methotrexate-challenged rats 
displayed a marked hepatoprotective effect by counteracting oxidative 
damage (Sumi et al., 2020). The protective effects of TQ have been 
confirmed in other models of liver toxicity (Nili-Ahmadabadi et al., 
2018; Zeinvand-Lorestani et al., 2018). TQ can suppress the covalent 
binding of free radical products to intracellular macromolecules such as 
lipids (Mansour, 2000). In addition, the administration of TQ effectively 
enhances glutathione transferase and quinone reductase activity (Nagi 
and Almakki, 2009). 

The MSG-induced hyperglycemia in our experimental model may be 
attributed to the reduction of skeletal muscle GLUT 2 content, pancre
atic β-cell mass and insulin sensitivity, and activation of glucose-6- 
phosphate dehydrogenase (Araujo et al., 2017; Boonnate et al., 2015; 
Quines et al., 2019). On the other hand, NSS succeeded in normalizing 
the glucose level similar to a previous study (El Rabey et al., 2017). The 

hypoglycemic effect of NSS is due to its insulinotropic action (Fararh 
et al., 2002) along with down-regulation of gluconeogenic enzymes and 
reduction of intestinal glucose absorption (Meddah et al., 2009). 

The hypercholesterolemia and hypertriglyceridemia in the MSG 
group are in accordance with previous findings (Shukry et al., 2020). 
MSG could increase the activity of 3-hydroxy-3- methylglutaryl-CoA 
reductase (Ibegbulem et al., 2016), a rate-limiting enzyme in choles
terol biosynthesis, shifting the glucose metabolism towards lipogenesis. 
The hypolipidemic effect of NSS in our study is matched with that 
observed in another chemotoxic-induced hepato-renal dysfunction 
model (Al-Seeni et al., 2018). Inhibition of intestinal cholesterol ab
sorption and hepatic cholesterol biosynthesis, as well as up-regulation of 
low-density lipoprotein receptors (Asgary et al., 2015), could be 
involved in the hypolipidemic effects of NSS. TQ-rich fraction extracted 
from Nigella sativa and TQ up-regulate the transcript level of the 
low-density-lipoprotein receptor and down-regulate 3-hydroxy-3-me
thylglutaryl-coenzyme A reductase in rats (Al-Naqeep et al., 2009). 

Increasing in a mitochondrial proton gradient (Sharma, 2015), 
up-regulation of α-ketoglutarate dehydrogenase activity (Tretter and 
Adam-Vizi, 2005), and persistent activation of glutamate receptors (Lan 
et al., 2001) secondary to exposure to MSG play role in inducing 
oxidative stress. This disturbance in redox homeostasis could in turn 
exert a compensatory regulatory response by up-regulating the 

Fig. 3. Photomicrograph of GR (a-c) and SOD2 
(d-f) immunostaining in the liver showing the 
protective effect of NSS on MSG-induced he
patic damages. a: Control group showing 
negative GR immunostaining in the hepatocytes 
(H). b: MSG group showing positive GR 
immuno-expression (arrowheads) in some he
patocytes (H). c: MSG + NSS group showing 
slight GR immunostaining (arrowheads) in the 
hepatocytes (H). Note the central vein (CV) 
from which the hepatic plates were radiated. d: 
Control group showing negative SOD2 immu
nostaining in the hepatocytes (H). e: MSG group 
showing positive SOD2 immuno-expression 
(arrowheads) in some hepatocytes (H). f: 
MSG + NSS group showing slight SOD2 immu
nostaining (arrowheads) in the hepatocytes (H). 
Note the central vein (CV) from which the he
patic plates were radiated. Original magnifica
tion, ×400, scale bar = 50 μm.   

Fig. 4. Fluorescent Photomicrograph of TUNEL 
assay in paraffin sections of liver showing the 
protective effect of NSS on MSG-induced he
patic damages. a: Liver in the control group 
(Ctrl) group showed few numbers of apoptotic 
cells (arrowhead), the liver in MSG group 
showed a high number of apoptotic cells (ar
rowheads), the liver in MSG + NSS group 
showed few numbers of apoptotic cells (ar
rowheads). Scale bars in a = 20 μm and in 
b&c = 50 μm. b: Morphometric analysis of the 
number of apoptotic cells in the liver. 
a significantly different from the control group 
b Significantly different from the MSG group   
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antioxidant defensive mechanism (Chen et al., 2011). This is confirmed 
in our study by positive GR and SOD2 immuno-expression in the hepa
tocytes, an outcome which is similar to that found in the liver of 
astaxanthin-challenged rats (Monmeesil et al., 2019). 

It appears that oxidative stress caused by MSG exposure induced free 
radical scavengers such as SOD2 and GR to protect the cells from 
damage by reactive oxygen species. However, these adaptive mecha
nisms seemed to be insufficient to protect against hepatocellular damage 
in our study because some hepatocytes were lysed and released their 
intracellular enzymes. In our study, the beneficial role of NSS in 
ameliorating the redox disturbance driven by MSG was exemplified by 
the normalization of LPO similar to previous reports (Mady et al., 2016). 
Limitation of reactive oxygen species formation (Karimi et al., 2019) is 
the main mechanistic tool by which NS protects against the adverse 
effects of feed additives. Scavenging free radicals by TQ and squalene 
could underlie the suppression of lipid peroxidation (Elsherbiny and 
El-Sherbiny, 2014; Ibrahim et al., 2020). Squalene enriched-herbal 
treatment shows a promising dual antioxidant action both by 
enhancing antioxidant capacity and quenching the reactive free radicals 
(Ibrahimet al., 2020). Squalene increased the activities of glutathione 
peroxidase, catalase, and superoxide dismutase when administrated 
along with 3-methylcholanthrene in a rat model (Suriyakalaa et al., 
2018). TQ effectively improved the plasma and liver antioxidant ca
pacity and up-regulated the expression of liver antioxidant genes in 
hypercholesterolemic rat model (Ismail et al., 2010). 

Reducing the activity of xanthine oxidase by farnesol plays a central 
role against cigarette smoke extract-induced redox imbalance in the 
prostate of rats (Lateef et al., 2013). The down-regulation of SOD2 and 
GR in the hepatic tissue following NSS consumption points to an 
improvement in the status of oxidative stress, as the perturbation in 
redox homeostasis induces up-regulation of endogenous antioxidant 
defenses mediated by activation of redox-sensitive transcription factors 
and its downstream signaling pathways, causing an increase in the 
overall capacity to antagonize the harmful effects of oxidative damage 
(Done and Traustadóttir, 2016). Therefore, the weak immunostaining of 
SOD2 and GR reflects the free-radical quenching activity of NSS (Butt 
et al., 2018). 

The histopathological lesions observed in the liver of the MSG group 
are consistent with those previously found (Eid et al., 2019; Elbassuoni 
et al., 2018). The obvious improvement in the hepatic histo-architecture 
of MSG-challenged rats following NSS administration is on the same line 
with other investigators (Eshami et al., 2015). The active phytochemical 
ingredients of NSS such as TQ, thymol, and α-hederin are fundamental 
players in the hepato-protection against harmful agents by inhibition of 
iron-mediated lipid peroxidation, nuclear factor kappa B, cyclo
oxygenase, and lipoxygenase (Tabassum et al., 2018). TQ stimulates cell 
division and proliferation leading to enhanced regeneration after tissue 
damage (Kanter, 2011). 

The pro-apoptotic effect of MSG on the hepatic tissue is in harmony 
with that observed in the testicular tissue and hippocampus of rats 
(Anbarkeh et al., 2019). Inconsistent with a previous study (Al-Gayyar 
et al., 2016), concurrent administration of NSS provided benefits in 
preventing the development of MSG-induced apoptosis which can be 
explained based on the antioxidant and anti-inflammatory properties of 
NSS (Hosseinian et al., 2018). TQ is responsible for the anti-apoptotic 
activity of NSS by decreasing malondialdehyde and down-regulating 
mitogen-activated protein kinase pathway, caspase 3, and heat shock 
proteins (Öztürk et al., 2020; Tabeshpour et al., 2019). Stabilization of 
the cell membrane (Micera et al., 2020) and inhibition of ataxia telan
giectasia mutated kinase-dependent signaling pathway (Tatewaki et al., 
2016) are possible mechanistic pathways by which squalene blocks the 
action of pro-apoptotic inducers. Linolenic acid (octadecadienoic acid) 
rescued Bcl-2 expression, inhibited Bax translocation to mitochondria 
and suppressed caspase-3 activity (Carotenuto et al., 2016). 

5. Conclusion 

Monosodium glutamate-challenged rats were characterized by he
patic dysfunction and redox imbalance along with increased pro
grammed cell death. The negative consequences of MSG consumption 
have been partially overcome by the nutritional inclusion of NSS by 
restoring the redox potential and ameliorating the histopathological 
deteriorations and apoptosis in the liver. These outcomes are of major 
importance in paving the road towards the incorporation of NSS as a 
candidate strategy against MSG-related abnormalities, and opening 
interesting possibilities for studying its effectiveness in fighting the other 
side effects of MSG. 
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