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A semi-infinite crack in an infinite square lattice is
subjected to a wave coming from infinity, thereby
leading to its scattering by the crack surfaces. A
partially damaged zone ahead of the crack tip is
modelled by an arbitrarily distributed stiffness of
the damaged links. While an open crack, with an
atomically sharp crack tip, in the lattice has been
solved in closed form with the help of the scalar
Wiener–Hopf formulation (Sharma 2015 SIAM J.
Appl. Math., 75, 1171–1192 (doi:10.1137/140985093);
Sharma 2015 SIAM J. Appl. Math. 75, 1915–1940.
(doi:10.1137/15M1010646)), the problem considered
here becomes very intricate depending on the nature
of the damaged links. For instance, in the case of a
partially bridged finite zone it involves a 2 × 2 matrix
kernel of formidable class. But using an original
technique, the problem, including the general case of
arbitrarily damaged links, is reduced to a scalar one
with the exception that it involves solving an auxiliary
linear system of N × N equations, where N defines
the length of the damage zone. The proposed method
does allow, effectively, the construction of an exact
solution. Numerical examples and the asymptotic
approximation of the scattered field far away from the
crack tip are also presented.

1. Introduction
Among other distinguished as well as popular works
[1], Peter Chadwick made several contributions to the
wave propagation problems in anisotropic models with
different kinds of symmetries as well as those applicable
to the theory of lattice defects [2–8]. His research into
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Figure 1. Schematic of an incident wave on a crack tip with damage. (Online version in colour.)

elastic cubic crystals is especially relevant in the context of the present paper as a discrete
counterpart of a square lattice is natural when one considers waves interacting with a crack
tip [9–14].

Indeed, the role of discrete models in the description of the mechanics and physics of
crystals [15] and related structures has dominated studies of several critical phenomena, such as
dislocation dynamics, dynamic fracture and phase transition, bridge crack effects, and resonant
primitive, localized and dissipative waves in lattices among others [16–32]. The concomitant
issues dealing with the propagation of waves interacting with stationary cracks and rigid
constraints as well as surface defects have been explored in [12–14,33–42]. It is noteworthy that the
continuum limit, which is a low-frequency approximation of the scattering problem for a single
crack [13,43], recovers the well-known solution of Sommerfeld [44,45]. With respect to the crack-
tip geometry, note that the discrete scattering problems have been solved in [12,13,35,38,40] for
atomically sharp crack tips.

Typically, such situations of discrete scattering due to crack surfaces are further complicated
as the crack tip is endowed with some structure, as shown schematically in figure 1, due to
the presence of a cohesive zone, partial bridging of bonds, etc., commonly used in continuum
mechanics [46–48]. The notion of a cohesive zone used in this paper is considered in a wider
sense than in fracture mechanics (it does not clearly eliminate any singularities that do not
arise in the discrete formulation). The zone simply emphasizes the fact that different links,
subjected to a high-amplitude vibration, near the crack tip may undergo phase transition, damage
and/or breakage at different times depending on the material’s properties (manifesting by
respective damage/fracture criteria [49]). As a result, a naturally created partial bridging and/or
forerunning zone can be observed during crack propagation (e.g. [30,50]).

The problem considered in this paper, in fact, becomes much more intractable when compared
with the scattering due to an atomically sharp crack tip that has been solved in [12,13] using
the scalar Wiener–Hopf factorization [11,51]. As an example, it is shown that, in the case of
a partially bridged finite zone, the corresponding Wiener–Hopf problem becomes vectorial as
it involves a 2 × 2 matrix kernel that belongs to a formidable class [52–55]. In this paper, it is
shown that a reduction to a scalar problem is possible with the additional clause that it involves
solving an auxiliary linear system of N × N equations, where N represents the size of the cohesive
zone. Such a reduction resembles the one proposed for the Wiener–Hopf kernel with exponential
phase factors in the continuum case [52–55], and its recently investigated discrete analogue of
scattering due to a pair of staggered crack tips [34,56]. It is also relevant to recall for such kernels
an asymptotic factorization-based alternative, but approximate, approach [34,57].

Overall, the method proposed in this paper does allow, effectively, the construction of an exact
solution, even in the general case of an arbitrary set of damaged links. The paper presents some
numerical examples to demonstrate the effect of certain kinds of damaged links on the pattern
of a scattered field. The expression obtained after an asymptotic approximation of the scattered
field far away from the crack tip is also presented as a perturbation over and above that for the
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Figure 2. (a) Schematic of the incident wave parameters relative to the typical contours for a square lattice dispersion relation.
(b) Geometry of the square lattice structure and the notation for the number of damaged sitesN= 5. (Online version in colour.)

atomically sharp crack tip obtained earlier in [12]. A careful analysis of the continuum limit [43],
in the presence of damaged links, which demands adoption of a proper scaling, is relegated to
future work. The question of the behaviour of edge conditions with regard to sharp cracks [51,58]
is anticipated to be crucial in such an exercise.

As a summary of the organization and presentation of the main aspects of this paper, §2 gives
the mathematical formulation of the scattering problem. Section 3 provides the exact solution
of the Wiener–Hopf equation modulo the reduced form to an auxiliary linear system of N × N
equations. Section 4 presents some special scenarios of the distribution of the damaged links
that allow either an immediate solution of the auxiliary equation or demonstrate the difficulty
and richness of the problem by mapping its difficulty to a class of problems. Section 5 gives
the far-field behaviour away from the crack tip as a perturbation in addition to that for a sharp
crack tip, as well as some numerical examples. Section 6 concludes the findings of this paper.
Appendix A gives the technical details of the application of the Wiener–Hopf method. For details
of the theory of scattering and the Wiener–Hopf method, we refer to [51,59]; the mathematical
aspects of convolution integrals and Fourier analysis can be found in [60–66]. For the issues
dealing with the difficult cases of the matrix Wiener–Hopf problems, the reader is referred to
[57,67–73].

2. Problem formulation
Let us consider a square lattice structure consisting of a semi-infinite crack that involves an
additional structural feature near the crack tip. The bulk lattice is constructed with the same
masses, m, situated at the points (x, y), x ∈ Z, y ∈ Z and connected by elastic springs with
stiffness, c > 0 (figure 1). The space coordinates are dimensionless and define the position of
the corresponding mass (x, y) = (x̃/a, ỹ/a) (normalized by the length of the links between the
neighbouring masses a). Displacement of the mass at each point is denoted as ux,y(t).

The bonded interface between the two half-planes consists of a finite segment of distributed
springs of stiffness, {c−x}−N

x=−1 (c−x ≥ 0), with connecting masses from the different sides of the
interface attributed to the values of the variable x (figure 2). Note that some of the links can also
be considered fully destroyed; thus, the geometry of the damage zone can be rather complex.

In the following, we will use the standard notation

Z
+ = {0, 1, 2, . . .}, Z

− = {−1, −2, . . .} and Z = Z
+ ∪ Z

−. (2.1)

We assume that an incident wave

ui(x, y, t) = ui
x,ye−iωt = Ae−ikxx−ikyy−iωt (2.2)
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imposes the out-of-plane small deformation of the lattice. Here, kx, ky ∈ R are wavenumbers;
also, sometimes we use kx = k cos Θ , ky = k sin Θ with k > 0 and Θ ∈ [−π , π ]. The symbol A ∈ C

is the complex dimensional amplitude of the wave. It is further assumed that ω = ω1 + iω2
(where ω2 > 0 is an arbitrary small number). The latter guarantees that the causality principle
is addressed. Note that this implies k = k1 + ik2, where k2 is small when ω2 is small. We seek the
harmonic solution to the problem of the form

ut(x, y, t) = ut
x,ye−iωt = (us

x,y + ui
x,y)e−iωt, (2.3)

where us
x,y and ui

x,y are the scattered part and the incident part, respectively.
The following set of equations are valid in each part of the lattice structure outside the

interphase (y ≥ 1 and y ≤ −2):
c�ux,y + ω2ux,y = 0, x ∈ Z. (2.4)

Here, � is the discrete Laplace operator with �ux,y = ux+1,y + ux−1,y + ux,y+1 + ux,y−1 − 4ux,y (see
[11,12,74]) and in the following ux,t = ut

x,y.
The interphase consists of two lines y = 0 and y = −1 (figure 1). Let the damaged portion be

denoted by the values of the coordinate x lying in

D = {−1, −2, . . . , −N}. (2.5)

Let us denote the Kronecker delta by the symbol δ; it is equal to unity when x ∈D and zero
otherwise. Also we denote the discrete Heaviside function by H(x) for x ∈ Z, defined such that
H(x) = 1 if x ∈ Z+, while H(x) = 0 when x ∈ Z−. Furthermore, let us introduce the notation

vx = (ux,0 − ux,−1), v
i,s
x = (ui,s

x,0 − ui,s
x,−1), x ∈ Z. (2.6)

As a result, for x ∈ Z, the conditions c�ux,0 + (c − c−xδD,x − cH(x))vx + ω2ux,0 = 0 and c�ux,−1 −
(c − c−xδD,x − cH(x))vx + ω2ux,−1 = 0, linking the top part of the lattice with the bottom part, can
be written as

c�us
x,0 + (c − c−xδD,x − cH(x))vs

x + ω2us
x,0 = −(c − c−xδD,x − cH(x))vi

x (2.7)

and
c�us

x,−1 − (c − c−xδD,x − cH(x))vs
x + ω2us

x,−1 = (c − c−xδD,x − cH(x))vi
x. (2.8)

The skew symmetry follows immediately, i.e.

us
x,−1 + us

x,0 = 0, x ∈ Z, (2.9)

and in general us
x,−y−1 + us

x,y = 0, y ∈ Z
+. Hence, it is enough to look at y = 0, or a difference of

equations (2.7) and (2.8). Let A be an appropriate annulus in the complex plane, the same as that
stated in [12], i.e.

A := {z ∈ C: R+ < |z| < R−}, R+ = e−k2 and R− = ek2 cos Θ . (2.10)

Taking into account the skew symmetry of the problem under consideration (see [12] and (2.9)),
we conclude that

vF = 2uF
0 . (2.11)

Applying the Fourier transform

uF(z) ≡
∑
x∈Z

z−xus
x, z ∈A, (2.12)

to equation (2.4) for scattering waves in the upper space y ≥ 0, we obtain, following Slepyan [11]
and Sharma [12],

uF
y(z) = λy(z)uF

0(z), y = 0, 1, 2, . . . , z ∈A, (2.13)

with

λ(z) = r(z) − h(z)
r(z) + h(z)

, h(z) =
√

Q(z) − 2, r(z) =
√

Q(z) + 2 (2.14)
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and
Q(z) = 4 − z − z−1 − ω2. (2.15)

An analogous result can be obtained in the lower space (y ≤ −1). The details are identical to
those for a crack without a damage zone as provided in [12].

Taking into account the condition (2.9) as well as (2.13) (in particular, uF
1 = −uF

−2 = uF
0λ with λ

given by (2.14)), we obtain

c
(
λ − 1 − Q(z)

)
vF(z) + 2cv−(z) − cPs(z) = −2cvi

−(z) + cP i(z). (2.16)

Thus, with vF = v+ + v−, we have

(λ − Q − 1)(v+ + v−) + 2v− = −2vi
− + P i + Ps, (2.17)

i.e.

v+ +
(

2
λ − Q − 1

+ 1
)

v− = − 2
λ − Q − 1

vi
− + 1

λ − Q − 1

(
P i + Ps

)
. (2.18)

Simplifying further for z ∈A, we get

v+ + Lv− = (1 − L)vi
− − 1

2
(1 − L)

(P i(z) + Ps(z)
)
, (2.19)

where L(z) = h(z)/r(z), while Ps (and P i) is a polynomial in z given by

Ps,i(z) = 2
c

∑
x∈D

c−xv
s,i
x z−x. (2.20)

Equation (2.19) is the Wiener–Hopf equation for the Fourier transform of the bonds v± in the
cracked row (x ∈ Z

±). Inspection and comparison with the results for a single crack without the
damage zone obtained in [12] reveals that the kernel remains the same but there is a presence of
an extra unknown polynomial on the right-hand side of the Wiener–Hopf equation.

3. Solution of the Wiener–Hopf equation
The relevant multiplicative factorization of the kernel L in (2.19) on the annulus A, i.e. L = L+L−,
has been obtained in an explicit form in equation (2.27) from [12]. Thus, using this fact, (2.19) can
be written as

L−1
+ v+ + L−v− = C on A, (3.1)

where C = Ca + CPs
and

Ca(z) = (L−1
+ (z) − L−(z))vi

−(z)

and CP(z) = −1
2

(L−1
+ (z) − L−(z))

(P i(z) + Ps(z)
)
.

⎫⎪⎬
⎪⎭ (3.2)

Note that L+ is analytic and non-vanishing for |z| > R+ and that L− is analytic and non-vanishing
for |z| < R−. Now

vi
−(z) = A(1 − eiky )δD−(zz−1

P ), zP = e−ikx (3.3)

(note that |zP| > R− in (2.10)), so that
Ca = Ca

+ + Ca
−, (3.4)

with [12]
Ca

+ = (
L−1

+ − L−1
+ (zP)

)
vi
− and Ca

− = (− L− + L−1
+ (zP)

)
vi
−. (3.5)

Here, Ca+ is analytic for |z| > R+ and Ca− is analytic for |z| < R−. Let P t(z) denote the sum Ps(z) +
P i(z) (with the coefficients vt

x = vs
x + vi

x), i.e.

P t(z) = 2
c

∑
x∈D

c−xv
t
xz−x. (3.6)
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Further (recall that D is defined in (2.5))

L−1
+ (z)P t(z) = 2

c

∑
x∈D

c−xv
t
x

(
L−1

+ (z)z−x
)

, z ∈A. (3.7)

Using the expressions from [13], L−1
+ can be expanded in a series of the form

L−1
+ (z) =

∑
m∈Z+

l̄+mz−m,

for |z| > R+. Thus (with x = −ν ∈ Z
−)

L−1
+ (z)z−x =

∑
m∈Z+

l̄+mz−mzν = φx
+(z) + φx

−(z), z ∈A, (3.8)

where

φx
+(z) =

∞∑
m=ν

l̄+mz−mzν and φx
−(z) =

ν−1∑
m=0

l̄+mz−mzν , (3.9)

and the first term is analytic outside a circle of radius R+ while the second is analytic inside a
circle of radius R− in the complex plane. Therefore, in the context of (3.7),

L−1
+ P t = 2

c

∑
x∈D

c−xv
t
xφ

x
+ + 2

c

∑
x∈D

c−xv
t
xφ

x
−. (3.10)

The above additive splitting of L−1
+ P t, naturally, allows the following additive decomposition:

CP = CP
+ + CP

− on A, (3.11)

where

CP
+ = −1

c

∑
x∈D

c−xv
t
xφ

x
+ and CP

− = −1
c

∑
x∈D

c−xv
t
xφ

x
− + 1

2
L−P t, (3.12)

which are analytic outside and inside of a circle of radius R+ and R− in the complex plane,
respectively. As a final step, following the analysis in [12] and using the expressions (3.4), (3.11)
and (2.19) leads to

L−1
+ (z)v+(z) = Ca

+(z) + CP
+(z) + χ (z), |z| > R+,

and L−(z)v−(z) = Ca
−(z) + CP

−(z) − χ (z), |z| < R−,

⎫⎬
⎭ (3.13)

where χ is an arbitrary polynomial in z and z−1. It is shown in [12] that, as z → ∞,

L−1
+ v+ − Ca

+ − CP
+ → constant,

while as z → 0

L−v− − Ca
− − CP

− → 0,

so that, as a consequence of Liouville’s theorem, χ ≡ 0. Hence,

v+(z) = L+(z)(Ca
+(z) + CP

+(z)), |z| > R+,

and v−(z) = L−1
− (z)(Ca

−(z) + CP
−(z)), |z| < R−.

⎫⎬
⎭ (3.14)

Owing to (3.14)

vF(z) = L+(z)(Ca
+(z) + CP

+(z)) + L−1
− (z)(Ca

−(z) + CP
−(z))

= vF
a (z) + vF

P(z), z ∈A, (3.15)

with

vF
a = L+Ca

+ + L−1
− Ca

− and vF
P = L+CP

+ + L−1
− CP

−. (3.16)
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Also the total field v (the total oscillatory field along the symmetry axis) is given by

vx = vi
x + vs

x = vi
x + 1

2π i

∫
C

vF(z)zx−1 dz, x ∈ Z. (3.17)

In particular, expanding (3.14)2 further,

v− =
(
−1 + L−1

− L−1
+ (zP)

)
vi
− − 1

c
L−1

−
∑
x∈D

c−xv
t
xφ

x
− + 1

2
P t, (3.18)

with |z| < R−. Re-arranging (3.18), we get

v−(z) + vi
−(z) = L−1

+ (zP)
vi−(z)
L−(z)

− 1
c

L−1
− (z)

∑
x∈D

c−xv
t
xφ

x
−(z) + 1

c

∑
x∈D

c−xv
t
xz−x. (3.19)

Let PD denote the projection of Fourier coefficients of a typical f−(z) for |z| < R− to the set D, then
equation (3.19) leads to

∑
x∈D

(
1 − c−x

c

)
vt

xz−x +
∑
x∈D

c−x

c
vt

xPD
(

φx−
L−

)
(z) =

PD

(
vi−
L−

)
(z)

L+(zP)
, |z| < R−, (3.20)

which yields an N × N system of linear algebraic equations for {vt
x}D , i.e. the unknowns {vs

x}D ,
since {vi

x}D are known in terms of the incident wave (2.2). Indeed, with the notation Cκ (p) to
denote the coefficient of zκ for polynomials p of the form C1z + C2z2 + . . . , we get

N∑
ν=1

(
1 − cν

c

)
δκνv

t
−νzκ +

N∑
κ=1

N∑
ν=1

cν

c
vt
−νCκ

(
PD

(
φ−ν

−
L−

))
zκ

= L−1
+ (zP)

N∑
κ=1

Cκ

(
PD

(
vi−
L−

))
zκ , |z| < R−. (3.21)

The above equation can be written in a symbolic manner as

aκνχν = bκ (κ , ν = 1, . . . , N), (3.22)

where

aκν =
(

1 − cν

c

)
δκν + cν

c
Cκ

(
PD

(
φ−ν

−
L−

))

and χν = vt
−ν , bκ = L−1

+ (zP)Cκ

(
PD

(
vi−
L−

))
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.23)

Formally, applying the inversion of the coefficient matrix in (3.22), i.e. χ = A−1b, gives {vt
x}x∈D ;

substitution of this expression back in (3.18), via (3.6), as well as (3.14) leads to the complete
solution of the Wiener–Hopf equation. Let ãνκ denote the components of the inverse of A. Then

vt
x = ã−xκL−1

+ (zP)Cκ

(
PD

(
vi−
L−

))
. (3.24)

The expression (3.24) has been verified using a numerical solution (based on the scheme described
in appendix D of [12]) of the discrete Helmholtz equation (2.4) and assumed conditions on the
crack faces for several choices of the damaged links; we omit the graphical plots of the comparison
as they are indistinguishable on the considered graph scale.

Remark 3.1. When ω2 (= 	ω) is positive, it follows from the Krein conditions that there exists
a unique solution in square summable sequences since only a finite number N of damaged links
are present. This is a statement on the lines of that provided by Sharma for the sharp crack tip
[12,13] and the rigorous results of Ando et al. [75]. The limiting case as N → ∞ can be a different
story altogether and it is not pursued here.
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4. Examples of specific damage zones
Choosing different values of the coefficients c−j, j ∈ [1, N] one can consider various damage zones.
Some of them are discussed below.

(a) Completely destroyed zone
Consider the simplest case when c−x ≡ 0. (In fact, it is a bad choice of the left-hand side of the
cohesive zone.) Then (3.20) reduces to (using (3.9))

∑
x∈D

vt
xz−x = L−1

+ (zP)PD

(
vi−
L−

)
(z), |z| < R−, (4.1)

but
∑

x∈D vt
xz−x = PD(v− + vi−)(z), so that it is a special case of the complete exact solution

given in [12], i.e. v−(z) = (L−1
+ (zP)L−1

− (z) − 1)vi−(z), |z| < R− (see equation (2.29) in [12] and
equation (4.1b) in [13]). The detailed analysis and expressions of the solution based on the latter
appear in [13], where the single crack was considered. It is natural, as this special case corresponds
to a single (slightly longer) crack.

(b) ‘Healthy’ (no damage) zone
For the case c−x ≡ c, the above extra equation (3.20) arises again due to a ‘bad choice’ of the origin
(cohesive crack tip) to define the half-Fourier transforms! Consider the simplest case when c−x ≡ c.
Evidently, this case coincides with the previous one when c−x ≡ 0, except for a shift in the origin
from (0, 0) to (−N, 0) (a single slightly shorter crack). Then (3.20) reduces to (using (3.9))

∑
x∈D

vt
xPDL−1

−
−x−1∑
m=0

l̄+mz−mz−x = L−1
+ (zP)PDL−1

− vi
−, |z| < R−. (4.2)

With the substitution z 
→ z−1, x 
→ −x in the above equation, we get

N∑
x=1

vt
−xPDL−1

+ (z)
x−1∑
m=0

l̄+mzmz−x = L−1
+ (zP)PDL−1

+ (z)vi
−(z−1), |z| > R−1

− , (4.3)

i.e.
N∑

x=1

vt
−x

x−1∑
m=0

l̄+mzmz−x = L−1
+ (zP)vi

−(z−1), |z| > R−1
− , (4.4)

and, finally,

N∑
x=1

vt
−xz−xL−1

+ (z) = L−1
+ (zP)vi

−(z−1), |z| > R−1
− . (4.5)

Here, the reference expression from [12,13] is v+ = (1 − L−1
+ (zP)L+)vi−, |z| > R+, with which it

agrees.

(c) A zone with continuously distributed damage
Let us consider a relatively general case that models real damage accumulation in the damage
zone. In this case, one can reasonably assume that at the crack tip the stiffness of the interfacial
zone is minimal (the damage is most pronounced), then increases monotonically and, finally,
at the other end of the zone, it takes the same magnitude as a non-damaged lattice. A typical
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Figure 3. (a) Illustration of c−x with c−x = c exp(αx/N), x ∈D. (b) Illustration of (total) vx given by (3.17) for N = 100. The
curves in blue and red correspond to the minimum and maximum values ofα, respectively. (Online version in colour.)
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Figure 4. Ratio of the amplitudes at the ends of the damage zone of length N = 40. (a) corresponds to
ω = 0.6. (b) represents the other normalized frequency ω = 1.2. Plots for a range of the parameter α =
{10−6, 0.25, 1, 2.25, 4, 6.25, 9, 12.25, 16, 20.25, 25, 30.3, 36}with a darker shade for smallerα.

representative of such an interface is the exponential distribution

c−x = c exp
(αx

N

)
, x ∈D.

The parameter α regulates the rate of damage accumulation. Note that α � 1 and α � 1
correspond to part (a) and part (b) of this section, respectively. Figure 3 shows an illustration of vt

x
given by (3.24) for N = 100. It is emphasized here that the graphical results for the same choice can
be obtained using the numerical scheme (described in appendix D of [12]), and these are found
to coincide with the plot in figure 3b. As one can see, the presence of a high gradient in the elastic
properties of the cohesive zone significantly amplifies the local scattered field near the tip of the
zone. As a result, pronounced damage should be expected exactly here that is consistent with the
assumptions. However, when α is close enough to zero, the opposite phenomenon happens as
now the gradient is small while the jump of the material properties undergoes its maximum value
(in fact, it is equivalent to the second case above). It is thus important to compare which part of the
damage zone can be subjected to higher risk for further damage. It is also evident that the angle of
the incident wave θ may essentially influence the discussed effect. Respective graphical results for
the ratio v−1/v−N are presented in figure 4 and show the impact of the incident wave frequency
by considering two different normalized values ω = 0.6 and ω = 1.2. As expected large and small
values of the parameter α determining the damage gradient inside the zone change the effect
significantly. Namely for small values of α the left-hand end of the damage zone is impacted by
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Figure 5. Ratio of the amplitudes at the ends of the damage zone of length N = 40 and frequency ω = 0.6. (a)
corresponds to large values of α = {36, 64, 100, 144, 196, 256, 324, 400, 484, 576, 676}, while (b) corresponds to small values
α = {10−6, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}. Plots for a range ofα with a darker shade for smallerα.

higher amplitudes and vice versa. At the right-hand end of the zone (contacting the undamaged
part of the zone), the effect is less straightforward. Also for the incident waves parallel to the crack
(θ = 0 and θ = π ) the results are different. The first type can, in fact, be interpreted as the so-called
feeding waves (e.g. [30]) for the dynamic case.

In figure 5, we show in more detail the influence of the big and small values of the parameter
α. Exact values of the parameters are depicted in the captions of the respective figures.

(d) Damage represented by a bridge crack
Let N be even. In the following, we will use the standard notation:

Z
+ = {0, 1, 2, . . .}, Z

− = {−1, −2, . . .},
Ze = {0, ±2, ±4, . . .}, Zo = {±1, ±3, . . .}

and Z
−
S = Z−\D, Z

+
S = Z+ ∪ D,

⎫⎪⎪⎬
⎪⎪⎭ (4.6)

for different subsets of the set of entire numbers. Consider the case when

c−x = c, x ∈D ∩ Ze and c−x = 0, x ∈D ∩ Zo

(figure 6). Here, max |D ∩ Ze| is N, which is replaced by 2M for convenience; thus the intact bonds
on the even sites in the cracked row begin at x = −2M. The difference between (2.7) and (2.8)
becomes

c(2us
x,1 + vs

x+1,0 + vs
x−1,0 + (−5 + ω2)vs

x,0) + 2
(

c − cH(x + 2M)δx,e − cH(x)δx,o

)
vs

x

= −2
(

c − cH(x + 2M)δx,e − cH(x)δx,o

)
vi

x. (4.7)

Using the Fourier transform (2.12) to equation (4.7) and taking into account the following
representations of the functions uF(z) = (us

x)F, vF(z) = (vs
x)F:

uF(z) ≡ u+(z) + u−(z), u±(z) =
∑
Z±

z−xux, z ∈A, (4.8)

vF(z) = v+(z) + v−(z), v±(z) = z2Mv±
e (z) + v±

o (z), (4.9)

v±
e (z) = z−2M

∑
Z

±
S ∩Ze

z−xvx =
∑

Z±∩Ze

z−xvx, z ∈A (4.10)

and v±
o (z) =

∑
Z±∩Zo

z−xvx, z ∈A, (4.11)
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Figure 6. Geometry of the square lattice structure with a partially open crack tip and N = 2 and M= 6. (Online version in
colour.)

we get
d−1(z) = λ(z) − 1 − Q(z) = −(λ−1 + 1) (4.12)

and
d(z)−1(z2Mv+

e + v+
o + z2Mv−

e + v−
o ) + 2(z2Mv−

e + v−
o ) = −2(z2Mvi−

e + vi−
o ), (4.13)

where we have taken into account that z 
→ −z, since v+
e (z) = v+

e (−z) while v+
o (z) = −v+

o (−z). Thus,
we obtain the matrix Wiener–Hopf equation

A(z)v+(z) + B(z)v−(z) = f(z), z ∈A, (4.14)

where we have defined new plus and minus vector functions v±(z) = (v±
e , v±

o )�. The components
of the matrices A(s), B(s) and the right-hand side of equation (4.14) are

a11 = 1, b11 = (1 + 2d(z)), a12(z) = z−2M, b12(z) = z−2M(1 + 2d(z)),

a21 = z2M, b21 = z2M(1 + 2d(−z)), a22(z) = −1, b22(z) = −(1 + 2d(−z))
(4.15)

and
f1(z) = −2(vi−

e − z−2Mvi−
o )d(z), f2(z) = −2(z2Mvi−

e + vi−
o )d(−z), (4.16)

where d(z) has already been defined in (4.12). Note B = A + D, d11 = 2d(z), d12 = z−2M2d(z), d21 =
z2M2d(−z), d22 = −2d(−z). Let

C = I + A−1D = I + 1
det A

(
a22 −a12

−a21 a11

)(
d11 d12
d21 d22

)

= I −
(

d(z) 0
0 −d(−z)

)(
1 z−2M

−z2M 1

)
=
(

1 − d(z) −d(z)z−2M

−d(−z)z2M 1 + d(−z)

)
. (4.17)

Equation (4.14) can be rewritten in an equivalent form

v+(z) + C(z)v−(z) = A−1(z)f(z), z ∈A, (4.18)

where C(z) = A−1(z)B(z). The matrix C possesses a structure which in general does not admit
factorization by standard techniques for arbitrary N (for N = 1, perhaps).

On the other hand, as has been proven above, this special case can be reduced to the solution
of N linear algebraic equations (see also [56]). For example, the problem with a cohesive zone
of similar geometry in continuous formulation [76] cannot be reduced to a scalar Wiener–Hopf
problem and requires an application of other numerical techniques [57,71,72,77].

In figure 7, we show the ratio of amplitudes in the last two points on the left-hand side of the
damage zone to that on the right-hand side of the zone (x = 0). Exact values of the parameters are
depicted in the captions of the respective figures. Now we examine in more detail the impact of
the frequency of the incident waves.
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Figure 7. Length of the damage zone: N = 40. Bridged bonds are x = −1,−3, . . . ,−N + 1 and bonds intact:
x = −2,−4, . . . ,−N. Plots for a range of frequencies of the incident waves: ω = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
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In the context of the matrix kernel (4.17), with the distinguished presence of the off-diagonal
factors z−2M and z2M, the reduction to the linear algebraic equation obtained above is reminiscent
of that proposed for the Wiener–Hopf kernel with exponential phase factors that appear in
several continuum scattering problems in fluid mechanics and fracture mechanics [52–55], and
their discrete analogues in the form of scattering due to a pair of staggered cracks and rigid
constraints [34,56,78]; both of these are based on an exact solution of the corresponding staggerless
case [35,79–81].

5. Reconstruction of the scattered field
Let C be a contour in the annulus A. By the inverse Fourier transform us

x,y = (1/2π i)
∫

C uF
y(z)zx−1 dz,

i.e.

us
x,y = 1

2π i
1
2

∫
C

vF(z)λy(z)zx−1 dz, x ∈ Z, y = 0, 1, 2, . . . , (5.1)

where vF is given by (3.15). For y = 0, 1, 2, . . . , us
x,−y−1 = −us

x,y, x ∈ Z, due to skew symmetry. The
total wave field is given by

ux,y = us
x,y + ui

x,y, x ∈ Z, y ∈ Z. (5.2)

Concerning the effect of the damage, using the decomposition vF(z) = vF
a (z) + vF

P(z) (3.15), it is
easy to see that vF

a (z) coincides with the solution given in [12], i.e. it describes the scattering due
to an undamaged crack tip; thus, the effect of the damage zone is represented by the second term
vF

P(z) in (3.15).
The perturbation in the scattered field (5.1) induced by the damage zone is given by

ûx,y = 1
2π i

1
2

∫
C

vF
P(z)λy(z)zx−1 dz, x ∈ Z, y = 0, 1, 2, . . . ,

= 1
2π i

1
2

∫
C

(L+CP
+ + L−1

− CP
−)λy(z)zx−1 dz

= 1
2π i

1
2

∫
C

(
− 1

c

∑
m∈D

c−mvt
m(L+φm

+ + L−1
− φm

− ) + 1
c

∑
m∈D

c−mvt
mz−m

)
λy(z)zx−1 dz

= 1
2L+(zP)

∑
m∈D

c−m

c
ã−mκCκ

(
PD

vi−
L−

)
1

2π i

∫
C

Λm(z)λy(z)zx−1 dz, (5.3)

where
Λm(z) = z−m − (L+(z)φm

+ (z) + L−1
− (z)φm

− (z)), m ∈D. (5.4)
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For ξ

√
x2 + y2 � 1 and ω/c ∈ (0, 2), where ξ ∼ ω/c is related to the wavenumber of an incident

wave, a far-field approximation of the exact solution (5.1) can be constructed; also an analogous
result holds for ω/c ∈ (2, 2

√
2). It is sufficient for our purposes to focus on the effect of the damage

zone D so that we investigate the far-field approximation of (5.3), i.e. mainly associated with
the expression of Λm given by (5.4) for each m ∈D. Following [12], the approximation of the far
field can be obtained using the stationary phase method [82]. The substitution z = e−iξ maps the
contour C into a contour Cξ . In terms of polar coordinates (R, θ ), the lattice point (x, y) can be
expressed as

x = R cos θ , y = R sin θ . (5.5)

Let
Φ(ξ ) = η(ξ ) sin θ − ξ cos θ , η(ξ ) = −i log λ(e−iξ ). (5.6)

The function Φ (5.6) possesses a saddle point [83,84] at ξ = ξS on Cξ , with Φ ′(ξS) = η′(ξS) sin θ −
cos θ = 0, Φ ′′(ξS) = η′′(ξS) sin θ �= 0, which is the same as that discussed in [12]. Omitting the details
of the calculations, it is found that

ûx,y ∼ 1
2
√

π

1 + i sign(η′′(ξS))
2c

λy(e−iξS )e−iξS(x−1)

(R|η′′(ξS)| sin θ )1/2

∑
m∈D

(c−mvt
mΛm(e−iξS )), (5.7)

as ωR/c → ∞. The expression (5.7) has been verified using a numerical solution of the discrete
Helmholtz equation (based on the scheme described in appendix D of [12]); a graphical
demonstration of the same is omitted in the paper.

6. Concluding remarks
We have shown how the scattering problem in a square lattice with an infinite crack with a
damage zone near the crack tip of arbitrary properties can be effectively solved by We were able
to reduce it to a scalar Wiener–Hopf method. We have applied a new method that uses specific
discrete properties of the system under consideration. It consists of solving an auxiliary N × N
system of linear equations with a unique solution (remark 3.1). The effectiveness of the method
has been highlighted by some numerical examples and the constructed asymptotic expression
of the scattered field at infinity. Analysis of the solution near two ends of the damage zone
and at infinity can be used in a non-destructive testing procedure, among other applications.
The method may be useful for solving other matrix Wiener–Hopf problems appearing in the
analysis of the dynamics of discrete structures with defects. Indeed, the discrete scattering
problem for the bridge damage zone has been written in a vectorial problem with a 2 × 2 matrix-
kernel and has simultaneously transformed it, by the aforementioned approach, to a scalar one
(modulo the accompanying linear algebraic equation). This gives rise for a hope for building a
closed form standard procedure that allows for effective factorization of similar matrices of an
arbitrary size.
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