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SUMMARY

Neuronal growth cones are essential for nerve growth and regeneration, as well as for the formation

and rearrangement of the neural network. To elucidate phosphorylation-dependent signaling

pathways and establish useful molecular markers for axon growth and regeneration, we performed

a phosphoproteomics study of mammalian growth cones, which identified >30,000 phosphopeptides

of �1,200 proteins. The phosphorylation sites were highly proline directed and primarily MAPK

dependent, owing to the activation of JNK, suggesting that proteins that undergo proline-directed

phosphorylation mediate nerve growth in the mammalian brain. Bioinformatics analysis revealed

that phosphoproteins were enriched in microtubules and the cortical cytoskeleton. The most

frequently phosphorylated site was S96 of GAP-43 (growth-associated protein 43-kDa), a verte-

brate-specific protein involved in axon growth. This previously uncharacterized phosphorylation

site was JNK dependent. S96 phosphorylation was specifically detected in growing and regenerating

axons as the most frequent target of JNK signaling; thus it represents a promising new molecular

marker for mammalian axonal growth and regeneration.

INTRODUCTION

The growth cone, a specialized, highly motile structure formed at the tips of extending axons of devel-

oping neurons (Dent et al., 2011; Igarashi, 2014), is crucial for accurate synaptogenesis in the developing

brain. In addition, growth cone activity is involved in the rearrangement of neuronal networks during

neural plasticity and axonal regeneration in the adult brain (Bloom and Morgan, 2011; Gordon-Weeks

and Fournier, 2014; Nozumi and Igarashi, 2017; Tamada and Igarashi, 2017). Therefore, to understand

the mechanisms underlying neuronal network formation and maintenance, it is essential to elucidate

the molecular pathways that determine growth cone behavior. At present, however, little molecular

information is available regarding growth cones in the mammalian brain. Previously, we performed a

proteomics analysis of mammalian growth cones and characterized approximately 1,000 unique proteins

(Nozumi et al., 2009; see also Estrada-Bernal et al., 2012). The results of this analysis revealed novel

molecular mechanisms underlying nerve growth (Igarashi, 2014; Nozumi et al., 2017; Honda et al.,

2017a, 2017b).

To further investigate molecular signaling in growth cones, we focused on protein phosphorylation, the

most important regulatory mechanism in many cellular processes (Humphrey et al., 2015a). To date,

most efforts in this regard have used in vitro phosphorylation systems that do not necessarily represent

the in vivo situation. Phosphoproteomics is an important, novel, and powerful technique for comprehensive

and quantitative identification of in vivo phosphorylation sites (von Stechow et al., 2015) and should be able

to establish novel molecular markers for axonal growth and regeneration.

Specifically, we performed phosphoproteomics analysis of the growth cone membrane (GCM; Ellis et al.,

1985; Nozumi et al. 2009; Igarashi, 2014). From among more than 30,000 phosphopeptides, this analysis

identified �4,600 different phosphorylation sites from �1,200 proteins. Surprisingly, proline (P)-directed

phosphorylation was predominant, with more than 60% of serine (S) or threonine (T) phosphorylation sites

predicted to depend on P-directed kinases. Bioinformatics analysis suggested that these frequent

P-directed phosphorylation events were due to mitogen-activated protein kinase (MAPK) activation. In
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particular, we found that c-JunN-terminus kinase (JNK; Bogoyevitch et al., 2010) was themajor active mem-

ber of the MAPK family and was responsible for several heavily phosphorylated sites.

The most abundant phosphorylated site was S96 of neuronal growth-associated 43-kDa (GAP-43, also

called as neuromodulin), a vertebrate neuron-specific protein involved in nerve growth (Skene, 1989;

Denny, 2006; Holahan, 2017), comprising more than 1% of all phosphopeptides. This phosphorylated

site was previously uncharacterized. Subsequent experiments revealed that S96 phosphorylation (pS96)

was JNK dependent. A pS96 antibody (Ab) specifically recognized growing and regenerating axons, and

pS96 was directly detected in regenerating axons by mass spectrometry (MS).

Taken together, our data show that JNK signaling is a key pathway for axon growth that is conserved across

a wide range of animals. JNK signaling via vertebrate-specific substrates such as GAP-43 plays important

roles in mammalian growth cones, and pS96 Ab represents a promising newmolecular marker for mamma-

lian axonal growth/regeneration.
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RESULTS

High Frequency of P-Directed Phosphosites in GCMs

Phosphoproteomics analysis of GCM fractions isolated from postnatal day 1 (P1) rat forebrain identified

more than 30,000 phosphopeptides at greater than 95% confidence (see Data S1). The condensation ratio

of the phosphopeptides (i.e., the ratio of phosphopeptides to total peptides) was 95.9%. Thresholding with

1% false discovery rate (FDR) extracted 4,596 phosphorylation sites that corresponded to 1,223 proteins.

Highly frequent phosphorylation sites are shown in Table S1.

We classified the kinase substrates in GCMs into various categories based on the number of phosphoryla-

tion sites (Figure 1A) and the frequency of phosphopeptides phosphorylated at S or T (Figure 1B). Cytoskel-

etal components and signaling proteins were the major GCM phosphoproteins identified in this manner

(Figures 1A and 1B; see also Data S2, referring to the protein names). Among the phosphopeptides iden-

tified in GCMs, serine-proline (SP)/threonine-proline (TP) residues, i.e., P-directed-kinase-dependent

phosphorylation sites (Villén et al., 2007; Huttlin et al., 2010), were highly enriched in the GCM (Figures

1B, 2A, and 2B; Table S1).

Protein kinases are classified into four major groups: acidic, basic, P directed, and others (Villén et al., 2007).

P-directed sites constituted 63.9% of phosphoserine (pS) and 78.0% of phosphothreonine (pT) sites in all

categories (Figure 1B; Data S1). The typical sequences of each protein kinase category were visualized

using the IceLogo web server (Figure S1). The fraction of P-directed sites (Figures 2A and 2B) was higher

than those estimated from a meta-analysis of two previous reports on phosphoproteomics (Lundby

et al., 2013; Humphrey et al., 2015b; Figure S2).

Next, we predicted kinases that are responsible for the phosphorylation sites identified by our analysis.

Using a kinase-specific phosphorylation site prediction tool KinasePhos (Huang et al., 2005; Wong et al.,

2007), we found that MAPK is most likely to be a kinase responsible for the phosphorylation of SP/TP sites

with high frequencies (Figure 2C). To elucidate the physiological functions of these substrates, we performed

enrichment analysis using the GCM phosphorylation data, particularly for phosphopeptides that were

phosphorylatedR20 times (Figure 2B; Data S3). Two groups containing such highly phosphorylated sites, cyto-

skeleton-associated proteins (group I) and signaling proteins including cell adhesion molecules and guidance

receptors (group II), were also highly enriched in the protein networks (Figure 2D). Substrates with P-directed

phosphorylated sites (Figure 2C) were also enriched (Figure 2D). These proteins are thought to be involved in

axon growth and guidance in mammalian brain (Dent et al., 2011; Igarashi, 2014; Short et al., 2016; Batty et al.,

2017). Therefore, our results suggest that highly concentrated P-directed phosphoproteins inGCMplay impor-

tant functional roles in mammalian axon growth and guidance.
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P-Directed Phosphorylation of GCM Phosphoproteins Requires JNK Activity

The MAPK family includes extracellular-signal-regulated kinase (ERK), p38, and JNK, among which JNK

appeared to be themost likely kinase candidate for mammalian GCMphosphorylation. First, several recent

reports showed that JNK is involved in multiple steps of mammalian brain development (Oliva et al., 2006;

Hirai et al., 2011; Barnat et al., 2010; Coffey, 2014). Second, JNK signaling is activated during axon
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Figure 1. GCM Phosphopeptides Derived from P1 Rat Brain Reveal a Large Number of P-Directed Kinase

Substrates

(A) Classification of phosphoproteins (1,223 proteins in total) that were derived from the phosphopeptides (4,596 species)

detected by MS with 1% FDR. The value in each row represents the fraction of proteins in each functional category.

(B) Counts of peptides phosphorylated at serine (28,987 total counts) and threonine (4,068 total counts) that belong to

each protein category. The counts were further divided into those for P-directed sites (filled bars) and those for non-

P-directed sites (open bars).
regeneration, even in C. elegans (Nix et al., 2011). Together, these observations suggest the importance of

JNK signaling in a wide range of organisms.

To test this hypothesis, we produced eight phospho-specific Abs against the high-frequency SP/TP

phosphorylation sites (total number = 1,163, corresponding to 3.8% of the Conf95 phosphopeptides;

Figure 3A; see also Tables S1 and S2). The most frequently phosphorylated site was S96 of GAP-43.

When we chemically inhibited MAPK family members, only the JNK inhibitor SP600125 specifically blocked

phosphorylation of GAP-43, as determined using phospho-specific Abs (Figures 3A and S3A; the antigen

sequences are shown in Table S2). The intensities of two sites in GAP-43, S96 and T172, were decreased by

SP600125 treatment (Figure 3B).

We also identified the upstream signal that activates JNK. In the brain, MKK7 is a specific activator of JNK

(Yamasaki et al., 2011), and mice with brain-specific conditional knockout (cKO) of MKK7 exhibit hypoactive

axon formation in the developing brain (Yamasaki et al., 2011, 2017). Using our phospho-specific Abs in this

cKO mouse, we found that phosphorylation signals in the brain were greatly diminished, as also observed
192 iScience 4, 190–203, June 29, 2018



Figure 2. Bioinformatics Analysis of Phosphosites Identified by GCM Phosphoproteomics of Rat P1 Brain Reveals

that P-Directed Sites Are Mainly Dependent on MAPK

(A and B) Fractions of phosphosites (left) and phosphopeptides (right) that are substrates of acid, basic, and proline-

directed kinases for all data (A) or data thresholded by 20 counts (B).

(C) Protein kinases predicted for the serine (left) and threonine (right) phosphosites using KinasePhos server. The value in

each row represents the fraction of phosphopeptides that are the targets of each kinase. The fractions were further

divided into P-directed (filled bars) or non-P-directed (open bars) phosphorylation.

(D) Protein association network for P-directed and non-P-directed proteins. Protein association network was constructed

using the STRING database (Szklarczyk et al., 2017), merged with data from human, rat, and mouse. Red and green filled

circles indicate P-directed and non-P-directed phosphorylated proteins, respectively. The size of the circle for each

iScience 4, 190–203, June 29, 2018 193



Figure 2. Continued

protein represents its phosphorylation frequency in GCM. The colors of the external rings indicate enriched protein

network groups: group I (red), cytoskeletal proteins (microtubule-related proteins, cortical skeletal proteins, and

actin-binding proteins); group II (yellow), signaling molecules related to axon growth/guidance (cell adhesion

molecules, proteins in cAMP- or Ca2+-dependent signaling pathways, small GTPase signaling molecules, and

guidance receptors); and group III (blue), other categories. Proteins without the external rings were not enriched.
with the chemical inhibitor (Figure 3C). By contrast, cyclin-dependent kinase 5 (CDK5) and glycogen

synthase kinase 3b (GSK3b) inhibitors did not prevent GAP-43 phosphorylation, suggesting that neither

of these kinases is responsible for S96 or T172 phosphorylation (Figures S3B and S3C).

JNK has three isoforms: JNK1, JNK2, and JNK3 (Haeusgen et al., 2009; Coffey, 2014). Because JNK3 is not

involved in early brain development (Kuan et al., 2003) and its expression is lower than that of the other two,

we did not investigate its role in these experiments. Treatment of the cultured cortical neurons with small

interfering RNAs (siRNAs) against JNK1 and JNK2 revealed that JNK1 plays a more important role in

GAP-43 phosphorylation in mouse brain (Figures 3D and 3E), as expected (Hirai et al., 2011). JNK is activated

inmurine developing neurons (Chang et al., 2003). Taken together with our data, this observation suggests that

JNK is responsible for the phosphorylation of many GCM proteins with SP/TP sites, such as S96 in GAP-43.

Growing Axons Are Associated with pS96 GAP-43

To further investigate the biological significance of the JNK-dependent, highly P-directed phosphosites in

mammalian nerve growth, we focused on pS96 of GAP-43, both because it was the most abundant

(Table S1) and because GAP-43 is a classical molecular marker for vertebrate axon growth and regenera-

tion. pS96 Ab recognized exogenously expressed wild-type GAP-43 but not a mutant (S96A) lacking the

phosphorylation site, especially under hyperosmotic conditions (0.5 M NaCl), which activate JNK (Figures

S4A and S4B) (Zhang and Cohen, 1996).

In cultured mouse neurons, this pS96 Ab intensely labeled distal axons and growth cones with a punctate

labeling pattern that was particularly concentrated at the growth cone (Figure 4A). Labeling was much weaker

in proximal axons (Figure 4A) and otherminor processes (Figure 4B). pS96 Ab immunoreactivity in growth cones

was distributed along filopodial actin filaments and microtubules in the central domain (Figures 4C and 4D).

Immunohistochemical analyses revealed that pS96 Ab specifically recognized growing axons in vivo during

development (Figures 5A–5C, S5A, and S5B). On embryonic day (E) 15, GAP-43 itself was expressed in most

of the differentiated neurons, whereas by contrast, pS96 was localized to axonal processes but not present

in cell bodies (Figure 5A). pJNK signals partially overlapped with those of pS96 (Figure 5A). GAP-43 was ex-

pressed in most of the differentiated neurons, but in vivo immunostaining revealed that pS96 was localized

only to axonal processes, not to cell bodies (Figures 5 and S4C–S4F), although in culture, the cell bodies

were stained by this Ab (Figure 4A). In samples co-stained for the cell adhesion molecule L1 and nuclear

DNA (with DAPI), GAP-43 itself was expressed by migrating neurons and ingrowing axons in the intermediate

zone (IZ), whereas pS96 was restricted to L1-positive thalamocortical axons in the upper IZ. Such axon-specific

expression pattern of pS96 was widely distributed in various fiber tracts of the developing brain (Figure S6):

Adult mice contain continuously renewing olfactory axons, and GAP-43-positive cells represent new neurons

derived from stem cells in the basal region of the epithelium (Margolis et al., 1991). We performed immunohis-

tochemistry using the pS96 Ab to determine whether these regenerating, newly growing axons were stained

like the growing axons of developing neurons (Figures 5D and 5E). In contrast to the conventional pan

GAP-43 Ab, the pS96 Ab more precisely detected growing axons and more heavily immunostained nerve

bundles and nerves exiting the olfactory epithelium but did not recognize cell bodies (Figures 5D and 5E).

Taken together, our data show that growing axons in vivo were invariably associated with JNK-dependent

pS96 of GAP-43, indicating that this Ab represents a new specific molecular marker for growing axons that

is superior to anti-pan-GAP-43 Ab.

pS96 Is a Marker for Axon Regeneration in the Peripheral Nervous System

Peripheral nervous system (PNS) axons in mammals, including humans, can regenerate (Doron-Mandel

et al., 2015). In light of the findings described earlier, we asked whether regenerating PNS axons are
194 iScience 4, 190–203, June 29, 2018
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Figure 3. MAPK Substrates Identified by GCM Phosphoproteomics Undergo JNK-Dependent Phosphorylation

(A and B) Mouse cortical neurons were treated with 20 mM SP600125 (JNK inhibitor), 5 mM U0126 (MEK1/2 inhibitor), or

5 mM SB203580 (p38 inhibitor) for 3 hr. As a control, an equal volume of the solvent DMSO was added to the medium. (A)

The SP/TP phosphorylated sites of various GCM proteins are JNK dependent. Frequencies not appearing in Table S1 are

as follows: Robo2 [pT1154] = 25; GAP-43 [pS142] = 18; and Rufy3 [pT5] = 19. Western blot results of non-phosphospecific

Abs are shown as negative controls. Kinase inhibitors did not affect the reactivity of any of these non-phosphospecific

Abs. (B) Effects of MAPK inhibitors on GAP-43 phosphorylation at S96 and T172. Values represent the measured intensity

(meanG SEM, n = 3). **p < 0.01; *p < 0.05; ns, p > 0.05. One-way repeated measures ANOVA with Bonferroni tests to the

control.

(C) Brain-specific cKO of MKK7 (Yamasaki et al., 2011), an upstream activator of JNK, suppressed the identified SP/TP

phosphorylation. Brain extracts fromWT andMKK7flox/flox Nestin-Cre embryos at E15.5 were analyzed by immunoblotting
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Figure 3. Continued

using the indicated Abs. Western blot results of non-phosphospecific Abs are shown as the controls. Kinase inhibitors

did not affect the reactivity of any of these non-phosphospecific Abs.

(D and E) Effects of mouse JNK knock down on GAP-43 pS96 and pT172. The representative western blotting (D) and

quantified (E) data. Values represent the measured intensity (mean G SEM, n = 3). *p < 0.05; ns, p > 0.05. One-way

ANOVA with Bonferroni tests to the control. GAPDH: glyceroaldehyde-3-phosphate dehydrogenase (A, C, and D).
associated with pS96 of GAP-43. To answer this question, we generated an injury model of the sciatic nerve

in mice. In all the mice used for this regeneration analysis, we confirmed the ‘‘Sciatic Functional Index for

Mouse’’ (Navarro, 2015) before and after the injury (Savastano et al., 2014). Three days after the nerve crush,

we clearly observed pS96 Ab immunoreactivity (Figure 6A), suggesting that the pS96-positive axons elon-

gate with time and that they correspond to regenerating neurons after injury. To quantify the regeneration,

we calculated the regeneration index, which is the distance from the injury site to the point where the signal

intensity drops by half (Shin et al., 2014). The index for pS96 significantly increased on day 3, consistent with

that for SCG10 (Stmn2), another marker of axon regeneration (Figure 6B; Shin et al., 2014). pS96 signals re-

mained low in the intact nerve (Figure 6A). The ‘‘crush’’ vs ‘‘intact’’ ratio of pS96 signal intensity continuously

increased until day 7 (Figure 6C), whereas that of GAP-43 transiently increased on day 3 and then decreased

on day 7 (Figure 6C), suggesting that pS96 captures axon regeneration more faithfully than GAP-43 itself.

Detection of pS96 in Regenerating Axons by Phosphoproteomics of Single Injured Sciatic

Nerves

Next, we tried to detect pS96 by MS. For this purpose, samples likely to include regenerating axons were

excised from a single sciatic nerve 3 days after injury. After lysis and electrophoresis (Figure 7A), the

region of the SDS-PAGE gel corresponding to the position of GAP-43 was cut out and analyzed by liquid

chromatography (LC)-MS. This approach positively detected pS96 of GAP-43, and in some cases pS142

(see Figure 3C), another P-directed phosphorylation site of GAP-43 (Figure 7B). These analyses with small

samples sensitively and specifically detected pS96 of GAP-43 in regenerating axons, but not in undamaged

axons (Figure 7B), consistent with the immunohistochemical results (Figure 6A). By contrast, we could not

detect protein kinase C (PKC)-dependent S41 phosphorylation, which had been classically focused on

by in vitro phosphorylation studies (Skene, 1989; Apel et al., 1990; Denny, 2006) (Figure 7B). Using high-

resolution (HR) multiple-reaction monitoring (MRM) for quantification of specific sets of proteins in

phosphoproteomics (Figure S7), we confirmed that the level of pS96 GAP-43 was more than 4-fold higher

in regenerating axons than in intact nerves (Figure 7C).

These results indicate that pS96 of GAP-43 is tightly associated with PNS axon regeneration and involved

in the functional recovery that accompanies regeneration. In addition, these findings confirm that pS96

Ab is a promising molecular marker for regenerating axons, as well as those growing during normal

development.

DISCUSSION

In this study, we performed quantitative profiling of phosphoproteins and their phosphorylation sites in

mammalian GCMs. We obtained three important results: (1) The high frequency of P-directed phosphor-

ylation in GCMs (Figures 2A and 2B; Table S1), as revealed by bioinformatics and biological experiments,

was primarily due to MAPKs (Figure 2C), and in particular JNK (Figure 3). (2) The most abundant phosphor-

ylated site, S96 of GAP-43 (Table S1), also underwent JNK-dependent phosphorylation (Figure 3). In addi-

tion (3), pS96 was tightly associated with both developmental axon growth (Figures 4, 5, S5, and S6) and

axon regeneration (Figures 6 and 7).

Our results suggest that mammalian nerve growth requires activation of JNK. Surprisingly, this conclusion

is essentially consistent with the requirement for JNK signaling in axon regeneration, consistent with the

results of a large number of mutant screens in C. elegans (Hammarlund et al., 2009; Yan et al., 2009;

Chen et al., 2011; Andrusiak and Jin, 2016). We conclude that JNK signaling is evolutionarily conserved,

even in mammalian axon growth, as demonstrated by the large number of substrates that depend on

P-directed kinases. Although S96 phosphorylation was discovered using classical methodology more

than a quarter century ago (Spencer et al., 1992), this was before the discovery of JNK (Hibi et al., 1993);

however, there have been no reports showing a link between pS96 and JNK to date. We also demonstrated

that JNK supports axon growth by modulating vertebrate-specific substrates such as GAP-43 (Figure 3)
196 iScience 4, 190–203, June 29, 2018
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Figure 4. Antibody Specific for pS96 of GAP-43 Selectively Recognizes Developing and Renewing Axons

(A and B) Immunostaining of cultured mouse hippocampal neurons (3 days of culture) using antibodies against pS96

(green) and total GAP-43 (red). (A) Full view of a single neuron with a long neurite and a growth cone (arrowhead). Scale

bar: 50 mm. (B) Magnified view of a soma with several neurites. (Left) White boxes indicate regions of interest (ROI) that

were measured. (Right) Means of the staining intensity ratios (pS96 vs pan-GAP-43) in neurites. N1: longest neurite; N2:

second-longest neurite. Scale bar: 10 mm. Values are expressed as means G SEM; n = 3; *p < 0.05.

(C and D) Co-localization of pS96 (green) with F-actin (red) and b-tubulin III (blue) in the growth cone of mouse cortical

neurons. Scale bar: 5 mm. (C) White box indicates the ROI that was measured. (D) Quantitative distribution of the ROI (C)

by measuring the fluorescence intensity along the white dashed line from the filopodial tip. P: peripheral domain; C:

central domain.
during mammalian development (Holahan, 2017). Although pS96 was found within the supplemental large

datasets of the adult mouse brain phosphoproteomics (Huttlin et al., 2010; Lundby et al., 2012), its functions

in adult brain is not known.

Our results show that pS96 of GAP-43 is associated with normal mammalian axon growth (Figures 4 and 5)

and regeneration (Figures 6 and 7), probably because it is the best substrate for JNK (Table S1). Therefore,

the pS96 Ab represents a promising marker for growing and regenerating axons in rodents. Previously, we

reported that pS96 Ab could be involved in the regeneration of nerves after surgery (Oyamatsu et al., 2012);

however, at that time, the importance of pS96 was not clearly understood. Here, the proteomic results (Fig-

ures 2 and 3; Table S1) provide a background against which to understand the importance of this phosphor-

ylation. In addition, pS96 could be detected by MS at high levels, even in a single regenerating segment of

injured PNS axons (Figures 7B and 7C). Considering that GAP-43 itself was widely distributed throughout

the cell bodies of the developing neurons (Figures 5A–5C) and was present in the intact mature neurons

(Figure 6A), pS96 could be used as a strong and specific marker for axon growth and regeneration in

rodents. We recently succeeded in performing super-resolution microscopy of the behaviors of live growth

cones, revealing new endocytic mechanisms for nerve growth (Nozumi et al., 2017; Nozumi and Igarashi,
iScience 4, 190–203, June 29, 2018 197
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Figure 5. Expression Pattern of GAP-43, pS96, and pJNK in Developing Mouse Brain

(A) Expression in an E15 parasagittal section stained with pan-GAP-43, pS96, and pJNK Abs. GAP-43 itself was expressed

in most of the differentiated neurons; by contrast, pS96 was localized to axonal processes but was not detected in cell

bodies. pJNK exhibited a broader distribution thanGAP-43. OB, olfactory bulb; Cx, neocortex; dTH, dorsal thalamus; MB,

midbrain; CB, cerebellum.

(B and C) Expression pattern of pS96 and GAP-43 (B) or pS96 and the cell adhesion molecule L1 (C). Nuclear staining with

DAPI is also shown. GAP-43 itself was expressed by migrating neurons and ingrowing axons in the intermediate zone (IZ).

pS96 expression was restricted to the L1-positive thalamocortical axons in the upper IZ. MZ, marginal zone; CP, cortical

plate; VZ, ventricular zone.

(D and E) Expression in the primary olfactory system on P14. GAP-43 itself was expressed in the cells of the olfactory

epithelium (OE) and the olfactory nerves (ON; D), whereas pS96 was localized only in the ON (E). NC, nasal cavity.

Scale bars: 50 mm.
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Figure 6. Axon Regeneration of Injured Sciatic Nerves in Adult Mice Is Strongly Associated with S96

Phosphorylation of GAP-43

(A) Immunohistochemistry of longitudinal sections of sciatic nerves at days 1 and 3 after crush injury using pS96, total

GAP-43, SCG10, and Tuj-1(neuron-specific b3 tubulin) Abs. SCG10 was used as a positive control for axon regeneration.

Arrowheads (white), injury point; (black), the farthest point of positive immunoreactivity. Intact nerves indicate

immunohistochemistry of uninjured nerves. Note that pS96 Ab did not label intact nerves. Scale bars: 500 mm (days 1

and 3); 200 mm (intact).

(B) Regeneration index (Shin et al., 2014) of pS96 (see Transparent Methods) was higher on day 3 than on day 1. n = 4

(day 1), and n = 6 (day 3); *p < 0.05, ***p < 0.001 by one-way ANOVA with Bonferroni tests.

(C and D) Quantification of GAP-43 and pS96 on western blots incubated with their specific Abs. Both crushed sciatic

nerves and contralateral, intact ones were excised and subjected to blotting using pan-GAP-43 and pS96 Abs on days 1, 3,

and 7 after crushing (n = 4 for days 1, 3, and 7). The blot intensities of the proteins in the intact nerve were used as controls.

*p < 0.05; ***p < 0.001 by one-way ANOVA with Bonferroni tests. All data in (B–D) are expressed as means G SD.
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Figure 7. Phosphoproteomics of a Single, Injured Sciatic Nerve in Adult Mice Reveals that pS96 Is Specifically

Detected at Regenerating Axons

(A) Schematic of phosphoproteomics procedure for a single injured sciatic nerve. The crushed region of a sciatic nerve

was excised and divided into 1 cm segments, which were prepared for SDS-PAGE. The band corresponding to GAP-43

was cut out, trypsinized in-gel, and subjected to MS analysis. *, molecular mass marker.

(B) Shotgun phosphoproteomics analysis of a single crushed nerve. Note that pS96 was detected in three of five injured

samples, and another JNK-dependent site, pS142 (Figure 3C), was also detected twice. By contrast, no phosphorylated

peptides of GAP-43 were detected in intact nerves.

(C) MS quantification of pS96 using HR-MRM to compare crushed (Crush) and intact sciatic nerves on day 3 after injury.

Crush represents the regenerating axons. **p < 0.01 (Student’s t test). All data are shown as means G SD.
2017). This new method should help reveal the function of pS96 signaling in growth cone behavior much

more precisely.

It is important to note that JNK is also a negative regulator of axon growth and can induce axon degener-

ation (Miller et al., 2009; Tedeschi and Bradke, 2013; Lu et al., 2014; Yang et al., 2015). Accordingly, based

on all available data, we conclude that JNK physiologically contributes to axon growth (Yamasaki et al.,

2012). The ability to control JNK activity in the near futuremay lead to effective axon regeneration, enabling

clinical treatment of intractable neurological diseases and neural injuries.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Figure S1, related to Figure 2. Conserved motif sequence pattern for each phosphosite class, 
corresponding to the classes of protein kinases (Villén et al., 2007) using the IceLogo web 

application (Colaert et al., 2009). (A) P-directed, (B) acidic, (C) basic, and (D) other kinases. See 

also Figure 2A-2B.  

 

  



 

 

Figure S2, related to Figure 2. “Meta-analysis” of the data appearing in the 

phopsphoproteomic references (Lundby A et al., 2013 (A); Humphrey et al., 2015b (B)). 
Although the data showed a tendency for higher P-directed phosphorylation than that reported by 

(Huttlin et al., 2010), the percentages of the P-directed sites in our paper were higher than those 

reported in the two papers above (Figure 2A). Each protein kinase group is defined as Villén et al. 

(2007). See also Figure 2A. 

 

  



 

 

Figure S3, related to Figure 3. Supplemental results for phosphorylation in cultured mouse 

neurons in the presence of inhibitors. (A) Cultured mouse neurons were incubated for 3 h with 

SP600125, U1026, or SB203580. Each MAPK inhibitor was used at concentrations of 5, 10, or 20 

μM. SP600125 inhibited the phosphorylation of GAP-43 at S96 in a dose-dependent manner. No 

significant effect on the phosphorylation of S96 was observed following incubation with U0126 and 

SB203580. (B, C) CDK (B) and GSK3β (C) were not responsible for the SP/TP phosphorylated sites 

of the major GCM phosphoproteins. Cultured mouse neurons were treated with roscovitine (a CDK 

inhibitor; 10 and 25 μM) or SB216763 (a GSK3 inhibitor; 5 and 10 μM) for 3 h. The inhibitory 

effect of these inhibitors was evaluated by the phosphorylation levels of p27 (S10) and CRMP2 

(T514). As the negative controls, the western blotting results of non-phosphospecific Abs were 

shown, for all of which the amounts were unchanged in the presence of kinase inhibitors.   



 

 

Figure S4, related to Figure 4. Validation of pS96 Ab specificity in transfected HeLa cells (A, B). 
Extracts from the transfected cells were prepared 30 min after osmotic stress (0.5 M NaCl) for JNK 

activation and immunoblotted using GAP-43, pS96, GFP, pJNK, JNK, and β-actin Abs (A), or the 

cells were fixed and immunostained with pS96 or pan GAP-43 Abs (B).  

 

  



 

 

Figure S5, related to Figure 5. Specificity of the antibody against pS96 and its cellular 

expression pattern in vivo. (A, B) DIC photomicrographs of adjacent E15 mouse parasagittal brain 

sections stained with pS96 Ab (A) or pS96 Ab preabsorbed with the immunogen peptide (B) using 

the Nickel-enhanced DAB method. Scale bar (A):1 mm (A, B). (C) Fluorescent immunostaining of 

pS96 (magenta) and fluorescent Nissl staining (green) in the dorsal thalamus (dTH) of another 

section. Scale bar, 200 μm. (D-F) High magnification views of (C). Note that pS96 is expressed by 

thalamocortical axons emerging from the dTH, but is absent in their neuronal somata. The scale bar 

in (C) represents 50 μm (D-F). OB, olfactory bulb; NCx, neocortex; STR, striatum; HI, 

hippocampus, fi, fimbria; opn, optic nerves; fr, fasciculus retroflexus; hc, habenular commissure; pc, 

posterior commissure; SC, superior colliculus; CB, cerebellum; PON, pons; MED, medulla; SP, 

spinal cord.  



 

Figure S6, related to Figure 5. Spatial expression pattern of GAP-43 protein and its pS96 in 

E15 mouse brain. (A - H) Photographs of parasagittal sections immunostained with pan-GAP-43 

(pan; A, C, E, and G) or pS96 Abs (pS96; B, D, F, and H). Adjacent sections are displayed in 

lateral-to-medial order. GAP-43 protein was expressed in most of the differentiated neurons; in 

contrast, pS96 was confined to the axonal processes and not found in the cell bodies. (I - P) Enlarged 

views of pS96 staining at the regions marked by letters ((I) in (B), (J) - (K) in (D), (L) - (O) in (F), 

and (P) in (H)). All pictures are DIC microscopic images of DAB-stained sections. The scale bar 

shown in (A) represents 1 mm (A – H), or 200 μm (I – P), respectively. lot, lateral olfactory tract; ac, 

anterior commissure; fo, fornix; och, optic chiasm; sm, stria medullaris; teg, longitudinal tegmental 

tracts; csc, commissure of the superior colliculus; CP, cortical plate; IZ, intermediate zone; VZ, 

ventricular zone; on, olfactory nerve; IC, inferior colliculus; cbp, cerebellar peduncles; egl, external 
granular layer; Pk, Purkinje cell layer. See legend of Figure S5 for other abbreviations.  



 

 

Figure S7, related to Figure 7. Examination of the peptides used for MRM quantitation of 

GAP-43 pS96 after sciatic nerve injury in adult mice. (A) Representative MRM chromatogram of 

light and heavy target peptides. MRM transitions were built with the aid of Skyline software (see 

Methods) using the peptide sequence (EGDGSATTDAAPATpSPKAEEPSK). This peptide was 

phosphorylated at S96 and was found exclusively in the crushed sciatic nerve, according to shotgun 

proteomic analysis. Note that this peptide contained one missed trypsin cleavage, whereas the 

pS96-containing peptide without the missed cleavage (EGDGSATTDAAPATpSPK) was not 

detected in any samples. We therefore chose the former longer peptide as a target peptide for the 

MRM assay. (B) Quantitation of GAP-43-derived peptides phosphorylated at S96. Note that 

quantitation was most precise when the transitions producing y8 and y3 ions from the target peptide 

were selected for MRM. The relative area of the product ion chromatograms was in essentially the 

same range for the entire set of MRM quantitation assays under the same conditions, indicating no 

significant interference from other contaminating ions. 

  



 

Table S1, related to Figure 1. Major phosphorylation sites with frequencies more than 100 

times in GCM derived from rat P1 brain. 

 
The protein name (vertebrate-specific proteins are shown in bold), phosphorylation site, 

phosphopeptide frequency, corresponding protein kinase classification (protein kinase; Villén et al., 

2007), and protein classification (see Fig. 1A-1B) are shown.  

  

Protein

name

Phosphorylation

site
Frequency Kinase group Protein category

Gap43 S96 542 Proline-Directed Signaling

Ncam1 S784 503 Basic Cell Adhesion

Marcksl1 S22 354 Proline-Directed Signaling

Mtap1b S1493 350 Proline-Directed Cytoskeleton

Stmn1 S25 337 Proline-Directed Cytoskeleton

Stmn2 S62 287 Proline-Directed Cytoskeleton

Mtap1b S1304 280 Proline-Directed Cytoskeleton

Stmn1 S38 265 Proline-Directed Cytoskeleton

Gap43 T172 245 Proline-Directed Signaling

Mtap1b S25 204 Proline-Directed Cytoskeleton

Mapt T542 176 Proline-Directed Cytoskeleton

Marcks S27 171 Proline-Directed Signaling

Rras2 S186 162 Proline-Directed Small GTPase

Mtap1b S1435 148 Proline-Directed Cytoskeleton

Ncam1 S888 131 Proline-Directed Cell Adhesion

Dnajc5 S10 126 Basic Chaperone

Add1 S12 123 Proline-Directed Cytoskeleton

Marcks S46 121 Proline-Directed Signaling

Map2 T1652 119 Proline-Directed Cytoskeleton

Mtap1b S1200 110 Proline-Directed Cytoskeleton

Marcks S29 106 Others Signaling

Mtap1b S1464 105 Proline-Directed Cytoskeleton

Dpysl3 S522 100 Proline-Directed Signaling



 

Table S2, related to Figure 3. Anti-phospho-specific Abs used in this paper. 

 
All antibodies were produced by Sigma-Aldrich. “pS” and “pT” in the column “Antigen Peptide 

Sequence” indicate phosphoserine and phosphothreonine, respectively.  

  

Protein Name

(abbreviated)

Accession

number

Phosphorylation

site

Sequence of

antigen peptide

Amino acid

number

GAP-43 NM_017195 S96 DAAPATpSPKAEE 90-101

GAP-43 NM_017195 T172 VTDAAATpTPAAED 165-177

GAP-43 NM_017195 S142 KATTDNpSPSSKA 136-147

Rufy3 NP_001020298 T5 MSALpTPPTDMP 1-11

SCG10 NP_445892 S62 CLILKPPpSPISEA 56-67

MAP1B NP_062090.1 S25 CNPAATTpSPSLSH 19-30

MAP1B NP_062090.1 S1201 CASASTIpSPPSSM 1196-1206

Robo2 NP_115289 T1174 CDEDRVPpTPPVRG 1167-1179



 

Table S3, related to Figure 3. Abs used for immunodetection in this paper. 

 
WB: Western blotting; IF: immunofluorescence; IH: immunohistochemistry. 

  

WB IF IHC

β-tubulin III (clone TUJ1) Covance mouse - 1:500 -

β-tubulin III Biotinylated (clone TUJ1) R&D systems mouse - - 1:500

GAP-43 Frontier Institute co., ltd guinea pig - 1:500 1:2000 - 1:1000

GAP-43 Millipore rabbit 1:1000 1:1000 -

GAP-43 Sigma mouse 1:1000 1:200 -

JNK (#9252) Cell Signaling Technology rabbit 1:1000 - -

p-JNK (#4668) Cell Signaling Technology rabbit 1:1000 1:500 -

ERK1/2 (#4695) Cell Signaling Technology rabbit 1:1000 - -

p-ERK1/2 (#4370) Cell Signaling Technology rabbit 1:1000 - -

p38 (#8690) Cell Signaling Technology rabbit 1:1000 - -

p-p38 (#4511) Cell Signaling Technology rabbit 1:1000 - -

JNK2 (#9258) Cell Signaling Technology rabbit 1:1000 - -

JNK3 (#2305) Cell Signaling Technology rabbit 1:1000 - -

JNK1 (clone SC-1648) Santa Cruz Biotechnology mouse 1:1000 - -

MAP-1B (sc-8970) Santa Cruz Biotechnology goat 1:1000 - -

Rufy3 (PA5-31311) Pierce rabbit 1:1000 - -

STMN2 (SCG10) (NBP1-49461) Novus Biologicals rabbit 1:1000 1:1000 -

Robo2 Tamada et al., 2008 rabbit 1:1000 - -

GAPDH MBL Japan mouse 1:2000 - 1:1000 - -

p-GAP-43 (S96) (clone 18-10H-9H) our group / FUJIFILM Wako mouse 1:1000 1:2000 1:2000

p-GAP-43 (S96) our group rabbit 1:1000 1:100 1:1000

p-GAP-43 (T172) our group rabbit 1:1000 - -

p-Rufy (T5) our group rabbit 1:1000 - -

p-Rufy (T51) our group rabbit 1:1000 - -

p-SCG10 (S62) our group rabbit 1:1000 - -

p-MAP1B (S25) our group rabbit 1:1000 - -

p-MAP1B (S1201) our group rabbit 1:1000 - -

CRMP-2 (#35672) Cell Signaling Technology rabbit 1:1000 - -

p-CRMP-2 (T514) (#9397) Cell Signaling Technology rabbit 1:1000 - -

p27 BD mouse 1:1000 - -

p-p27 (S10) Abcam rabbit 1:1000 - -

L1 (clone 324) Merck rat - - 1:500

Antibody Supplier Species
Dilution 



 

Table S4, related to Figure 3. The sequences of siRNAs used in this paper. 

 

  

siRNA target Target sequence (5'→3')

GGAACGAGUUUUAUGAUGA

GUUAGAUCAUGAAAGAAUG

UCACUCUGCUGGAAUUAUU

UUGUUAUCCAAAAUGCUAG

UCACUGUUCUAAAACGUUA

CUAGCAACAUUGUAGUAAA

CUGGUAUCAUUCAUAGAGA

GCCACCACCUCAAAUUUAU

control (scramble) UGGUUUACAUGUCGACUAA

MAPK8 (JNK1)

MAPK9 (JNK2)



 

Table S5, related to Figure 7. Phosphoproteomics of the injured sciatic nerves in adult mice. 

 
(A) The peptides identified containing S96 of GAP-43. The samples from crushed or intact sciatic 

nerves were separated with SDS-PAGE, and gel slices containing GAP-43 were subjected to in-gel 

trypsin digestion. Detected phosphorylation of the peptides is shown with italic and bold letters. 

Peptide matches: the number of peptides matched to GAP-43 with a Mascot score larger than the 

identity threshold and an FDR < 5%. (B) MRM transitions for absolute quantitation of GAP-43 

phosphorylated at S96. MRM transitions designed for the absolute quantitation of GAP-43 

phosphorylated at S96 were generated using Skyline software version 3.1 (University of 

Washington). y3 and y8 light product ions were sufficiently intense for accurate quantitation, 

whereas those of the y7 and y9 ions were too weak to define the peak area, in particular in the intact 

nerve. We therefore selected the former two ions for the above purpose (see also Figure S7). 

  

A 

Animal Group
Peptide

matches

#127 Crushed 14

#123 Crushed 10

#134 Crushed 9

#135 Crushed 4

#136 Crushed 6

B 

Label Charge m/z Product ion

Light 3 766.332 y9

y3

y7

y8

Heavy 3 769.004 y9

y3

y7

y8

S96

S96
EGDGSATTDAAPATSPK

EGDGSATTDAAPATSPK

EGDGSATTDAAPATSPK

Phosphorylation

S96

S96EGDGSATTDAAPATpSPKAEEPSK

EGDGSATTDAAPATSPK

EGDGSATTDAAPATSPK

EGDGSATTDAAPATpSPKAEEPSK

Target peptide

EGDGSATTDAAPATpSPKAEEPSK

EGDGSATTDAAPATpSPKAEEPS[13C(6)15N(2)]K

EGDGSATTDAAPATSPK

EGDGSATTDAAPATpSPKAEEPSK

Peptide sequence containing S96

EGDGSATTDAAPATSPK

EGDGSATTDAAPATSPK

EGDGSATTDAAPATpSPKAEEPSK



 

Legends to the Datasets  

 
Dataset 1. Phosphoproteomics of the GCM proteins. A: Time; B: Precise molecular weight; C: 

Precise m/z; D: Precise charge (z); E: Protein number (see Dataset 2); F: Best sequence; G: 

Modification; H: Confidence; I: Theoretical mass; J: Charge (z). 

 

Dataset 2. Identified GCM proteins analyzed with phosphoproteomics. A: Protein number (see 

Dataset 1); B: Unused; C: Total; D: % coverage; E: Accession number; F: Protein name. Yellow line: 

no phosphorylation-modified peptides were found (only other modifications such as methylation 

etc.); Red line: no phosphopeptides with > 95% reliability were found. They have been deleted from 

the total counts (Figure 1). 

 

Dataset 3. Enrichment analysis of the GCM phosphoproteins. Category, KEGG BRITE 

categories were used for enrichment analysis. The number of enriched genes was counted in the 4th 

level of the categories. If the number of genes included in a category is lower than four, the category 

is removed from the calculation.  P-value, P-value of Fisher’s exact test; Q-value, FDR adjusted 

P-value; Genes, the genes encoding the identified phosphoproteins in GCM. See also Figure 2D. 

 

 

  



 

Transparent Methods  

 
Animals. All the animal experiments were conducted in compliance with the protocol which was 

reviewed by the Institutional Animal Care and Use Committee and approved by the President of 

Niigata University (Permit Number: #26 Niigata Univ. Res.74-2). Postnatal SD rats (Nihon-SLC, 

Shizuoka, Japan) were used for GCM preparation. Timed-pregnant ICR mice (Nihon-SLC, Shizuoka, 

Japan) were used for developmental immunohistochemical analysis. Noon of the day on which the 

plug was detected was designated as E0.5. Brains were removed from the animals that had been 

deeply anesthetized with sodium pentobarbitone (Nembutal, Abbott, North Chicago, IL, USA; 50 

mg/kg of body weight). C57BL/6NCrl mice (Charles River Laboratories Japan, Yokohama, Japan) 

were used for adult nerve regeneration study (See below). 

 

Phosphoproteomics analysis of the GCM fraction. GCM prepared from P1 rat forebrains, its 

validation, protein extraction, and protein digestions were performed as described previously (Ellis 

et al., 1985; Gordon-Weeks, 1988; Nozumi et al., 2009). The protein extract (2 mg) from the GCM 

lysate was suspended in 8 M urea containing 50 mM triethylammonium bicarbonate (TEAB) (pH 

8.0). The proteins were reduced by the addition of 50 mM tris(2-carboxyethyl)phosphine and 

incubated for 2 h at 37°C; the sample was then cooled to room temperature prior to the addition of 

20 mM methylmethanethiosulfonate and the cysteines were alkylated for 15 min. The protein 

mixture was diluted with 50 mM TEAB to a final urea concentration of 1.6 M, then digested by 

adding 20 μg trypsin (Sciex) and incubating for 16 h at 37°C. The sample was desalted using a 

Sep-Pak C18 cartridge (Waters Corporation), according to the manufacturer’s instructions.  

The phosphopeptide mixture was fractionated into six fractions on a strong cation 

exchange chromatography cartridge (Sciex), using a stepwise gradient of KCl (0, 20, 50, 100, 175, 

and 350 mM). Each resulting fraction was desalted, solubilized in 0.1% formic acid, and analyzed 

using a nanoLC-QSTAR Elite mass spectrometer (Sciex) with a NanoSpray III source. Ion source 

conditions were “ionspray voltage” = 1800 V; “curtain gas” = 20; “declustering potential 1” = 60 V; 

“focusing potential” = 250 V; and “declustering potential 2” = 15 V. Separation by nanoLC (KYA 

Technologies) was performed at a constant flow rate of 200 nl/min with a 190-min gradient. A 

QSTAR Elite mass spectrometer was used in standard MS/MS data-dependent acquisition mode. 

Survey MS spectra (0.5-sec) were collected (m/z 400-1800), followed by three MS/MS 

measurements of the most intense parent ions (20 counts/sec threshold, 2-5 charge state, m/z 

65-2000 mass range for MS/MS), using the manufacturer’s “smart exit” setting 2. Previously 

targeted parent ions were excluded from repetitive MS/MS acquisition for 60 sec (50 mDa mass 

tolerance).  

All searches were performed against rodent CDS FASTA and annotated with the 

PANTHER Classification System information. An FDR calculation was performed as described 

previously (Tang et al., 2008). Phosphopeptide enrichment by IMAC with PHOS Select Iron Affinity 

Gel (Sigma-Aldrich) was performed essentially as described (Kokubu et al., 2005; Villén and Gygi, 

2008). Data files were processed with ProteinPilot 2.0 (Sciex) using the Paragon algorithm (Shilov et 

al., 2007).  

 

Bioinformatic analyses of the phosphoproteomic data. Serine and threonine residues in the 

phosphopeptides detected by the phosphoproteomics analysis were identified as phosphorylation 

sites (phosphosites). The counts of the phosphopeptides by the spectroscopy were used as an index 

that represents the abundance of phosphorylation. Phosphoproteins containing the detected 

phosphopeptides were classified into 14 functional protein categories. Phosphosites weighted by 

their counts were similarly classified. The phosphosites were further divided into P-directed and 

non–P-directed phosphorylation events. Kinases responsible for the identified phosphopeptides were 

predicted using KinasePhos server (Wong et al., 2007) with 100% specificity. Conserved motif 

sequence patterns for each phosphosite class were generated with the iceLogo web application 

(Colaert et al., 2009). The parameters were used as default settings (see Figure S1). 

To construct a molecular interaction network (enrichment analysis), KEGG BRITE 

categories (Kanehisa et al., 2017) were used for enrichment analysis. The number of enriched genes 



 

was counted in the 4th level of the categories. If the number of genes included in a category is lower 

than four, the category is removed from the calculation. The STMN2-4 and DBN1 genes, which are 

often observed in the category of cytoskeletal modifiers, were not assigned to KEGG Orthology 

annotations in the version on KEGG BRITE used in this study. Thus, the annotation was manually 

assigned for these genes prior to performing enrichment analysis. Namely, the protein–protein 

association data of the STRING database (Szklarczyk et al., 2017) were imported into Cytoscape 

(Smoot et al., 2011) using the stringApp plugin. See also Figure 2D and Dataset 3. 

For “metanalysis” of the high-throughput phosphoproteomics analyses performed by other 

groups (Lundby et al., 2013; Humphrey et al., 2015b), those phosphoproteomic data were 

downloaded and re-analyzed. The detected phophosites were classified into four motif classes, 

including proline-directed, acidic, basic, and others, according to the following criteria: (1) P at +1 

(P), (2) five or more E/D at +1 to +6 (A), (3) R/K at -3 (B), (4) D/E at +1/+2 or +3 (A), (5) two or 

more R/K at -6 to -1 (B), (6) others (O). The intensities of the phosphosites were added to calculate 

the fraction. In addition, the intensity value was normalized and the phosphosites with a score ≥ 20 

or more were extracted for high intensity phosphosites. The fraction of the high intensity groups was 

calculated as the sum of the original intensity. See Figure S2. 

 

Western blotting for cells and mouse brains. The newly generated polyclonal Abs were produced 

by Sigma-Aldrich, using phosphopeptides as antigens in rabbits (listed in Table S2). The usages of 

other Abs were summarized in Table S3. Western blotting procedures were described previously 

(Adachi et al., 2014). The cultured neurons were lysed with TNE buffer (20 mM Tris-HCl [pH 7.5], 

150 mM NaCl, 1 mM EDTA, 1 mM phenylmethylsulfonyl fluoride, 1 mM NaF, 1 mM Na3VO4, 10 

μg/ml pepstatin, 10 μg/ml leupeptin, 1% Triton X-100). Experiments using inhibitors of the protein 

kinases were performed as described previously (Kumar et al., 1999). 

 

Neuronal culture, RNAi, and pharmacological studies. Mouse cortical neurons on E15 were 

dissociated and cultured as described previously (Nozumi et al., 2009). For RNAi experiments, the 

siRNA sequences (Accell SMARTpool, Dharmacon) used were as follows (Table S4): mouse JNK1 

(#E-040128-00) and JNK2 (#E-040134-00). Knock-down efficiency for each siRNA was evaluated 

by immunoblot analysis 48 h after transfection. Accell Red Non-targeting siRNA (#D-001960-01) 

was used as a negative control. 

 

DNA Transfection. An expression plasmid was constructed for fused protein of rat GAP-43 and 

EGFP under the control of the CAG promoter. Then, serine-96 was replaced with alanine by 

KOD-Plus-Mutagenesis Kit (Toyobo). Hela cells were transfected with these plasmids by 

polyethyleneimine. 

 

Immunohistochemistry. Brains were fixed by immersion in 0.12 M phosphate buffer (PB; pH 7.4) 

with 4% paraformaldehyde (PFA) for 2-3 days, cryoprotected in 0.1 M PB with 30% sucrose for 

additional 2-3 days, and embedded in OCT compound (Sakura Finetechnical Co., Ltd., Tokyo, 

Japan). Coronal sections were cut at a thickness of 20 μm and thaw-mounted on glass slides. Primary 

Abs used for immunohistochemistry included mouse anti-pS96 (1/2000 dilution) that was 

biotinylated with Biotin Labeling Kit-NH2 (Dojindo Laboratories, Kumamoto, Japan), guinea pig 

anti-pan-GAP-43 (GAP43-GP-Af500, Frontier Institute Co., Ltd., Ishikari, Japan, 1/2000 - 1/1000 

dilution) and rat anti-L1 (clone 324, Merck, Darmstadt, Germany, 1/500 dilution). Sections were 

immunohistochemically stained as previously described (Tamada et al., 2008) with some 

modifications. All procedures were performed at room temperature. Single immunostaining was 

performed using a standard avidin–biotin complex (ABC) method (Vectastain ABC Elite kit, Vector 

Laboratories, Burlingame, CA, USA). Sections were incubated with methanol containing 0.3% H2O2 

for 30 min, washed three times for 10 min each with phosphate buffer saline (PBS) containing 0.2% 

Triton X-100 (PBST), blocked with 10% normal goat serum (NGS) in PBST for 30 min, and 

incubated overnight with primary antibodies diluted in NGS-PBST. The next day, sections were 

washed three times with PBST, reacted with 1/400 biotinylated goat anti-guinea pig IgG (BA7000, 

Vector) in NGS-PBST for 1 h in the case of pan GAP-43, washed three times with PBST and twice 



 

with PBS, incubated with 1/400 elite ABC in PBS for 1 h, and washed three times with PBS. Color 

was developed using the nickel-enhanced diaminobenzidine (DAB) method (0.02% DAB, 0.003% 

H2O2, 2.5% NiSO4 in 0.1 M acetate buffer, pH6.0). For multiple fluorescent staining, sections were 

incubated with the primary antibodies and then with Cy5- or Alexa Fluor 488–conjugated secondary 

antibodies or Cy3-conjugated streptavidin (all from Jackson ImmunoResearch Inc., West Grove, PA, 

USA). In some cases, sections were further stained for nuclear DNA with 4', 

6-diamidino-2-phenylindole (DAPI; Thermo Fisher Scientific Inc., Waltham, MA, USA) or 

Nissl-stained with NeuroTrace 500/525 (Molecular Probes, Eugene, OR, USA). DAB-stained 

samples were observed through an upright microscope (BX63, Olympus, Tokyo, Japan) equipped 

with differential interference contrast (DIC) optics. Multi-field images were acquired with a CCD 

camera (DP72, Olympus) and stitched with cellSens software (Olympus). Fluorescence images were 

acquired with a confocal microscope (FV3000, Olympus) or the upright microscope. 

 

Immunocytochemistry. Cultured neurons were fixed with 4% PFA for 15 min at 37°C, 

permeabilized with PBS containing 0.1% Triton X-100 and 5% BSA for 1hr. Cells were 

immunostained with the primary and secondary antibodies.  For visualization of F-actin, cells were 

incubated with Rhodamine-phalloidin (Sigma-Aldrich) for 1 h. Fluorescence images were acquired 

with a confocal laser scanning microscope (FV1200, Olympus). 

 

Sciatic nerve injury. Following a standard protocol (Savastano et al., 2014; Shin et al., 2014), male 

C57BL/6NCrl mice at 9 weeks of age or older were anesthetized with a cocktail of ketamine and 

xylazine, and the nerve was crushed with fine forceps (Fontax, INOX #5) for 30 s. The mice were 

sacrificed on 1, 3, or, 7 days after the operation. 

 For the immunofluorescence study of the regenerating axons, the mice were perfused 

intracardially with PBS followed by 4% PFA. Then, the nerves were washed with PBS, immersed in 

0.1 M PB with 20% sucrose for an additional 1-2 day, and cut into 20-μm-thick longitudinal sections. 

The nerve samples were immunostained as described previously (Shin et al., 2012, 2014). Alexa 

Fluor 488-conjugated Abs or Alexa 594-conjugated streptavidin (Jackson ImmunoResearch Inc.) 

were used as the secondary Abs. 3D Multiple Fluorescence images were taken with a confocal 

microscope (FV1200, Olympus) using 10× air objective along the nerve. 

 Regeneration was evaluated by the regeneration index (Shin et al., 2012; 2014). With 

ImageJ and MATLAB (Mathworks, USA), 3D stack images were projected along the two axes 

perpendicular to the nerve and then moving-averaged along the nerve axis to obtain the 1D signal 

decay. The index was calculated as the distance from the injury site to the point where the signal 

decays by half. 

 For western blotting of the sciatic nerves, they were dissected by 1-mm length (see Figure 

7A). The samples were homogenized using an ultra-sonicator in sample buffer (125 mM Tris-HCl 

pH 6.8, 20% glycerol and 4% SDS) with protease inhibitors (10μg/ml leupepsin, 10μg/ml pepstatin, 

0.02mM p-APMSF and 1mM EDTA) and phosphatase inhibitors (1.0mM NaF, 1.15mM Na2MoO4 

and 1.0mM Na3VO4). Protein bands were visualized using an ECL Prime kit (GE health care life 

science, Piscataway, USA). The contralateral intact samples were also used as the control. The 

relative protein levels recognized by the pan-GAP-43 and pS96 Abs were calculated as the ratio of 

Crush/Intact nerves.  

 

MS of regenerating axons. The protein extract from the injury site or the mock-operated site of the 

sciatic nerve was prepared as described above. Five equal aliquots of protein extract (19 μg) were 

separated in parallel on a polyacrylamide gel (ANK KD, Mini-PROTEAN TGX; Bio-Rad 

Laboratories) and stained with Coomassie Brilliant Blue R-250. The five gel portions containing 

GAP-43, as indicated by immunoreactivity with anti–pan-GAP-43 Ab, were manually excised and 

collected in a low-binding microcentrifuge tube for in-gel trypsin digestion. Protein identification 

was carried out using Mascot version 2.2.1 (Matrix Science).  

The gel slices were reduced with 10 mM dithiothreitol, carbamide methylated with 55 mM 

iodoacetamide, and subjected to in-gel trypsin digestion essentially as described previously 

(Katayama et al., 2001) to improve recovery of the digested peptides. The peptides from each sample 



 

were finally dissolved in 15 μl of 0.2% trifluoroacetic acid and assayed with the BCA method 

modified for peptide assays (Kappoor et al., 2009). Each sample (5 μl, 0.5-0.8 μg) was injected into 

a nano-flow-LC (Eksigent nanoLC 415 with ekspert cHiPLC; Sciex) coupled with a tandem MS 

(TripleTOF5600; Sciex). Analysis was conducted in duplicate for each sample under trap and elute 

mode using a ChromeXP C18 Chip column (200 μm × 0.5 mm) as a trap column, and the same 

column (75 μm × 150 mm) as the analytical one. Mobile phases A and B were 0.1% formic acid and 

0.1% formic acid in acetonitrile, respectively. Peptides were eluted using 30-min gradients from 2% 

to 32% B at 300 nl/min. MS spectra (250 msec) followed by 10 MS/MS spectra (100 msec each) 

were acquired in data-dependent mode. The dynamic exclusion time was set at 12 sec. 

Autocalibration using 50 fmol of tryptic peptides of bovine serum albumin was performed every five 

to nine samples. Protein identification was carried out using Mascot version 2.2.1 (Matrix Science) 

as a search engine. The raw data generated by Analyst TF 1.6 (Build 6211) were converted to 

Mascot generic files by MS Converter (Sciex) and searched against an in-house constructed 

UniProtKB mouse reference proteome database (49,878 sequences, 29 May 2015 release) using the 

instrument settings for the ESI-QUAD-TOF spectrometer. The peptide and MS/MS tolerance were 

set at ± 20 ppm and ± 0.1 Da, respectively. Modification settings were: fixed modification, 

carbamidomethylation of cysteine, variable modifications, deamidation of asparagine and/or 

glutamine, phosphorylation of serine and/or threonine, N-terminal glutamine to pyroglutamate, 

N-terminal glutamate to pyroglutamate, and oxidation of methionine. A maximum of two missed 

cleavages was allowed. The significance threshold was set at p < 0.05, which gave an FDR of < 0.05 

for all identification results. Only peptides with a score exceeding the “Identity threshold” were 

employed. “Require bold red” was checked to avoid redundancy in protein identification. 

Quantitation of GAP-43 was performed using the normalized spectral abundance factor (NSAF) 

(Paoletti et al., 2006). The spectral abundance factor (SAF) was first calculated by dividing the 

number of spectral counts for each protein by the protein mass or protein length. SAF values were 

then normalized by dividing by the sum of all SAFs for proteins in a sample to give NSAFs. The 

schematic procedure is shown in Figure 7A. 

 
HR-MRM assay for absolute quantitation of pS96 GAP-43 in the crushed nerve. For HR-MRM, 

the light (EGDGSATTDAAPATpSPKAEEPSK; m/z = 766.3321) and heavy 

(EGDGSATTDAAPATpSPKAEEPS [13C(6)15N(2)]K; m/z = 769.0035) peptides were used; the 

latter was labeled with stable isotopes (SIs; Narumi et al., 2012; Adachi et al., 2016). The internal 

standard peptide was uniformly labeled with 
13

C and 
15

N at the carboxyl-terminal lysine (AQUA 

Peptides, Sigma-Aldrich Life Science). MRM transitions were generated by Skyline software 

version 3.1 (University of Washington, Seattle, WA, USA). The MRM assay was performed with a 

TripleTOF 5600+ MS in HR-MRM mode. LC–tandem MS was performed similarly to shotgun 

analysis.  

MRM transitions were built with the aid of Skyline software (University of Washington) 

using the above light sequence peptide. The peptide contained one missed cleavage by trypsin, while 

the peptide phosphorylated at S96 without a missed cleavage (EGDGSATTDAAPATpSPK) were not 

observed in any samples (Table S5A). Among the 11 peptides matching the corresponding sequence 

of GAP-43 for five mice, six peptides were shorter and lacked pS96, whereas the other five peptides 

were longer due to a missed cleavage and contained pS96. None of the shorter peptides contained 

pS96 (Table S5A). We therefore chose the former longer peptide as a target peptide for the MRM 

assay.   

 MRM transitions designed for absolute quantitation of GAP-43 phosphorylated at S96 was 

generated using Skyline software version 3.1 (Table S5B). Among four transitions selected for light 

and heavy target peptides, the y3 and y8 product ions of the light peptides were sufficiently strong 

for accurate quantitation, while those of y7 and y9 ions were too weak to define a peak area, 

especially in samples from intact nerve (Figure S6A). We therefore selected y3 and y8 ions for 

calculation of absolute amounts of phosphorylated GAP-43. 

To confirm the lack of interference from contaminants in the MRM-HR assay, the peak 

areas of y3 and y8 relative to their averaged values were compared among all the samples (see 

Figure 7; Figure S6; Table S5A-S5B). No significant difference between samples was observed, 



 

indicating that there was no significant interference from contaminants in the assay as well as the 

accuracy of the MRM-HR assay (Figure S6B).  

 

Statistics. GraphPad Prism (GraphPad Software) was used for statistical analysis and drawing 

graphs. Biochemical and culture experiments were analyzed using a Student’s t-test or one-way 

ANOVA with Bonferroni post-hoc tests. The p-value for statistical significance was defined as p < 

0.05. All data are shown as the mean ± standard deviation (SD) or mean ± standard error of the mean 

(SEM).  
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