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Abstract: The inhalation of particulate matter (PM) in second-hand smoke (SHS) is hazardous to
health of smokers and non-smokers. Tobacco strength (amount of tar, nicotine, and carbon monoxide)
and different additives might have an effect on the amount of PM. This study aimed to investigate
the influence of tobacco strength or additives on PM. Four cigarette types of the brand Marlboro with
different strengths and with or without additives were analyzed in comparison to the 3R4F reference
cigarette. SHS was generated by an automatic environmental tobacco smoke emitter (AETSE) in an
enclosed space with a volume of 2.88 m3. PM concentrations (PM10, PM2.5, PM1) were measured
with a laser aerosol spectrometer followed by statistical analysis. The two strongest Marlboro brands
(Red and Red without additives) showed the highest PM concentrations of all tested cigarettes.
The measured mean concentrations Cmean of PM10 increased up to 1458 µg/m3 for the Marlboro
Red without additives (PM2.5: 1452 µg/m3, PM1: 1263 µg/m3). The similarly strong Marlboro Red
showed very similar PM values. The second strongest type Marlboro Gold showed 36% (PM10, PM2.5)
and 32% (PM1) lower values, respectively. The “lightest” type Marlboro Silver Blue showed 54%
(PM10, PM2.5) or 50% (PM1) lower PM values. The results indicate that the lower the tar, nicotine,
and carbon monoxide amounts, as well as the longer the cigarette filter, the lower are the PM levels.
An influence of additives could not be determined.

Keywords: second-hand smoke; environmental tobacco smoke; particulate matter; additives;
cigarette strength

1. Introduction

Since the beginning of the 20th century tobacco consumption increased steadily worldwide.
Approximately 1.1 billion people aged 15 or older are current smokers worldwide. Meanwhile,
smoking is one of the most important avoidable causes of premature death in the world. By now,
more than 7 million people are killed each year owing to tobacco use, whereby 890,000 of them are
non-smokers exposed to second-hand smoke (SHS) [1], also called environmental tobacco smoke.

SHS as a composite of exhaled smoke from the smoker and mostly side-stream smoke from the
smoldering tobacco product [2,3] is the major risk factor for indoor air pollution [4] and one of the
main causes of avoidable lung cancer [5]. SHS is also a major origin of airborne particulate matter
(PM) [6]. The adverse health effects of PM, especially cardiovascular and respiratory diseases [7–9]
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increase in relation to PM exposure [10]. This applies also for human skin diseases [11], breast cancer
mortality [12], and risk of ischemic stroke [13]. In addition, PM is more harmful to health of children
and infants because of their smaller body weight. The dimension of the upper respiratory tract of
infants is smaller than that of adults. Especially ultrafine particles (UFPs, particles < 100 nm) could be
concentrated in the head region and translocate to the brain via the olfactory bulb [14].

PM as a mixture of differently sized liquid and solid particles varies in source and composition [15].
One possibility to classify PM is by the particle size and defines the deepness of the penetration in to
the respiratory tract. The smaller the particles the deeper they penetrate and the more severely are
the health effects [16,17]. Furthermore, smaller particles have a higher ability to adsorb toxic organic
molecules and UFPs can penetrate through the blood and nervous system into the brain and diverse
organs. It exists an inverse relationship between particle size and health hazard [18,19]. The U.S.
Environmental Protection Agency (EPA) distinguishes between coarse inhalable particles ≤ 10 µm
(PM10) and fine inhalable particles ≤ 2.5 µm (PM2.5). Moreover, the fraction of particles ≤ 1 µm is
defined PM1 [20].

In previous studies different PM levels within different brands and types of cigarettes were
detected [21–23]. The strength of tobacco products, the content of tar, nicotine, and carbon monoxide
and different additives like aromatics and humectant agents might influence the amount of PM [24].
Based on these findings a comparison of different types of cigarettes with various strengths and
ingredients of one special brand seems to be reasonable and necessary. The focus on one single brand
minimize interferences by, e.g., different production processes of different manufacturers.

2. Materials and Methods

2.1. Tobacco Products

The particle size fractions of PM10, PM2.5, and PM1 of four cigarette types of the brand
Marlboro [25] were analyzed in comparison to the reference cigarette 3R4F developed by the Kentucky
Research and Development Center (University of Kentucky, USA) [26]. The four cigarette types of
Marlboro were as followed: Marlboro Silver Blue, Marlboro Gold, Marlboro Red, and Marlboro Red
without additives. They differ among others in filter length and strength (content of tar, nicotine,
and carbon monoxide) shown in Table 1. For more detailed information about the ingredients of the
Marlboro brands the reader is referred to the Federal Ministry of Food and Agriculture of Germany
(Bundesministerium für Ernährung und Landwirtschaft) [27] and Philip Morris USA [28].

Table 1. Characteristics of the investigated cigarette types: The amounts of tar, nicotine, carbon
monoxide, the presence of additives, and the dimensions of filter and cigarette are shown.

Ingredients & Dimensions 3R4F Reference
Cigarette

Marlboro
Silver Blue

Marlboro
Gold

Marlboro
Red

Marlboro Red
without Additives

Tar (mg) 9.4 4 6 10 10

Nicotine (mg) 0.73 0.4 0.5 0.8 0.9

Carbon monoxide (mg) 12 5 7 10 10

Additives yes yes yes yes no

Filter length (mm) 27 21 21 21 21

Filter diameter (mm) 8 8 8 8 8

Cigarette length (mm) 84 84 84 84 84

2.2. Automatic Environmental Tobacco Smoke Emitter (AETSE)

Each 20 cigarettes of 4 Marlboro cigarette types and 20 reference cigarettes were smoked using
an automatic environmental tobacco smoke emitter (AETSE). The measurement of PM10, PM2.5,
and PM1 took place in a glass chamber with a volume of 2.88 m3 serving as an enclosed interior space.
The AETSE, a smoke pump for medical research designed and engineered by Schimpf-Ing. Trondheim,
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Norway [29], is installed in this chamber and allows generating smoke of tobacco products in a
reproducible way without exposing the investigator or test persons.

2.3. Smoking Protocol

A modified smoking protocol was used in accordance to the Tobacco Smoke Particles and Indoor
Air Quality (ToPIQ) studies [30,31]. A 200 mL glass syringe moved back and forth via a linear actuator
by a stepper motor imitates the smoking process. The glass syringe is connected with the mouthpiece
of the tobacco product via a Nylon tube (IMI Norgren, Birmingham, UK). Thereby, mainstream smoke
can sucked into the syringe and afterwards pressed back into the chamber. Two valves ensure that on
suction the air flows exclusively through the tobacco product and on back flowing the smoke reach
directly into the chamber without passing the tobacco product. A microcontroller adjusts the puff
volume (40 mL), puff flow rate (13 mL/s), puff frequency (2/min), inter puff interval (24 s), and the
amount of 9 puffs. The smoking protocol is subdivided in four different phases and starts with the
pre-ignition phase with the blank measurement (5 min). Then the cigarette is lighted and smoked in the
combustion phase (4 min 22 s), followed by the extinguishing of the cigarette and the post-combustion
phase (5 min). Afterwards the chamber is ventilated for at least 5 min in the suction phase by using an
industrial suction device before the next cycle starts.

2.4. Measurement Equipment

Via light scattering the PM concentrations are measured by a Grimm Portable Laser Aerosol
Spectrometer (LAS) and Dust Monitor model 1.109 (Grimm Aerosol Technik, Ainring, Germany) [32,33].
The measuring point is located 35 cm beside the tobacco product at the same altitude. The mixture
of exhaled mainstream smoke and side-stream smoke of the smoldering tobacco product is sucked
in the LAS. To avoid blockage of the laser measuring chamber of the spectrometer by high particle
concentrations a dilution of 1:10 with compressed air is necessary. Subsequently, the dilution ratio
is considered in the data processing. The Grimm spectrometer detects airborne particles with a size
from 0.25 µm to 32 µm in real-time. The LAS displays the measured results as particle count (L−1)
and detailed dust mass fractions in 31 channels (µg/m3). Additionally, the data are displayed as
inhalable, thoracic, and alveolic (µg/m3) according to European Standard EN 481 [34] and as PM10,
PM2.5, and PM1 values (µg/m3) according to U.S. EPA [20]. Every six seconds the received data
are recorded.

2.5. Data Processing

The collected data of the four Marlboro brands and the reference cigarette were statistically
analyzed and compared. Therefore, the area under the concentration-time curve (AUC) and the mean
concentration (Cmean) of 20 cigarettes were calculated for each brand. In order to avoid overestimation
of PM due to technical handling, the AUC of five randomly chosen cigarettes per brand were searched
for so-called artificial peaks. In this study, the proportion of peaks was defined as acceptable if not
exceeding the average AUC plateau by 22%. Peaks higher than 2% to 16% than average AUC plateaus
were detected. Hence, all measurements were included in data analysis. All tested cigarette type
samples passed the D’Agostino-Pearson Test for Gaussian normality (cut-off p = 0.05). Additionally,
the data were tested for outliers with the ROUT method (Q = 1%). Here, no outlier was detected.
Finally, all investigated tobacco products were tested for differences using one-way ANOVA and
Tukey’s multiple comparisons test.

3. Results

The PM mean of all measured baseline values (clean air) is 0.6 µg/m3. For the reference cigarette
the measured Cmean increases up to 921 µg/m3 (PM10), 918 µg/m3 (PM2.5), and 852 µg/m3 (PM1).
The measured Cmean of PM10 increases up to 1458 µg/m3 (Marlboro Red without additives) and
668 µg/m3 (Marlboro Silver Blue) and in the case of PM2.5, 1452 µg/m3 and 667 µg/m3, respectively.
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For PM1 the values raise up to 1263 µg/m3 (Marlboro Red without additives) and 631 µg/m3

(Marlboro Silver Blue). The results of the AUC-PM values and the Cmean values are shown in Table 2.
Additionally, Figure 1 shows the AUC PM values of all tested cigarette brands in a direct comparison.
The distribution pattern of the PM fractions PM10–2.5, PM2.5–1, and PM1 is shown in Figure 2.

Table 2. Area under concentration–time curve (AUC PM10, PM2.5 and PM1) and mean concentrations
(Cmean PM10, PM2.5 and PM1) with standard deviation of all tested tobacco products.

3R4F Reference Cigarette Marlboro Silver Blue Marlboro Gold Marlboro Red Marlboro Red
w/o add.

AUC PM10 (µg·m−3·s−1) 792,720 ± 152,480 578,280 ± 193,768 806,440 ± 157,991 1234,440 ± 258,690 1,256,570 ± 342,629
AUC PM2.5 (µg·m−3·s−1) 790,730 ± 148,547 577,440 ± 193,224 804,940 ± 157,426 1,230,380 ± 255,426 1,251,390 ± 335,957
AUC PM1 (µg·m−3·s−1) 733,960 ± 94,781 546,230 ± 169,955 742,580 ± 135,493 1,093,950 ± 173,391 1,088,220 ± 202,603
Cmean PM10 (µg·m−3) 921 ± 176 668 ± 223 932 ± 183 1443 ± 307 1458 ± 397
Cmean PM2.5 (µg·m−3) 918 ± 172 667 ± 223 930 ± 182 1438 ± 303 1452 ± 389
Cmean PM1 (µg·m−3) 852 ± 109 631 ± 196 859 ± 157 1281 ± 215 1263 ± 238
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The main part of SHS is composed by PM1 fraction with 92.50% (reference cigarette 3), 94.46%
(Marlboro Silver Blue), 92.17% (Marlboro Gold), 88.77% (Marlboro Red), and 86.63% (Marlboro Red
without additives). The measurements of both Marlboro Red brands (with and without additives)
show between 33% and 37% higher PM values (Cmean and AUC) than the values of the reference
cigarette and 50% to 54% higher PM values than the Marlboro Silver Blue and 32% to 36% higher PM
values than the Marlboro Gold, respectively. The PM levels of the Marlboro Gold brand are nearly
the same as the values of the reference cigarette. In contrast, the Marlboro Silver Blue, the brand with
the lowest tar, nicotine, and carbon monoxide amount in this test field, shows 26% to 27% lower PM
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values compared to the values of the reference cigarette. Table 3 shows the significance grades of
the comparisons of all tested tobacco products. Among the Marlboro brands, both types with higher
tobacco strength (Marlboro red with and without additives) show a very high significant in comparison
to the types with lower strength (Marlboro gold and Marlboro silver blue).Int. J. Environ. Res. Public Health 2018, 15, x FOR PEER REVIEW  5 of 11 
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Figure 2. Distribution pattern of PM10–2.5, PM2.5–1, and PM1 of all investigated cigarettes.

Table 3. Significance level of statistical Tukey’s multiple comparisons test of AUC (PM10, PM2.5 and
PM1) for the tested cigarette brands (ns = non-significant, * = p < 0.05, ** = p < 0.01, **** = p < 0.0001).

Paired Comparisons of Tobacco Products AUC PM10 AUC PM2.5 AUC PM1

3R4F vs. Marlboro red w/o add. **** **** ****
3R4F vs. Marlboro red **** **** ****
3R4F vs. Marlboro gold ns ns ns
3R4F vs. Marlboro silver blue * * **
Marlboro red vs. Marlboro red w/o additives ns ns ns
Marlboro red vs. Marlboro gold **** **** ****
Marlboro red vs. Marlboro silver blue **** **** ****
Marlboro gold vs. Marlboro red w/o add. **** **** ****
Marlboro gold vs. Marlboro silver blue * * **
Marlboro silver blue vs. Marlboro red w/o additives **** **** ****

The PM data for Marlboro brands indicates that the lower the tar, nicotine, and carbon monoxide
amounts the lower are the PM levels. Moreover, in this study the tobacco product with additives shows
no significant differences in PM amount to the tobacco product without additives and approximately
identical tar, nicotine, and carbon monoxide amount.

4. Discussion

Various studies conclude that the PM levels in smoking rooms and households increase in a
hazardous way [35,36]. According to the WHO Air quality guidelines the daily average concentration



Int. J. Environ. Res. Public Health 2019, 16, 263 6 of 11

should not exceed 25 µg/m3 PM2.5 [37]. Depending on the cigarette brand the PM concentrations in
an enclosed space of 2.88 m3 (capacity of the measuring cabin) were 27- to 58-fold higher than WHO
references and up to 1000-fold higher than the baseline values (smoke free air). This illustrates the
massive PM burdens under the study conditions.

The U.S. EPA classifies compact cars with a total passenger and cargo volume of 2.832 m3

to 3.087 m3 [38]. This is a fundamentally important aspect of this study design, because the used
measuring cabin has a comparable indoor volume and many people smoke in cars. The passive smoke
with the contained particulate matter is not only hazardous for the health of smokers but also of
passengers, which are often children. The used smoking regime is similar to conditions in a compact
car with closed windows and no ventilation or air conditioning. Sendzik et al. [39] performed a study
under five different in vivo conditions, in which the car owners smoked a single cigarette in their cars.
The conditions were as followed: Closed windows and engine off, and each a 20-min drive with closed
windows, all windows opened, with only driver’s window partially opened and all windows closed
but with air conditioning. Their results are similar to our study results depending on the condition
and ranged between 223 µg/m3 and more than 3800 µg/m3 PM2.5 (that means 9 to 152 fold higher
than the WHO references).

In contrast to the above-mentioned in vivo study, the AETSE used in our study ensured
reproducible results without exposure of any test person to the produced smoke and any health
risks. It should be pointing out that the AETSE is not able to imitate exactly the human smoking
behavior and SHS. The mainstream smoke that the smoker inhales will be humidified in the respiratory
tract and due to hygroscopic growth the exhaled smoke particles are nearly 1.5-fold larger than the
inhaled particles [40,41]. In addition, a differentiation between inhaled and exhaled mainstream smoke
is not possible with the AETSE, but SHS consists only of about 15 % mainstream smoke and about 85 %
side-stream smoke [42,43]. Hence, the measured PM emissions of the tobacco products are very similar
to SHS, because the AETSE is able to imitate side-stream smoke as realistically as possible. Certainly,
the used modified smoking protocol differs from other existing protocols like, e.g., the Standard
operating procedure for intense smoking of cigarettes by the WHO [44] or the ISO standard for the
machine smoking of cigarettes ISO/TR 17219 [45]. However, it must be mentioned that there is yet no
“gold standard” for smoking regimes [46–49].

The aim of this study was to investigate the influence of cigarette strength and additives on
PM amount in SHS. To avoid other influences like, e.g., different production processes of various
manufacturers on PM emissions as far as possible, it seemed useful to investigate PM of different
cigarette types of one brand, in this case the brand Marlboro. All tested Marlboro cigarettes had
the same total length and diameter and the same filter length. The Marlboro cigarette type with
the lowest tar, nicotine, and carbon monoxide amounts (Silver Blue) showed the lowest measured
PM values. The Marlboro brand with the second lowest tar, nicotine, and carbon monoxide amounts
(Gold) showed the second lowest measured PM values. The highest PM amounts showed with very
similar measured values the two Marlboro Red types (with and without additives), that had the same
tar and carbon monoxide amounts and similar nicotine amount. The measured results lead to the
assumption that cigarettes with lower strength emit less PM than cigarettes with higher amounts of tar,
nicotine, and carbon monoxide.

The 3R4F reference cigarette had the same total length and diameter as the Marlboro brands, but
the filter was with a length of 27 mm six millimeters longer than the filters of the Marlboro brands.
Both Marlboro Red types with similar strength as the reference cigarette showed 33% to 37% higher PM
values than the reference cigarette. The Marlboro Gold type with a lower strength than the reference
cigarette showed PM values similar to the reference cigarette. The filters of all tested cigarette products
were cellulose acetate filters without cavity and with triacetin as plasticizer [26,27]. Thus, and given
that the filters have been similarly constructed, the PM data lead also to the assumption, that the longer
the filter the lower are the PM amounts in SHS. In 2009 Shin et al. found more than 50% lower total
particulate matter (TPM) and tar amounts in mainstream smoke of cigarettes with filter compared



Int. J. Environ. Res. Public Health 2019, 16, 263 7 of 11

to cigarettes without filters [50]. TPM means airborne particulate matter with an upper size limit
of 100 µm diameter and also includes PM10, PM2.5, and PM1 [51]. Even in 1965 Keith and Derrick
showed a reduction of tar and nicotine amounts between 40% and 50% in filter cigarettes in relation to
non-filter cigarettes [52].

As both Marlboro Red types (with and without additives) with similar tobacco strengths showed
very similar PM levels an influence of the additive mixture in Marlboro Red with additives could
not be verified. The few studies with respect to effects of additives to PM in tobacco smoke found
contradictory results. Some previous studies showed analogical results regarding the influence of
additives on PM amount in SHS. Wasel et al. ascertained no significant differences between cigarettes
with and without additives [22]. They assumed rather an influence by filter length on PM amounts.
Two investigations on cigarettes with and without the additive menthol, Gaworski et al. in 1997 [53]
and Gerharz et al. in 2018 [54], found also no significant differences of amounts of PM. In contrast,
the results of Rustemeier et al. showed an increase of 13–28% of PM of cigarettes with additives relative
to cigarettes without additives [24]. They added 333 commonly used additives to the 1R4F reference
cigarette and measured effects of ingredients. An analysis by Wertz et al. in 2011 of previously secret
tobacco industry documents revealed that the documents were changed post hoc [55]. The originally
statistically findings showed an additive-associated increase of TPM concentrations and toxicity in
cigarette smoke with additives. Hence, it seems to be reasonable to investigate in further studies the
influence of different additive mixtures in tobacco products on PM emission.

In this study, the major part of measured PM consisted of particles ≤ 1 µm. Keith and Derrick
published in 1960 a study with similar results. They found that the most particles in tobacco smoke are
sized between 0.1 µm and 1 µm with a peak between 0.2 µm and 0.25 µm [56]. Nazaroff and Klepeis
described SHS as mostly 0.02 µm to 2 µm sized particles [57]. Particles of side-stream smoke were
characterised with geometric mean diameters of 0.1 µm [58,59]. Manigrasso et al. measured mean
particle diameters ranging from 0.1 µm to 0.14 µm in cigarette smoke due to a rapid coagulation of
UFPs and phase changes to semi-volatile compounds. They found also that PM10 consists mainly of
PM1 [60]. Haustein and Groneberg described side-stream-smoke with mean diameters of 0.5 µm [61].
It seems that there exists no common agreement on the peak size of tobacco smoke particles. Compared
to this study, Protano et al. found very similar PM1 mean concentrations of 1544 µg/m3 while smoking
a single cigarette, but almost no increase of the PM10–2.5 and PM2.5–1 fractions. They summed up
that smoking of even one cigarette lead to very important air pollution also by UFPs [62]. The used
LAS Grimm model 1.109 is able to detect particles with a minimum size of 0.25 µm and is common
used in monitoring networks and in continuous measurement of PM [63]. This technical limitation
resulted in a nonconformity with the definition of the U.S. EPA, where particles down to 0.1 µm are
also included. Hence, to detect particles smaller than 0.25 µm a new measurement system would be
essential. Subsequent investigations on UFPs in SHS are reasonable, as health effects of UFPs come
more and more into focus [64].

The used Grimm model 1.109 measures PM including PM1 and semi-volatile fractions like,
e.g., water, ammonium nitrate, and some organic compounds via light scattering in real time [65].
Because of this ability the LAS allows to detect the PM amount of each single tobacco product. By
contrast, the U.S. EPA Federal Reference Methods (FRMs) for detection of PM often use 24 h sample
collection followed by gravimetric measurement of collected PM. Another used FRM application is
the real time measurement device Tapered Element Oscillating Microbalance (TEOM) Monitor [65,66].
The protocols for measuring PM10 and PM2.5 in agreement to the European standard EN 12341 for
determination of PM is also a gravimetric method [67]. The listed FRM with the Grimm model EDM
180 is a PM measuring method via light scattering [66]. Several studies confirm that the measurement
results of a Grimm model 1.107, 1.108, or in this study the used model 1.109 are very similar to the
results of a Grimm model EDM 180 or a TEOM Monitor or gravimetric methods [65,68]. In 2007,
Fromme et al. described higher PM measuring results by gravimetric methods than by LAS but
with high correlations of the rank order of the measuring values [69]. Provided that the method of
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measurement during a study will not be changed, the measured values of the used Grimm model
1.109 are valid and reliable.

5. Conclusions

In conclusion, smoking of tobacco products leads to a massive increase of PM in enclosed spaces.
This study showed also that the higher the amounts of tar, nicotine, and carbon monoxide and probably
the shorter the filters, the higher are the levels of PM in SHS. An influence of the additive mixture in
the investigated Marlboro cigarette types could not be ascertained. It seems to be reasonable to verify
the correlations of ingredients and filter length of tobacco products and the resulting PM in SHS.
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