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Invariant natural killer T (iNKT) cells are a CD1d-restricted T  cell population that can 
respond to lipid antigenic stimulation within minutes by secreting a wide variety of 
cytokines. This broad functional scope has placed iNKT cells at the frontlines of many 
kinds of immune responses. Although the diverse functional capacities of iNKT  cells 
have long been acknowledged, only recently have distinct iNKT cell subsets, each with 
a marked functional predisposition, been appreciated. Furthermore, the subsets can 
frequently occupy distinct niches in different tissues and sometimes establish long-term 
tissue residency where they can impact homeostasis and respond quickly when they 
sense perturbations. In this review, we discuss the developmental origins of the iNKT cell 
subsets, their localization patterns, and detail what is known about how different subsets 
specifically influence their surroundings in conditions of steady and diseased states.
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iNTRODUCTiON

Adaptive immunity has long been appreciated as a chief means through which various jawed 
vertebrates stave off infectious pathogens. One of the main features differentiating the adaptive 
immune system from its innate counterpart is the generation and expression of diverse antigen 
receptors. Antigen sensors of the innate immune system are proteins with fixed sequences and 
pattern-recognition motifs encoded within the germline (1). By contrast, antigen receptor genera-
tion by adaptive immune cells involves complex somatic DNA rearrangements that juxtapose genes 
otherwise separated by thousands to millions of base pairs (2). Each cell randomly rearranges its 
antigen receptor locus to ensure that few cells express identical receptors. In so doing, the cells 
express clonal receptors and develop an antigen receptor repertoire diverse enough and with the 
potential to recognize the plethora of existing antigens that the host is likely to encounter. Because 
the antigen receptors in the adaptive immune system are heterodimers, with both subunits under-
going independent rearrangements, the combinatorial diversity has been estimated to exceed 1015 
unique sequences (3).

The two types of cells belonging to the adaptive immune system, B and T  lymphocytes, have 
each evolved in different ways to efficiently respond to infections. In particular, B  cells produce 
and secrete antibodies that target and bind to different conformational epitopes on pathogens (4). 
T  cells, on the other hand, express cell membrane-tethered antigen receptors (TCRs, composed 
of α-chains paired to β-chains), thereby necessitating their proximity to their targets in order to 
initiate an immune response. These TCRs primarily recognize their target ligands by interacting with 
major histocompatibility complex (MHC) proteins, which present linearized peptides, expressed 
on adjacent cells (5). The presented peptides are processed fragments from full length proteins and 

https://www.frontiersin.org/Immunology/
https://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.01393&domain=pdf&date_stamp=2018-06-20
https://www.frontiersin.org/Immunology/archive
https://www.frontiersin.org/Immunology/editorialboard
https://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2018.01393
https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:laurent.gapin@ucdenver.edu
https://doi.org/10.3389/fimmu.2018.01393
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01393/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01393/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01393/full
https://loop.frontiersin.org/people/398995
https://loop.frontiersin.org/people/522203


2

Krovi and Gapin iNKT Cell Subsets

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1393

can be presented by MHC-I molecules interacting with TCRs 
expressed on CD8+ T cells or MHC-II proteins interacting with 
TCRs expressed on CD4+ T  cells (6). Correspondingly, these 
T cells not only interact with different MHC molecules but also 
produce distinct responses.

To ensure that T  cells are capable of mounting immune 
responses against all kinds of invading pathogens, T cells have 
further evolved to differentiate into functionally distinct sub-
sets. Indeed, CD4+ T cells can differentiate into TH1, TH2, TH17, 
Treg, among others, upon exposure to their cognate antigens (7). 
Each of the subsets produces a distinct set of cytokines with 
the capacity to skew the immune response in a specific direc-
tion. For example, TH1 cells produce IFNγ, a pro-inflammatory 
cytokine that promotes increased antigen presentation by 
MHC molecules and increased phagocytosis by macrophages, 
to name a few of its effects. CD4+ T cell differentiation into TH1 
cells is thought to be primarily due to intracellular pathogens 
(8). TH2 cells, though, produce a different set of cytokines, 
including IL-4, IL-5, and IL-13, and assist in combating 
extracellular pathogens such as parasites and helminths (9). 
Through this division of labor, functionally different T  cell 
subsets can resolve infections by producing responses catered 
to the pathogen.

The substantial TCR repertoire diversity in the adaptive 
immune system serves as a double-edged sword. Many different 
TCRs are expressed by the T cell population en masse, but only a 
few T cells expressing TCRs specific for a given antigen exist within 
the population (10). Thus, T cells undergo extensive proliferation 
when they first encounter their antigen to generate enough cells 
with the proper antigen-specific TCRs. The activated cells can 
then travel to the site of infection and execute their appropriate 
functions upon antigen re-challenge. As this process usually takes 
several days, the adaptive immune system is considered a slow 
and deliberate yet specific form of response. After the immune 
response has been resolved, some of the cells differentiate into 
memory cells, which exhibit faster response times in the event 
that the pathogen reinfects the host (11).

Due to the delayed kinetics of this “conventional” arm of the 
adaptive immune system, other “innate-like” adaptive lympho-
cytes play a crucial role early during an infection (12). These cells 
are unique because they express markers associated with memory 
cells despite not having encountered their antigens previously. 
Additionally, they are functionally poised and capable of respond-
ing within hours as opposed to days, in line with their innate-like 
capabilities. Though they make up only a fraction of the overall 
T  cell population, they still exert crucial and sometimes non-
redundant functions. One such lymphocyte population, which will 
be the focus of this review, is the invariant natural killer T (iNKT) 
cell lineage. These cells straddle the innate-adaptive boundary 
because they respond quickly upon stimulation (within hours), 
yet, express a TCR that underwent somatic rearrangement (13). 
Indeed, the vast majority of iNKT cells express an identical TCRα 
chain (TRAV11-TRAJ18 in mice, TRAV10-TRAJ18 in humans) 
paired to a restricted set of TCRβ chains (TRBV1, TRBV13, and 
TRBV29 in mice, TRBV25 in humans), with some notable excep-
tions (14–16). Furthermore, instead of interacting with peptides 
presented by MHC molecules, the TCRs expressed by iNKT cells 

recognize (glyco)lipids presented by CD1d, a non-polymorphic 
MHC-I-like molecule (17).

Analogous to the aforementioned functionally different con-
ventional T cell subsets, iNKT cells also come in different flavors, 
each of which exhibits a different functional profile (18–20). Such 
division of labor between functionally different iNKT cell subsets 
perhaps could explain why iNKT cells have been implicated in 
ameliorating or exacerbating a variety of diseases and illnesses 
ranging from autoimmunity to cancer. Historically, iNKT  cells 
have been lumped into one category despite their varied roles in 
responses. However, with the recent identification of functionally 
distinct iNKT cell subsets, how and which iNKT cell subsets might 
affect the development of the immune system and its response 
need to be updated. In this review, we will focus on how the dif-
ferent iNKT cell subsets develop and consequently, to what extent 
each of these subsets actively participates in immune responses.

iNKT SUBSeTS

Initially, an intriguing population of mature T cells was identi-
fied in the thymus by their lack of expression of CD4 or CD8 
coreceptors (double negative, DN) but with surface expression 
of a TCR, thereby distinguishing them from other immature thy-
mocytes (21). These DN cells were functionally competent since 
they could produce IL-4 and IFNγ readily after stimulation and 
also expressed the natural killer (NK) cell marker NK1.1 (22–24). 
This was particularly novel because T cells were not traditionally 
considered to be cytokine secretion-competent in the thymus 
and suggested that functional competence by these cells might be 
acquired during their development. Sequencing the TCRs from 
these cells repeatedly provided investigators with the same TCRα 
chain sequence (25, 26), and it was eventually determined that the 
cells required CD1d expression for their development, suggesting 
that they recognized lipids instead of peptides (27). Due to the 
expression of a TCR as well as NK markers by these cells, the 
name iNKT took preferential hold as a label for these cells.

With the discovery of the marine sponge-derived lipid 
α-galactosylceramide (αGC) that when bound to CD1d strongly 
stimulated these cells and the advent of MHC-loaded tetramer 
technology, iNKT  cells could now be tracked with profound 
resolution (28–30). Interestingly, it became readily apparent that 
not all the cells that were identified by αGC-loaded CD1d tetram-
ers were NK1.1+, suggesting phenotypic heterogeneity within the 
iNKT compartment. Because the NK1.1+ cells composed the 
overwhelming majority of the total tetramer+ population in the 
thymus in C57BL/6 (B6) mice, the NK1.1− cells were thought to 
perhaps represent developmental intermediates. Indeed, sup-
port for this idea came from experiments in which intrathymic 
transfers of NK1.1− cells could generate NK1.1+ cells (31, 32). 
Interestingly, stimulating the NK1.1− cells led to the production 
of larger amounts of IL-4 compared to IFNγ, in stark contrast to 
what the NK1.1+ cells produced, which was primarily IFNγ and 
little IL-4 (31–33). Additionally, the iNKT cells that were primar-
ily exported from the thymus were NK1.1− cells while the NK1.1+ 
cells were retained in the thymus (34, 35). Thus, it was unclear 
why the intermediates had a different cytokine secretion profile 
compared to the terminally matured population and furthermore, 
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why/how the immature cells emigrated from the thymus if they 
were truly meant to give rise to the mature iNKT cells (36).

Only recently has this conundrum been resolved due in large 
part to the work by the Hogquist group. Instead of identifying 
iNKT cells simply by the tetramer and NK1.1, they also stained 
the cells with transcription factors known to endow specific 
fates (19). Because of years of work in understanding conven-
tional CD4+ T cell differentiation, it was known that the master 
transcription factors engendering the TH1, TH2, and TH17 fates 
were T-bet, GATA-3, and RORγt, respectively (8). In addition, 
large scale screens by two groups had recently identified that all 
iNKT cells require the expression of the zinc finger transcription 
factor promyelotic leukemia zinc finger (PLZF) (37, 38). In fact, 
the few remaining iNKT  cells (as identified by the tetramer) 
found in PLZF-deficient mice resembled naïve T  cells that 
secreted IL-2 upon stimulation but not significant levels of IL-4 
or IFNγ, highlighting the transcription factor’s importance (37, 
38). By using antibodies targeting T-bet, GATA-3, RORγt, and 
PLZF, Hogquist and colleagues had the surprising finding that 
not all thymic iNKT  cells expressed each of the transcription 
factors. Instead, three distinct thymic subpopulations were iden-
tified based on their staining: PLZFhi GATA-3hi (iNKT2), PLZFint 
RORγt+ (iNKT17), and PLZFlo, T-bet+ (iNKT1) (19). Moreover, 
NK1.1 primarily stained the iNKT1 cells. Thus, although a few 
iNKT1 precursors were present in this pool, many of the NK1.1− 
cells were terminally differentiated cells themselves. This was 
further confirmed by stimulating the different subsets in  vitro, 
with iNKT1 cells producing large amounts of IFNγ and a little 
IL-4, iNKT2 cells producing large amounts of IL-4, and iNKT17 
cells secreting IL-17, putting to rest the functional discrepancy 
between NK1.1+ and NK1.1− cells (19).

Interestingly, not all thymic iNKT subsets are equally repre-
sented in different strains of mice. Certain strains, such as the 
BALB/c, have large proportions of iNKT2 and iNKT17 cells 
with a correspondingly reduced proportion of iNKT1 cells. On 
the other extreme, B6 mice instead possess largely iNKT1 cells 
and few iNKT2/iNKT17 cells (19). This is particularly important 
because previous work in these mice had led to the prevalent idea 
that, generally speaking, B6 mice tended to be predisposed to a 
“TH1 phenotype” while BALB/c mice displayed a “TH2 pheno-
type” (39, 40). Whether the iNKT cell compositions in either of 
these strains are a cause or a consequence of these phenotypes is 
unknown. Another point of note is that the reason for the over-
representation of NK1.1+ iNKT cells in previous experiments was 
the predominant use of the B6 mouse for the study of iNKT cell 
development. In fact, the antibody targeting NK1.1 in B6 mice 
does not recognize the epitope present in BALB/c mice due to 
an allelic variance (41). The use of this antibody necessitated 
experiments in B6 mice since the cells were initially characterized 
by their expression of NK1.1 (22). Now, however, iNKT cells in 
all strains are identified by their ability to interact with the αGC 
(or its analog PBS57) loaded CD1d tetramer and their transcrip-
tion factor profile (or surface proteins known to be specifically 
upregulated by these transcription factors) serves as a readout of 
the subset proportions.

The terminal differentiation status of these subsets has also 
been challenged due to the discovery of new iNKT cell subsets 

in the periphery. Although only the three aforementioned 
subsets are largely represented in the thymus, analysis of other 
tissues in both steady-state and immunization conditions has 
revealed the presence of novel iNKT subsets. In the adipose 
tissue, a special iNKT cell population, named iNKT10, has been 
identified that depends on expression of the transcription factor 
E4BP4 for its role in maintaining adipose tissue homeostasis 
(42). Similarly, an iNKTFH population expressing the transcrip-
tion factor Bcl6 has been observed in the peripheral lymphoid 
organs of immunized mice (43). This population secreted IL-21 
and provided cognate help for B cells undergoing affinity matu-
ration, much like conventional TFH cells in germinal centers 
(43–45). Ongoing work should help determine whether these 
additional subsets are indeed generated at low frequencies in 
the thymus or if they differentiate into their observed subsets 
within other tissues.

iNKT CeLL SUBSeT DeveLOPMeNT

CD4+ CD8+ [double positive (DP)] thymocytes serve as the 
progenitors for all cells belonging to the αβ T  cell lineage (46, 
47). iNKT cells are no different as they also principally originate 
from DP precursors (48, 49), with a minor proportion utilizing an 
alternative pathway (Figure 1) (50). DP cells randomly rearrange 
their TCRα loci to generate the invariant TCRα chains that pair 
with suitable TCRβ chains (49). While DP precursors of conven-
tional T cells are selected by MHC I/II on thymic epithelial cells 
(TECs), iNKT cell DP precursors are instead positively selected by 
self-lipids presented by CD1d expressed on fellow DP thymocytes 
(51, 52). The DP–DP interaction provides the iNKT precursor 
with the obligate lipid/CD1d ligand along with a distinctive 
homotypic co-stimulation through members of the signaling 
lymphocytic activated molecules (SLAM) family of receptors. 
Signals derived from SLAM family receptor interactions are 
required to produce mature iNKT cells because iNKT cells are 
notably absent in mice in which an adapter downstream of SLAM 
receptors (SAP) has been deleted (38, 53). Interestingly, different 
mouse strains also express different alleles of the SLAM receptors. 
For example, BALB/c mice possess an allele of SLAMF6 (Ly108) 
that is hyperphosphorylated upon engagement compared to the 
B6 Ly108 allele (54, 55). This hyperphosphorylation has a func-
tional effect because a stronger signal is consequently transduced 
in BALB/c DP thymocytes (56), suggesting that signals received 
by iNKT cell precursors during development in the thymus might 
not be equivalent across mouse strains.

Co-stimulations of DP cells via the TCR and the SLAM recep-
tors elicit a strong signal in the iNKT precursors leading to a high 
expression of the transcription factor Egr2 (56). Without Egr2, 
thymocytes are arrested early during iNKT  cell development 
(57–59). High expression of Egr2 is dispensable for conventional 
T cell development (57), suggesting that iNKT cells are unique 
in their requirement for stronger-than-normal agonistic signals 
to properly mature. Indeed, post-positive selection iNKT  cells, 
commonly referred to as stage 0 iNKT cells, expressed the highest 
levels of Nur77 (encoded by Nr4a1), an immediate early protein 
induced upon TCR signaling, compared to all other thymocytes 
(60). Furthermore, Egr2 has been demonstrated to bind directly 
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FigURe 1 | Schematic describing invariant natural killer T (iNKT) cell development and function in the thymus. Thymus-settling progenitors emigrate from the bone 
marrow and then mature into early thymic progenitors and progressively commit to the T cell lineage by maturing from the double negative 2 cell stage to DN3, DN4, 
and eventually to the double-positive (DP) cell stage. Here, they begin to rearrange their TCRα loci and can then be selected by MHC-I- and MHC-II-expressing 
cortical thymic epithelial cells (cTECs). Cells that successfully undergo positive selection by cTECs can become immature CD8+, CD4+, and Treg cells. By contrast, a 
small proportion of DP cells rearranges its TCRα locus to generate the iNKTα chain and is selected by other DP cells expressing CD1d and signaling lymphocytic 
activated molecules family receptors. Intracellular calcium levels are high in these post-selected stage 0 cells, which leads to NFAT translocation into the nucleus and 
upregulation of Egr2 and CD69. An alternative pathway (depicted by a dashed arrow) wherein a small number of DN4 thymocytes rearrange their TCRα loci to 
generate the iNKTα chain that can then give rise to stage 0 iNKT cells upon positive selection has also been described. These cells then transition through an 
uncommitted PLZFhi stage before diverging into the functionally distinct iNKT2, iNKT17, and iNKT1 subsets defined by the transcription factors GATA-3, RORγt, and 
T-bet, respectively. iNKT2 cells migrate from the cortex to the medulla where they begin to produce IL-4 at steady-state. This IL-4 production (as designated by red 
arrows) has been linked to conditioning surrounding CD8+ T cells to become innate-memory CD8+ T cells, promoting certain dendritic cell populations to secrete the 
chemokines CCL17 and CCL22, preventing ETP commitment to the T cell lineage and inhibiting thymic export of single positive (SP) thymocytes into peripheral 
tissues. RANKL expressed by medullary iNKT2 (and iNKT17) cells also promotes maturation of medullary thymic epithelial cells (mTECs) into Aire+ MHC-IIhi mTECs, 
which mediate negative selection of medullary SP thymocytes and Treg maturation.
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to the promoter and positively regulate the transcription of 
Zbtb16, the gene encoding PLZF. In the absence of Egr2 and its 
related protein Egr1, PLZF levels in the few remaining iNKT cells 
are significantly lower, further corroborating the link between 
strong TCR/SLAM signaling and proper iNKT development 
(59). iNKT cells are imbued with an activated/memory pheno-
type relatively early during their ontogeny, primarily due to their 
expression of PLZF (37, 38). In fact, ectopic expression of PLZF is 

sufficient to promote a memory phenotype even in conventional 
CD4+ T cells at steady state (38, 61).

One of the outstanding questions in iNKT  cell biology 
currently is how iNKT  cell subset differentiation occurs in the 
thymus. Conventional T cells in the periphery require antigen-
induced priming as well as the appropriate cytokine milieu 
to be properly polarized into different functional subsets. For 
example, generating TH1 cells from naïve CD4+ T cells requires 
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TCR-mediated signals in addition to the cytokine IL-12 that 
promotes commitment to the TH1 lineage through the actions 
of the transcription factor signal transducer and activator of 
transcription 4 (7). TH2 cells, though, require TCR-mediated 
signals in conjunction with IL-4 to be polarized into their lineage 
(9). Polarization into different lineages in this manner has been 
demonstrated to be dependent on specific factors both in vitro 
and in vivo. However, since iNKT cells differentiate in the thymus 
unlike conventional T cells that differentiate in the periphery, it is 
unclear if they follow a similar differentiation course.

Several factors, besides the canonical transcription factors, 
have been revealed to be relevant for specific iNKT cell subset 
development and maintenance, primarily through the use of 
knockout mice. The transcription factor lymphoid enhancer 
factor 1 (Lef-1) was shown to influence differentiation into the 
iNKT2 lineage (62). Lef-1 expression strongly correlates with 
PLZF expression and Lef-1−/− mice have significantly fewer 
iNKT2 cells capable of producing IL-4 (62). Mice lacking the 
serine protease Serpinb1 generate more iNKT17 cells in the 
thymus and more iNKT17 cells are found in peripheral tissues in 
KO mice as well (63). When the transcription factor Bcl11b was 
specifically knocked out of PLZF+ cells using a PLZF-Cre mouse, 
iNKT17 cells were preferentially maintained at the expense of 
iNKT1 and iNKT2 cells, suggesting that Bcl11b is required for 
iNKT1 and iNKT2 cell survival but is dispensable for iNKT17 
cell survival (64). The transcription factor Th-POK appears to 
restrict the generation of iNKT17 cells because in its absence, 
iNKT17 cell numbers are increased and more iNKT  cells are 
capable of producing IL-17 (65). Th-POK itself is epigenetically 
regulated by the micro-RNA miR133b and more iNKT17 cells 
are observed in mouse strains where iNKT cells express higher 
levels of this miRNA (66). In this manner, many other factors 
have similarly been described to be preferentially important for 
the development and/or maintenance of one subset over others. 
Despite the abundance of studies reporting proteins required for 
different subsets, what is unknown is the stage of development 
during which these proteins are first expressed. In other words, 
it is unclear if these factors themselves are the force behind the 
development of specific subsets or are instead a consequence 
of commitment to a given subset. If the former, then, different 
precursors should exist, each with a specific phenotype, which 
predispose cells into a given subset. Support for this hypothesis 
is currently lacking. Instead, it has been shown that DP precur-
sors exist in a poised state on a population level. Approximately 
1,000 genes in bulk DP cells are transcriptionally silent yet pos-
sess both permissive (H3K4me3) and repressive (H3K27me3) 
histone modifications at their transcriptional start sites (67, 68). 
About 14% of these genes code for transcription factors, some of 
which are implicated in influencing lineage diversification. These 
results suggest that a given DP precursor is capable of adopting 
various fates but only commits to one upon receiving specific 
cues (68). Thus, differential signals received by DP thymocytes 
consequently could drive the commitment of individual precur-
sors into distinct lineages that are then preferentially dependent 
on specific proteins.

Several hypotheses, not all of which are mutually exclusive, 
can be formulated to explain how iNKT cell subsets might arise 

from differential signaling during development. First, the cells 
might enter distinct pathways, as observed in the periphery, due 
to stimulation by different cytokines that impose commitment 
to a specific lineage. In support of this idea, each of the thymic 
subsets expresses a unique composition of cytokine receptors (19, 
69). Indeed, iNKT1 cells display a dependence on the cytokine 
IL-15 for survival while iNKT17 cells instead require IL-7 to 
maintain their numbers (70, 71). In addition, iNKT2 and iNKT17 
cells also seem to require IL-25 for homeostasis and function (72). 
However, this idea pre-supposes that commitment only occurs 
after upregulation of cytokine receptors that can enforce lineage 
specification. Instead, cytokine receptor expression frequently 
occurs as a consequence of expression of particular transcription 
factors themselves (73–75). Because expression of the transcrip-
tion factors would already signify commitment, this implies that 
an even earlier event drove the cells to differentially upregulate 
these proteins. Furthermore, stage 0 iNKT cells do not express any 
appreciable levels of transcripts coding for lineage-determining 
transcription factors, even at the single cell level (69). Instead, 
their transcriptomes are reminiscent of uncommitted DP cells 
having recently undergone positive selection, suggesting that 
although commitment to a subset can be reinforced by cytokine 
receptor signaling, it is unlikely to be the original signal driving 
diversification.

Another hypothesis is that recognition of specific self-ligands 
during selection has the potential to shape the subset ratio. 
Accordingly, in a recent study, antigen-specific iNKT cells were 
readily identified in the thymus when using CD1d tetramers 
loaded with a variety of lipids (76). Even though all iNKT cells 
could be identified using tetramers loaded with the potent anti-
gen αGC, different subpopulations reacted exclusively to specific 
other lipids. Although the authors did not further categorize the 
responding cells based on their functional subsets, it remains an 
appealing idea that differential recognition of CD1d-presented 
lipids might have dramatic consequences for iNKT precursors. 
In this scenario, lineage commitment would be expected to occur 
early after positive selection for each cell. Different microenviron-
ments within the thymus could present high levels of specific lipids, 
thereby specifically promoting selection of certain iNKT cell sub-
sets. This seems an unlikely proposition because selection itself 
has been demonstrated to occur on cortical DP thymocytes while 
the majority of the mature subsets (approximately 70%) take up 
residence in the medulla of the thymus, implying that migration 
to different thymic niches occurs well after positive selection (77). 
It is instead plausible that the precursors encounter different anti-
gens merely by chance in a homogenous cortical environment, 
although this possibility remains to be formally demonstrated.

Different ligands, though, are only distinguished by iNKT 
DP precursors through the use of a diverse TCR repertoire 
(19, 78, 79), raising a third non-mutually exclusive possibility 
that iNKT cell subsets might arise due to differential signaling 
transduced by their TCR during positive selection. As the cells 
undergo selection, the strength of the signal perceived by each 
cell due to the nature of the TCR as well as the specific ligand 
being recognized could instruct each cell to adopt and commit 
to a specific lineage. This is an intriguing idea since TCR signal 
strength influencing fate decisions has been demonstrated in a 
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variety of contexts (80–82). In addition, at the population level, 
it is reasonable to postulate that the precursor cells express an 
even distribution for a variety of markers, precluding the predis-
position of any one cell to enter a given pathway. However, the 
nature of the αβ TCR (the TCRβ chain in particular in the case 
of iNKT cells) does vary from cell to cell, making it likely that the 
signals transduced by the TCRs could similarly vary. The signals 
thus generated might have a small range of strengths but through 
co-stimulation by SLAM receptors (and perhaps other corecep-
tors), this range could be amplified and engender distinct fates to 
cells that land on either end of the spectrum. In agreement with 
this, mature iNKT subsets express different levels of Nur77, with 
iNKT2 cells expressing the highest, followed by iNKT17 cells, 
and finally with iNKT1 cells expressing the lowest levels (19). 
Using Egr2 as a marker for strength of TCR-mediated signals 
during positive selection, data generated in our lab also confirm 
this hierarchy (83). Thus, the cells within the subsets seem to 
retain a memory of the signals they received as precursors, with 
iNKT2 cells having received the strongest signals followed by 
iNKT17 and iNKT1 cells.

One way that cells might retain the signaling information 
could be through the transcription factor GATA-3. TCR signaling 
has been previously demonstrated to upregulate GATA-3 protein 
levels (84). Many of the genes coding for the components of the 
TCR complex, namely the Tcra, Cd3d, and Cd3g loci, are direct 
targets of GATA-3 (75, 85–87). In mice lacking GATA-3, expres-
sion of these different genes is significantly reduced. Furthermore, 
GATA-3 has also been previously shown to autoregulate its own 
expression in a positive feedback loop (88). Therefore, stronger 
signaling during positive selection could potentially lead to 
higher and sustained GATA-3 levels and consequently, higher 
TCR levels. In support of this, the TCR levels (and GATA-3 levels 
to some extent) on the different subsets follow the same pattern 
as Nur77 and Egr2 do, perhaps suggesting that signals received 
during selection could be maintained in this manner (19, 63).

Pairing the invariant TCRα chain with different TCRβ chains 
can also affect the affinity with which the TCR heterodimer 
interacts with antigen/CD1d and consequently, how efficiently 
the TCR can initiate and propagate a signal intracellularly (89). 
Interestingly, in retrogenic mice generated with distinct TCRβ 
chains, the proportions of each of the subsets could be linked to 
the avidity of the TCR for its ligand (90). Similarly, when clonal 
mice were generated using nuclei from iNKT cells expressing dif-
ferent TCRs, the proportion of PLZFhi iNKT cells in the thymus 
directly correlated with the avidity of the TCR for lipid/CD1d 
(91). Finally, different studies have revealed that TCR signaling 
regulates the expression levels of several proteins involved in 
chromatin remodeling and in whose absence, the subset ratios are 
vastly altered (68, 92, 93). With the advent of myriad technologies 
allowing immunologists to assess transcriptomic and epigenomic 
signatures at the resolution of a single cell, it will become para-
mount in the future to pursue single cell analyses on the stage 
0 iNKT  cells immediately following positive selection and 
determine if TCR signaling-mediated differences can already be 
identified within these cells. Although a recent study did conduct 
single-cell RNA-sequencing analysis on stage 0 iNKT cells, the 
study concluded that these cells were similar to other positively 

selected conventional cells (69). As this study only analyzed 45 
stage 0 iNKT cells, obtaining greater depth by sequencing more 
stage 0 iNKT cells could potentially provide more information 
on otherwise non-sampled low-abundance transcripts and/or 
accessible loci in different cells. With this information, perhaps 
an early signature can be identified that correlates with eventual 
iNKT cell subset.

iNKT SUBSeT TiSSUe HOMeOSTASiS

After developing in the thymus, iNKT cells have been observed 
in various tissues throughout the body (13). Unfortunately, due 
to an incomplete understanding of iNKT cell subsets, only their 
presence or absence in various tissues could be ascertained until 
recently. Some studies had identified iNKT cells in different tis-
sues by αGC-CD1d tetramer staining, which remains the gold 
standard (30, 94, 95). This staining, however, was rarely done in 
conjunction with staining for the master transcription factors 
associated with the subsets, precluding their identification. In 
other studies, cells were frequently identified by their co-expres-
sion of NK1.1 and TCRβ (78, 96, 97). This strategy is perhaps 
problematic for multiple reasons. First, since staining for NK1.1 is 
not successful in all strains (41), it is entirely possible that obser-
vations made using the B6 mouse model are not generalizable 
to all mouse strains, as demonstrated in BALB/c and non-obese 
diabetic (NOD) NK1.1-congenic mice (98). Second, NK1.1 does 
not exclusively mark iNKT  cells as conventional CD8+ T  cells 
can also co-express NK1.1, potentially obfuscating the real iNKT 
population (99, 100). Indeed, cytokine stimulation can lead to 
upregulation of NK1.1 and other NK  cell-related markers in 
CD8+ T cells, perhaps suggesting that iNKT1 cells acquire NK1.1 
expression in a similar manner (101). And finally, since iNKT1 
cells are primarily the only cells expressing NK1.1, learning about 
iNKT cell tissue localization through the use of this marker is by 
necessity restricted to this subset. Despite these drawbacks, some 
aspects of the tissue distribution patterns of iNKT  cell subsets 
could be gleaned from early studies.

Of the subsets, iNKT1 cells have been indirectly demonstrated 
to remain long-term thymic residents and accumulate over time. 
When congenically marked thymic lobes were transplanted in 
recipient mice, while different kinds of iNKT cells were observed 
early after transplantation, only NK1.1+ iNKT  cells persisted 
in the thymus as time progressed (34). In fact, over 50% of the 
mature αβ TCR+ cells remaining of donor origin were these likely 
iNKT1 cells that were maintained for a long period of time. This 
finding is in stark contrast to the conventional T cell population 
that is rapidly turned over in the thymus (102, 103). One possible 
explanation for thymic retention of iNKT1 cells is that T-bet 
drives expression of the chemokine receptor CXCR3, allowing 
them to be maintained in the thymus due to high levels of the 
cognate CXCR3 ligand CXCL10 (35). Another explanation for 
this phenomenon could be that T-bet in iNKT1 cells induces the 
expression of the gene Il2rb coding for the protein CD122 (73), 
thereby supporting the response to the trans-presented IL-15 
cytokine (104). This cytokine is produced by cells in the thymic 
medulla and not only serves as a survival cytokine for iNKT1 
cells but also help stabilize T-bet itself in those cells (70, 105). In 
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addition, IL-15 has been previously shown to upregulate CD69 in 
cells sensitive to this cytokine and indeed, iNKT1 cells do express 
high levels of CD69 (106, 107). Because ectopic overexpression of 
CD69 prevents thymic egress of conventional T cells (108), this 
IL-15-induced CD69 could potentially also play a role in iNKT1 
cell thymic retention.

Despite the thymic retention, NK1.1+ iNKT  cells are also 
found in the periphery. Interestingly, large numbers of NK1.1+ 
iNKT cells are found in the liver (109). This could be linked back 
to iNKT1 cells expressing T-bet and their sensitivity to IL-15. As 
previously mentioned, T-bet expressing cells also concomitantly 
express CXCR3 while IL-15 has been shown to condition cells 
to express CXCR6 in humans (110). The ligands for both these 
chemokine receptors (CXCL9/CXCL10 for CXCR3 and CXCL16 
for CXCR6) are present in abundant quantities in the liver (111–
113). Thus, by following their chemotactic gradients, it is not 
surprising that iNKT  cells compose 20–30% of T-lymphocytes 
in the liver (30, 94). Moreover, liver iNKT  cells also establish 
strong residency upon arrival, as evidenced by their reduced 
circulation in parabiotic mice (94). Long-term residency by these 
lymphocytes has been proposed to be due to the high expression 
of the transcription factor Hobit (114). Induced by both T-bet and 
IL-15, Hobit has been shown to be preferentially expressed in liver 
iNKT cells, preventing their egress from the liver (114), although 
a recent study disputes this finding (115). Nevertheless, thymic 
iNKT1 cells also express high levels of Hobit perhaps suggesting 
they might maintain their residency in a similar manner (116).

With B6 mice remaining a popular mouse model to study 
iNKT cells, iNKT2 and iNKT17 cell localization has been largely 
understudied. While in some cases, there has been some direct evi-
dence of a specific subset, iNKT2/iNKT17 presence in peripheral 
tissues has instead been frequently inferred, either by chemokine/
cytokine receptor expression or by their cytokine secretion pro-
file. iNKT17 cells, in particular, were initially identified as IL-17 
producing iNKT cells within the NK1.1− population by several 
groups (117, 118). Thereafter, using RORγt-GFP reporter mice, 
a unique population of iNKT cells was identified in the thymus 
that was dependent on RORγt for secretion of IL-17 (119). Since 
RORγt expression is strongly correlated with expression of the 
chemokine receptor CCR6, iNKT17 cells are specifically directed 
to the skin (120, 121). Additionally, expression of this chemokine 
receptor also endows some iNKT17 cells to enter lymph nodes 
as they are enriched in peripheral lymph nodes compared to the 
other sub-lineages. Similar to CCR6, expression of CD103 is also 
high on iNKT17 cells, leading to preferential retention of these 
cells in the skin, where epithelial cells express the CD103 ligand, 
E-cadherin (121, 122). iNKT17 cells also uniformly express high 
levels of the protein Syndecan-1 (CD138), although the reason for 
why they express this is unknown (123).

Insight into iNKT2 cell localization, however, has been 
further hindered by the lack of unique markers defining this 
subset. Unlike iNKT1 and iNKT17 cells, cytokine secretion is 
insufficient to specifically identify iNKT2 cells since IL-4 is also 
secreted by iNKT1 cells. Additionally, while iNKT2 cells express 
high levels of GATA-3, iNKT1, and iNKT17 cells also express this 
transcription factor, albeit at slightly lower levels (19). And finally, 
although expression of the cytokine receptor IL-17RB (specific 

for the cytokine IL-25) on iNKT cells has been demonstrated to 
enrich for IL-4/IL-13-secreting cells, iNKT17 cells also express 
this receptor, thereby preventing the use of this marker to specifi-
cally distinguish iNKT2 cells in tissues (72).

Through the use of reporter mice and transcription factor 
staining, a recent study has resolved these ambiguities by shed-
ding substantial light on iNKT cell tissue distribution as well as 
location within tissues (77). In this seminal study, iNKT cell sub-
sets were identified by their transcription factor expression and 
analyzed in many different tissues. Additionally, by developing a 
technique called histocytometry, the authors were able to identify 
the intra-tissue localization of the iNKT cell subsets. For example, 
it can now be appreciated that approximately 70% of the thymic 
iNKT cells, irrespective of subset, reside in the medullary space. 
This could be due to greater accessibility to homeostatic/survival 
cytokines (IL-15 for iNKT1 and IL-25 for iNKT2/iNKT17) in the 
medulla as well as chemokine-mediated trafficking. Remarkably, 
the relative iNKT subset distribution within tissues is not equiva-
lent across different strains of mice as evidenced by strain-specific 
iNKT cell subset distribution patterns (77). For example, skin-
draining lymph nodes were largely enriched for iNKT17 cells in 
the NOD background and to a lesser extent in B6 mice. However, 
iNKT2 cells were the principal subset present in these lymph 
nodes in BALB/c mice. Other tissues also similarly contained 
different ratios of the subsets across the strains. It is currently 
unclear if this corresponds merely to the proportion of each 
subset generated in the thymus in different strains, since BALB/c 
mice generate significantly more iNKT2 cells, or if strain-specific 
tissue-homing biases also exist.

New subsets of iNKT  cells besides the three described here 
have also been identified. iNKT cells producing IL-10 are abun-
dant in adipose tissues, where they make up approximately 30% 
of all T cells (124). Acquiring the moniker iNKT10 due to their 
ability to produce IL-10, these cells express low levels of PLZF 
and are dependent on the transcription factor E4BP4 for their 
functional competence (42). Although these cells are thymically 
derived as they are absent in adipose tissues of athymic nude mice, 
they could not be identified in detectable numbers in the thymus 
of a WT mouse (42). However, in mice expressing a transgene 
with a modified TCRβ chain that results in fewer iNKT cells due 
to improper signaling, more iNKT10-like cells were observed 
in the thymus that preferentially homed to adipose tissue (125). 
Currently, though, how they arise in a WT mouse is unknown. 
Therefore, it is possible that one of the three thymic subsets gives 
rise to this new subset that differentiates in the periphery. What 
and how specific cells home and differentiate within adipose tis-
sue is uncertain. It is conceivable that due to their expression of 
T-bet and ability to produce IFNγ after stimulation with PMA/
ionomycin, they are cells that deviate from the iNKT1 lineage due 
to the adipose tissue microenvironment (42).

Another subset that has also received attention of late is the 
iNKTFH subset, which, analogous to the conventional TFH popula-
tion, expresses Bcl6 and helps in antibody class-switching and 
somatic hypermutation (43, 45). This population was initially 
described in secondary lymphoid organs upon immunization 
with antigen in conjunction with αGC, prompting these cells to 
form stable contacts with B  cells and induce germinal centers 
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through the secretion of IL-21. Since this subset has been found 
in the spleen and iNKT1 cells are also found in higher numbers 
in the B cell zone (77), perhaps iNKTFH cells represent another 
branch-off subset from the iNKT1 lineage. This would suggest 
that iNKT1 cells are somewhat plastic in the periphery and can 
adopt other fates based on the inflammatory cues they receive.

iNKT SUBSeT FUNCTiONS AT STeADY 
STATe

Although T cells commonly circulate throughout the host body, 
so, they can properly survey all sites for any perturbations, many 
cells also establish long-term residency in various tissues (126). 
After a primary immune response has been cleared, a proportion 
of the antigen-specific cells are retained in the tissue to guarantee 
a faster response in the future. In the absence of any immune 
response, however, these cells are not quiescent and sessile but 
rather dynamically interact with other cells in the tissues to shape 
their microenvironment in crucial ways. Perhaps owing in part 
to their memory phenotype, iNKT cells similarly establish long-
term residency in several different tissues (42, 94, 127). Beyond 
that, even without establishing residency, they play important 
roles in maintaining homeostasis even in steady-state condi-
tions. For instance, their effector status enables them to readily 
secrete cytokines upon stimulation, which can have dramatic 
consequences for their surroundings (19, 77). Thus, they serve 
as a rheostat for how nearby cells acquire phenotypes that cor-
respondingly influence tissue equilibrium.

Ample evidence exists that iNKT  cells in the thymus skew 
the thymic microenvironment in substantial ways (Figure  1). 
Importantly, the ratio of the subsets affects the phenotypes of 
other conventional cells. For example, iNKT2 cells in the thymus 
affect the phenotype and functionality of CD8+ T cells. Usually, 
thymic CD8+ T  cells exhibit naïve characteristics and display 
antigen-response kinetics that are delayed compared to memory 
CD8+ T cells. Through the use of IL-4 reporter mice, it was dis-
covered that thymic iNKT2 cells constitutively produce IL-4 (19). 
This IL-4 conditions the surrounding CD8+ T cells to upregulate 
CXCR3 and Eomes and exhibit memory traits (128, 129). These 
“innate” memory CD8+ T cells display antigen-response kinetics 
reminiscent of memory cells despite never having encountered 
antigen previously (130). In so doing, they can play a major role 
in combating chronic viral infections by mounting rapid and 
robust responses (131, 132). Mutant mice with larger numbers 
of iNKT2 cells compared to wild-type mice or different strains 
of mice that endogenously produce large numbers of iNKT2 
cells consequently have larger numbers of innate memory CD8+ 
T cells. For example, only ~15% of the total iNKT cells in 8-week-
old B6 mice thymi are iNKT2 cells while similarly aged CBA and 
BALB/c mice have ~40 and ~50%, respectively (19). The IL-4 
produced by these iNKT2 cells has been directly demonstrated 
to affect the numbers of innate memory CD8+ T cells, with B6 
mice thymi possessing <4% while CBA and BALB/c mice thymi 
contain ~30 and ~60% innate memory CD8+ T cells, respectively.

In addition to affecting the CD8+ T cells, the IL-4 produced 
at steady state by iNKT2 cells also conditions SIRPα+ thymic 

dendritic cells (DCs) to upregulate and produce the chemokines 
CCL17 and CCL22 (19). These chemokines interact with CCR4, 
also expressed by iNKT2 cells, perhaps implying a positive feed-
back loop whereby iNKT2 cells are drawn to the medulla by these 
chemokines where they enact their effects and further ensure their 
continued presence due to their sustained production of IL-4. 
Regulatory T cells (Tregs) appear to also be increased in number 
and proportion by the iNKT2-produced IL-4 (133). These Tregs 
exhibit more of an activated phenotype and, in fact, have a greater 
suppressive capacity in an immune response. Recent data have 
also identified IL-4 as an inhibitory cytokine for early thymic 
progenitors (ETPs) to commit to the T cell lineage (134). ETPs 
stimulated through the IL-4 receptor upregulated the myeloid-
specific transcription factor C/EBPα, presumably halting their 
development into T cells. It would be curious to see if mice with 
a higher frequency of iNKT2 cells had correspondingly fewer 
ETPs seeding the T cell pool in the thymus. Finally, IL-4 promotes 
thymic egress of SP4 thymocytes in a S1P/S1PR1-independent 
manner (135). Although how IL-4 leads to an accumulation of SP 
thymocytes is currently unknown, it is clear that the pleiotropic 
effects of IL-4 by iNKT2 cells markedly change the thymic land-
scape, reinforcing their importance in tissue maintenance.

Significantly fewer MHC-IIhi Aire+ medullary thymic epi-
thelial cells (mTECs) exist within the thymus of CD1d−/− mice 
compared to the B6 control mice (105). Aire is a transcription 
factor exclusively expressed in mTECs that promotes the expres-
sion of peripheral tissue antigens and tolerance of developing 
SP thymocytes. Both central tolerance of SP4 thymocytes and 
generation of Tregs depends on MHC-II and Aire expression by 
mTECs. Reduction of the number of cells capable of carrying out 
these tasks compromises both of these functions (136). mTECs 
in a CD1d−/− mouse are enriched for an immature phenotype 
(MHC-IIlo Aire−). Interestingly, this mTEC developmental arrest 
is critically dependent on RANKL expression by NK1.1− cells 
iNKT  cells, suggesting a potential other role for iNKT2 (and 
possibly iNKT17) cells in the thymus beyond their production 
of IL-4. It would be of further relevance to identify if BALB/c 
mice, which have much higher numbers of iNKT2 and iNKT17 
cells in the thymus, have an even more profound defect in mTEC 
maturation in the absence of CD1d than was described in B6 
mice.

It remains unclear why iNKT2 cells play such key roles in 
influencing different thymic compartments when iNKT1 cells 
have been identified as long-term thymic residents. What role(s), 
if any, iNKT1 and iNKT17 might have in maintaining thymic 
homeostasis is currently unknown.

Substantially less evidence exists for iNKT subsets impact-
ing steady-state functions of other tissues. Production of IL-4 
by iNKT2 cells continues to condition the peripheral tissues by 
contributing to the high IgE levels found in the sera of BALB/c 
mice as well as promoting a proportion of CD4+ T cells in the 
mesenteric lymph nodes (mLNs) to constitutively express the 
activated form of the transcription factor STAT6 (phospho-
STAT6) (19, 77). Activated STAT6 translocates to the nucleus 
from the cytosol and promotes expression of GATA-3, implicating 
iNKT2 cells in potentially influencing the “TH2-bias” observed in 
BALB/c mice (137). Beyond this IL-4-mediated role of iNKT2 
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cells, our understanding of iNKT subset functions at steady-state 
in peripheral tissues is limited. Parabiosis experiments have 
determined that iNKT  cells establish long-term residency in 
hosts in the liver and the lung (94, 127). In the liver, based on 
their expression of NK1.1, the resident cells are largely iNKT1 
while expression of IL-17RB suggests an enrichment of iNKT2/
iNKT17 cells in the lung. Although it is possible that the reason 
for their tissue residency is simply to act as sentinels that kickstart 
the overall immune response during an infection, tissue-resident 
lymphocytes quite frequently have roles beyond that. Thus, future 
experiments where iNKT cells are prevented from accumulating 
in those tissues, perhaps by conditional deletion of chemokine 
ligands in those tissues, should help illuminate how iNKT subsets 
are affecting tissues in non-infectious settings.

Recently, though, the increased attention paid to iNKT10 
cells has uncovered some interesting functions of these cells in 
maintaining adipose tissue homeostasis. Experiments conducted 
using parabiotic mice demonstrated that iNKT10 cells establish 
long-term residency in adipose tissue where they support an 
immunosuppressive environment (42). Upon stimulation, over 
half of them secrete IL-10, which helps induce an anti-inflamma-
tory “M2” macrophage phenotype. Moreover, in contrast to other 
peripheral iNKT cell subsets, these cells produce high amounts of 
IL-2 upon stimulation. This, in conjunction with the IL-10, also 
promotes Treg expansion with a highly suppressive phenotype. 
This supports the idea that iNKT cells in the adipose tissue might 
also be producing these two cytokines at steady state, but this 
remains to be formally demonstrated. Although many iNKT10 
functional features have primarily been uncovered by stimulating 
these cells with αGC, the cells also express high levels of PD-1 and 
Nr4a1 even at steady state. This could indicate that the iNKT cells 
perhaps receive continuous TCR-mediated signals in the adipose 
tissue (42). Indeed, adipocytes themselves display high levels of 
CD1d molecules. Yet, the nature of the lipids that might be pre-
sented to iNKT10 cells by adipocytes remains to be discovered.

iNKT SUBSeTS iN iMMUNe ReSPONSeS

Because of their varied responses, iNKT cells have been demon-
strated to be involved in myriad immune responses in which they 
can be either protective or pathogenic (138, 139). In mice infected 
with Streptococcus pneumoniae, iNKT cells produce IFNγ within 
hours of infection (140, 141). Preventing iNKT cells from getting 
activated by using an antibody that blocks CD1d recognition by 
iNKT TCRs significantly increased bacterial loads, suggesting that 
iNKT cell activation contributed to bacterial clearance. Similar 
findings have been observed in other models in which mice have 
been infected with Pseudomonas aeruginosa or Mycobacterium 
tuberculosis, where iNKT cell deficiency also correlated strongly 
with increased bacterial burdens, hinting that iNKT  cells are 
perhaps involved in helping clear different kinds of pathogenic 
bacteria (142–144). When mice deficient in iNKT  cells were 
injected with fibrosarcoma cells, tumor progression was inhibited 
significantly only upon transfer of iNKT cells (145). Yet again, 
this protective effect was evident only when the recipient mice 
expressed CD1d, perhaps implying that the fibrosarcoma cells 
expressed lipids capable of activating iNKT cells when presented 

by CD1d. On the other hand, in a model of implanted osteosar-
coma, 88% of CD1d−/− mice rejected the tumors compared to only 
24% of WT mice (146). The reasons for the contradicting roles 
of iNKT cells in tumor models remain unclear. Finally, transfer-
ring iNKT cells into the diabetes-prone NOD mouse conferred 
resistance to diabetes and, in one study, reduced the incidence of 
diabetes from 90 to 10% (147). In contrast, anti-CD1d treatment 
of (NZBxNZW)F1 mice led to increased protection from lupus 
(148, 149). Indeed, transferring iNKT  cells from (NZBxNZW)
F1 mice into healthy recipients was sufficient to transfer disease 
(150). Thus, iNKT cells can modulate the course of the immune 
response in a variety of manners, depending on the models being 
studied.

Although iNKT  cell responses have been characterized in 
different diseased-state conditions, the specific iNKT cell subsets 
contributing to the response are largely unknown. Usually, the 
contribution of iNKT cells to an immune response is determined 
through the use of a CD1d−/− mouse model and/or a TRAJ18−/− 
mouse model, both of which lack iNKT cells. However, both of 
these mouse models have drawbacks. The original TRAJ18−/− 
mouse was generated by introducing a neomycin resistance 
gene into the Traj18 locus (151). Interestingly, these mice lack 
approximately 60% of their overall TCR repertoire due to an 
inability to express TCR rearrangements involving TRAJ genes 
upstream of Traj18 (152), potentially due to the presence of the 
neomycin resistance gene (153). Thus, these animals not only lack 
iNKT cells but also a substantial proportion of their conventional 
TCR repertoire, potentially obfuscating some of the findings 
discovered in studies using these mice. Repeating these experi-
ments in mice where Traj18 was deleted without the presence of 
a neomycin resistance gene should help clarify the original results 
(154–156). In the case of the CD1d−/− mouse model, new data have 
revealed that one of the four widely distributed knockout strains 
(157) continues to possess a small number of iNKT cells (158). 
Therefore, this specific knockout strain cannot be considered 
iNKT cell-deficient mice and conclusions obtained using these 
mice should be reassessed and instead be reevaluated using mice 
in which iNKT  cells are completely absent (159, 160). Besides 
the use of these mouse models, the iNKT cell contribution to an 
immune response is further characterized only by the cytokines 
that affect the progression of the disease, frequently IFNγ and 
IL-4, but not the phenotype of the iNKT  cells secreting those 
factors. Although this cytokine-secretion profile is more indica-
tive of the specific subsets involved, it is often insufficient since 
iNKT1 cells are also capable of producing IL-4. Thus, a greater 
effort needs to be put forth to identify the subsets involved in any 
disease based on not just their cytokines produced but also by the 
transcription factors expressed.

A few studies have shed some light on the roles of specific 
iNKT cell subsets in diseases, albeit indirectly. One study used 
a transplantable tumor model to determine that CD4+ T  cells 
negatively regulated tumor rejection. Upon further examination, 
it was discovered that CD4+ iNKT cells were the primary source 
of IL-13, creating an immunosuppressive environment that 
prevented tumor rejection (161). When these iNKT  cells were 
depleted, either through the use of depleting antibodies targeting 
CD4 or CD1d−/− mice, tumors were rejected at a significantly 
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higher frequency. It is possible that the responding iNKT  cells 
were iNKT2 cells due to their production of IL-13 and the fact 
that iNKT2 cells would have been abundant in the BALB/c mice 
in which these experiments were conducted (19, 72, 162). In addi-
tion, iNKT2 cells are enriched in the CD4+ population (19, 63), 
further lending credence to this idea, although it is perhaps worth 
revisiting these experiments using currently available tools.

Interestingly, there appears to be a tissue-specific bias associ-
ated with iNKT cells capable of mediating tumor rejection. When 
bulk iNKT cells from the liver were transferred into TRAJ18−/− 
mice harboring a sarcoma, they were capable of halting tumor 
progression (163). However, bulk splenic and thymic iNKT cells 
were not similarly capable of rejecting the tumor growth. It 
was further determined that the DN hepatic iNKT  cells were 
significantly better at tumor rejection compared to the CD4+ 
hepatic iNKT cells. This latter finding could perhaps be because 
upon stimulation, CD4+ iNKT cells tend to produce more TH2 
cytokines that would be immunosuppressive compared to the 
TH1 cytokines that DN iNKT cells are more biased to produce 
(79). Indeed, when IL-4−/− iNKT cells, irrespective of their tis-
sue origin, were transferred into mice with tumors, they more 
potently rejected tumors compared to WT iNKT  cells (163). 
Curiously, however, CD4+ and DN iNKT  cells from different 
tissues all produced similar levels of IFNγ and IL-4, suggesting 
that although IL-4 does have an impact on tumor rejection, 
other differences between the subsets and their tissue-origin also 
likely affect the functions of the iNKT cells in vivo. The specific 
functional subsets associated with these findings, though, remain 
unknown because iNKT1 cells, for example, can be found in both 
the CD4+ and DN compartments (63). Thus, in light of what is 
known today, these experiments bear repeating with the use of 
transcription factor staining to identify any differences between 
the various sources of iNKT cells. It would be especially interest-
ing to identify gene signature differences between the same iNKT 
subsets but from different tissues to understand if certain tissues 
impose functional variations.

In other studies, iNKT cells were also discovered to be relevant 
in airway hyperreactivity (AHR). One of the hallmarks of asthma, 
AHR features eosinophilia in the airways, enhanced mast cell 
growth, and increased levels of serum IgE (164). Conventional 
TH2 cells play a major role in exacerbating antigen-induced AHR. 
However, it appears that iNKT cells can prime the immune sys-
tem initially to bias the response toward a TH2 phenotype. In fact, 
in several models of AHR, iNKT-deficient mice do not develop 
AHR (165, 166). Further, intratracheal administration of a lipid 
agonist and a protein antigen strongly activated the pulmonary 
iNKT cells to prime CD4+ cells specific for the protein antigen 
to polarize into TH2 cells (127). Indeed, IL-4/IL-13 produced by 
iNKT cells was discovered to be fundamental for mice to succumb 
to AHR in these studies, although this remains controversial 
since a later study found that iNKT  cells were dispensable for 
airway inflammation (167). Despite this, the iNKT cells secreting 
the type 2 cytokines were subsequently identified as express-
ing IL-17RB, providing some evidence to suggest that the cells 
potentially promoting AHR were possibly iNKT2 cells (168, 169). 
Only IL-17RB+ cells, usually expressed by iNKT2 and iNKT17 
cells (72), were capable of recapitulating the symptoms upon 

transfer into a iNKT cell-deficient mouse by secreting IL-4 and 
IL-13 (168, 169). Interestingly, in a different model of AHR in 
which mice were exposed to ozone instead of an allergen/antigen, 
IL-17 production by iNKT cells was also required in addition to 
IL-4/IL-13, perhaps implicating that iNKT17 cells also can con-
tribute to AHR in certain contexts (170). The IL-17 produced by 
iNKT cells led to increased neutrophilia instead of eosinophilia 
in the airways and has been demonstrated in a separate study to 
be dependent on c-Maf, a transcription factor also involved in 
promoting the proper function of TH17 cells (171–173).

Administration of αGC intravenously in mice can activate 
the vascular-localized iNKT  cells. In this fashion, the hepatic 
and the red-pulp splenic iNKT cells, which are primarily iNKT1 
cells, respond within minutes by producing IFNγ and IL-4. 
Serum increases of both these cytokines can easily be detected 
in these conditions (77) and the IL-4 secreted under these 
conditions appears to have long-range effects as demonstrated 
by the increased phosphorylation of STAT6 in CD4+ T cells in 
other tissues, such as LNs, despite the iNKT cells in those tissues 
remaining unstimulated. Thus, blood-borne pathogens that are 
capable of activating iNKT cells could possibly activate iNKT1 
cells due to their localization that could then condition T cells 
in distal tissues. Analogously, since iNKT2 cells are present in 
high numbers in the mLNs of certain mouse strains, oral admin-
istration of αGC largely activated these cells and caused them to 
secrete IL-4 in large quantities (77). However, perhaps due to a 
lack of proximity to the circulation, the IL-4 produced in this 
setting had primarily local effects, with only the CD4+ T cells in 
mLNs increasing their phospho-STAT6 levels while T  cells in 
other tissues were unaffected.

Bacteria express their own lipids, some of which might serve as 
stimulatory antigens to iNKT cells. Viruses, however, hijack host 
machinery for their own purposes and thus, are devoid of any 
lipids themselves and thought to not activate iNKT cells directly. 
However, viral infections can lead to upregulation of CD1d by 
triggering toll-like receptors (TLRs) (174). Additionally, infection 
can also lead to activation of hypoxia-inducible factor, which in 
turn could alter the lipid metabolism and allow antigenic self-
lipids to be presented to iNKT cells (175). Thus, viral infections 
could lead to activation of iNKT cells in a CD1d-dependent man-
ner (176). Alternatively, activation of innate cells such as DCs 
through TLRs could prompt them to secrete pro-inflammatory 
cytokines such as IL-12 and IL-18 that consequently activate 
iNKT cells (177, 178). These activated iNKT cells can secrete IFNγ 
that promotes an antiviral response (179, 180). Thus, iNKT cells 
can participate in viral infections, potentially in a protective 
role. However, the specific subsets involved in viral clearance 
are unknown. Although the production of IFNγ by iNKT cells 
strongly suggests that the subset involved is the iNKT1 subset, 
this remains to be formally demonstrated.

Interestingly, a new study has highlighted that iNKT  cells 
influence humoral immunity during Influenza A virus infection 
(181). A previous study had identified iNKT cells as important 
in curbing myeloid-derived suppressor cell (MDSCs) function in 
influenza infection (182). The MDSCs in influenza-infected mice 
suppressed influenza-specific immune responses, leading to high 
titers of the virus. In a CD1d-dependent manner, iNKT cells were 
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able to restrict the activity of MDSCs and consequently boost the 
immune responses directed against influenza. Thus, a role for 
iNKT  cells in combating influenza virus infection had already 
been established. In the recent study, the authors focused on how 
iNKT cells affect B cell responses in influenza infection. These 
cells influence B  cell germinal center formation and antibody 
class switching despite not being iNKTFH cells. The iNKT  cells 
are the primary secretors of IL-4 early during the infection 
and express CXCR3, suggesting that they are possibly iNKT1 
cells. CD1d-mediated interactions with CD169+ macrophages 
were critical for the production of IL-4 by the iNKT cells. This 
response underscores a novel role that iNKT1 cells potentially 
play in mounting an immune response against viral pathogens. 
Although why iNKT1 (if the cells are indeed iNKT1) cells are 
producing IL-4 and the iNKT2 cells are not is unknown. It could 
be due to a possible abundance of iNKT1 cells in the mediastinal 
LNs or it could be that the macrophages present lipids on CD1d 
only capable of activating iNKT1 cells. Confirming the specific 
subset involved in this immune response and why these cells are 
preferentially activated is paramount.

More recently, with iNKT10 cells entering the fold, a new role 
has been added to the growing list of iNKT cell roles (183). In 
a model of diet-induced obesity in which mice were fed with 
high-fat diets (HFD), iNKT cells were depleted from adipose tis-
sues, although this was reversible once their diets were switched 
to standard fat diets (124). Mice lacking iNKT  cells fed HFD 
weighed more, had large adipocytes, elevated fasting blood glu-
cose levels, and increased insulin resistance. Furthermore, there 
was an increased infiltration of proinflammatory macrophages 
into the adipose tissues, an important intermediary step in the 
inflammation and pathogenesis associated with obesity. As 
mentioned previously, it is unknown what cytokines the adipose 
tissue-resident iNKT  cells secrete at steady state to maintain 
healthy adipocytes. However, these iNKT10 cells are different 
from other tissue localized iNKT cells because of their expression 
of E4BP4 (42). When iNKT cells transfected with E4BP4 were 
stimulated, they secreted more IL-10 than E4BP4− stimulated 
iNKT  cells, directly correlating E4BP4 to IL-10 production in 
iNKT cells. In addition, upon stimulation, the adipose-resident 
iNKT cells were capable of expanding Tregs in the adipose tissue 
in an IL-2-dependent manner and the adipose Treg population is 
substantially reduced in iNKT cell-deficient mice (42). Thus, the 
immunoregulatory role that the iNKT10 subset plays in adipose 
tissue to prevent obesity-related illnesses could be due to direct 
secretion of IL-10 (and possibly IL-2) at steady state.

HUMAN iNKT CeLL SUBSeTS

In humans, iNKT cell numbers are substantially more variable 
compared to the inbred mouse strains routinely used. Usually, 
their frequencies are lower in human blood compared to mouse 
blood (around 0.01–0.1% compared to 0.2–0.5% in mice), and 
their frequencies are more variable in other tissues when com-
pared to the analogous mouse tissues (184, 185). Humans instead 
have larger proportions of other innate-like T lymphocyte popula-
tions, such as mucosal-associated invariant T cells and the group 
I CD1-restricted T  cells (12). Despite the reduced frequencies, 

human iNKT cells can be isolated from healthy individuals and 
patients and analyzed for function and phenotype. Unfortunately, 
a rigorous manner of identifying human iNKT cells from clinical 
samples has not always been consistently employed. Many times, 
the cells were identified by staining for human NK-cell markers 
such as CD56 and CD161 (the human counterpart of NK1.1) 
but as in mice, these markers are also expressed on other T cell 
populations (186, 187). In other studies, iNKT cells were identi-
fied by using antibodies targeting the TCRβ chain used by these 
cells (TRBV25), but this is also problematic since other T  cell 
populations also express this TCRβ chain (188). More recently, 
iNKT cells have been identified either through the use of αGC-
loaded human CD1d tetramers or by using an antibody targeting 
the invariant TCRα rearrangement unique to iNKT  cells (189, 
190). Both tools have provided greater resolution into under-
standing iNKT cell function in humans.

Invariant natural killer T  cells in humans can be broadly 
categorized as DN, CD4+, and a small percentage of CD8+ cells 
(185). There appears to be some functional conservation of these 
subpopulations between species since the DN cells tend to have a 
TH1 bias while the CD4+ cells have a TH2 bias, although the CD4+ 
cells are also capable of secreting TH1 cytokines (184, 191). This 
suggests that perhaps human iNKT1 cells are present in both the 
CD4+ and DN fractions while iNKT2 cells are primarily present 
within the CD4+ fraction. Further evidence to support this 
hypothesis stems from the fact that the DN cells express higher 
levels of several NK receptors compared to the CD4+ cells, similar 
to how murine iNKT1 cells primarily express the NK receptors 
(185, 191).

Interestingly, it has been shown that human iNKT cells also 
express high levels of PLZF compared to other T cell populations 
(37, 38). Additionally, the CD4+ iNKT  cell population appears 
to express higher levels of PLZF as identified by mRNA levels, 
perhaps because more iNKT2 cells are present within this popula-
tion. Indeed, iNKT cell numbers and phenotype appeared to be 
significantly altered when a patient with biallelic PLZF deficiency 
was analyzed (192). Human iNKT  cells also require SLAM 
receptor-mediated signals for proper development because 
humans lacking the adapter SAP lack any observable iNKT cells 
(193). Despite these studies, whether or not functional iNKT cell 
subsets follow a similar developmental path in humans and mice 
has not been formally addressed.

The identification of functionally distinct human iNKT  cell 
subsets with differential expression of master transcription fac-
tors, similar to what is observed in mice, is currently limited. 
Instead, the cells are usually sub-divided based on their cytokine-
secretion profile and/or their expression of the CD4 coreceptor. 
For example, iNKT cells found in the cord blood of humans appear 
to have an intrinsic bias to secrete IL-17 and cannot produce 
IFNγ (194). Furthermore, a RORγt inhibitor selectively impaired 
IL-17 production by iNKT  cells in different tissues, suggesting 
that some iNKT cells could indeed constitutively express RORγt 
(although this was not formally tested) that endows them with the 
ability to secrete IL-17 upon stimulation (195). Different iNKT 
subsets identified by their differential expression of CD4 could 
induce secretion of different isotypes of antibodies by B cells. In 
particular, CD4+ iNKT cells were unique in their ability to induce 
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expansion of a CD1dhi CD5hi Breg population (196). These cells, 
however, did not express CXCR5 or PD-1 at high levels when 
placed in co-culture with the B cells, suggesting that they are not 
likely to be iNKTFH cells. As in mice, immunosuppressive functions 
were associated with CD4+ iNKT cells in various tumor settings, 
further implicating a functional distinction between CD4+ and 
CD4− iNKT populations (197). In other models of autoimmunity, 
iNKT cell numbers were found to be reduced and functionally 
impaired in their ability to secrete IL-4, although whether this 
reflects the loss of a specific subset is unknown (138). Reduction 
in iNKT cell numbers was also observed in obese patients in the 
peripheral blood, and these numbers appeared to increase once 
the patients underwent bariatric surgery (124). Whether these 
cells are the human equivalents of the murine iNKT10 popula-
tion remains to be explored. Thus, overall, there are primarily 
tidbits of information regarding functional diversity in human 
iNKT cells without a cohesive paradigm comparable to the one 
established in mice. Future work should focus on understanding 
iNKT cell function in diseased states with increased granularity, 
with special attention paid to linking function to transcription 
factors expressed by different cells.

CONCLUDiNg ReMARKS

Subset differentiation of iNKT cells is a complex and multifaceted 
process. Despite this complexity, the final subsets are surprisingly 
similar phenotypically to other cell types belonging to their cor-
responding functional group. For example, there is a striking 

similarity between iNKT1 cells, NK cells, TH1 cells, and ILC1 cells 
(198). Similarly, iNKT2 and iNKT17 cells share similarities to 
their γδ and ILC counterparts. What then makes iNKT cell sub-
sets special when other cells occupy similar niches and respond 
similarly? Two different aspects provide iNKT cells with a unique 
ability to influence the immune response. First, their ability to 
recognize lipids in an antigen-specific manner allows these cells 
to sample an antigen space that would otherwise be unmonitored 
by conventional T cells. Second, the kinetics of their responses to 
antigenic stimulation allow the iNKT subsets to rapidly skew the 
course of the immune response in directed ways. By establishing 
an initial path for the immune response, iNKT  cells have the 
potential to dictate how downstream adaptive cells are polarized 
and, consequently, how they respond. Thus, understanding the 
functional diversity within iNKT cells is essential to be able to 
manipulate the immune system. By gaining a greater understand-
ing about iNKT cell subsets and their functions, one can hope to 
target specific subsets in an effort to influence various immune 
responses in the future.
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