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Abstract: Compartmental analysis is the mathematical framework for the modelling of tracer kinetics
in dynamical Positron Emission Tomography. This paper provides a review of how compartmental
models are constructed and numerically optimized. Specific focus is given on the identifiability
and sensitivity issues and on the impact of complex physiological conditions on the mathematical
properties of the models.

Keywords: Positron Emission Tomography (PET); 2-deoxy-2-[18F]fluoro-D-glucose (FDG); tracer
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1. Introduction

Glucose plays a crucial and for a large part unexplained role in cancer metabolism [1].
Indeed, a common feature of tumor pathological metabolism is an increased glucose uptake,
together with its fermentation to lactate, even under aerobic conditions [2]. This behavior
is known as Warburg effect [3], and the revealing of its mechanism and function is one of
the most intriguing open issues of cancer biochemistry in nearly one hundred years.

2-deoxy-2-[18F]fluoro-D-glucose (FDG) [4] is a glucose analog that is systematically
utilized as a radioactive tracer in nuclear medicine. In fact, once injected in a living
organism, FDG is carried to tissues by blood, is diffused in tissues, is transported into
cells by the same transporters (GLUTs) as glucose, and is eventually trapped into cells
after phosphorylation by hexokinase (HK). Further, Warburg effects increase the FDG
consumption by cancer cells, which makes this tracer useful for cancer detection and
staging, and for the assessment of clinical therapies.

FDG Positron Emission Tomography (FDG-PET) [5] is a functional imaging modality
that utilizes FDG as a tracer in order to quantitative assess FDG metabolism in tumors
(but other pathologies are systematically investigated, as well, by means of this imaging
technique). FDG-PET measures the radiation emitted by the tracer injected in the organism,
and these measurements encode, in a very indirect way, two kinds of information: the
localization of FDG accumulation in the body and the rate with which FDG changes its
metabolic status along time. In order to decode such sophisticated information, two inverse
problems must be solved:

1. Image reconstruction inverse problem [6]: to reconstruct the spatio-temporal distribu-
tion of FDG inside the tissue by solving the integral equation that connects the FDG
densito to the measured radiation by means of the Radon transform.

2. Compartmental inverse problem [7]: to model the tracer kinetics by solving the
non-linear time-dependent equation that connects the tracer coefficients to the recon-
structed FDG concentration.
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The focus of the present review is on the compartmental inverse problem. In this
framework, on the one hand, the recorded tissue activity corresponds to the superposition
of the tracer signal in the blood, in the interstitial tissue, and within the cell. On the other
hand, the unknowns are the parameters associated to the kinetics of the tracer, which mim-
ics the kinetics of glucose. From a mathematical perspective, compartmental models rely on
the law of concentration conservation between functionally homogeneous conditions; this
leads to a Cauchy problem whose number of ordinary differential equations corresponds
to the number of compartments. In this Cauchy problem, the constant coefficients provide
the rate of tracer flow between compartments and, since they are able to describe the action
of the enzymes metabolizing the tracer, they represent the unknowns of the compartmental
problem. At a more specific level, typical technical assumptions are that:

• Only one compartment is allowed to exchange tracer with the environment.
• The input function, i.e., the tracer concentration introduced into the tissue by the

blood, is known by means of either experimental measurements or mathematical
modeling.

• The overall tracer concentration associated to the organ of interest (typically, the
tumor) is known as a function of time.

• Both the linearity of fluxes between compartments and vanishing initial conditions hold.
• The kinetic coefficients are constant and homogeneous in the tissue.

Within this framework, the present review will consider just basic schemes with
a limited number of variables. For them, we will provide a description of the input
data (Section 2) and of how the compartmental models can be constructed (Section 3).
A specific focus will be given to standard graphical approaches and to the connection
between them and the more general compartmental analysis (Section 4). Further, we
will discuss the consequences of the intrinsic ill-posedness of compartmental problems,
including their lack of uniqueness and of sensitivity (Section 5). We will also illustrate
some specific compartmental models that are related to as much specific physiological
conditions (Section 6). And we will briefly review some of the optimization methods that
have been formulated and implemented in order to reduce such models (Section 7). Our
conclusions will be offered in Section 8.

2. The Experimental Data in the Compartmental Game

Solid tumors present an increase of the glucose consumption that occurs even under
aerobic conditions [8].This mechanism is known as the Warburg effect, and its origin is
still unknown, although several studies have shown a significant correlation between
glucose consumption and tumor aggressiveness. From an experimental viewpoint, it is
very difficult to directly measure the flux of glucose molecules through biological tissues
populated by cancer cells; however, the peculiar kinetic features of a glucose analog, the
2-[18F]-2deoxy-D-glucose (FDG), allow a reliable estimate of such parameter. Indeed, FDG
is transported through cell membranes by the same GLUT transporters as glucose, and it is
trapped in the cytosol by phosphorylation catalyzed by the same hexokinases. However,
differently from glucose-6-phosphate (G6P), FDG6P is a false substrate for downstream
enzymes channeling G6P to glycolysis or the pentose-phosphate pathway. Thus, FDG6P
accumulates in cells and tissues, and its amount is considered an accurate marker of
their overall glucose consumption [9–11]. Accordingly, the measured tracer content may
be employed in non invasive cancer detection and staging, and in the assessment of
drug treatments.

In vivo, cancer FDG uptake depends on the glucose level in the blood [12,13], on the
possible administered drugs [14], and on the amount of the available tracer, which in turn is
related to the diffusion processes occurring in the whole body after injection. Further, tracer
concentration in the blood is a time-dependent parameter, as a consequence of several
factors, such as absorption by the brain [15], urinary elimination [14], accumulation in
liver [16], and the different accumulation rates of the various tissues [17].
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In Positron Emission Tomography (PET), the tracer is injected into the subject via
intravenous administration, and gamma-ray detectors measure the radiation emitted in
vivo by the target tissue. This device is calibrated in such a way that imaging procedures
allow the reconstruction of the tracer distribution in the body. The reconstructed activity
concentration may depend on both a specific region of interest at a chosen time, and on the
time course in a given time interval, where the time variable t is measured in minutes from
the time of the tracer injection.

In this section we recall a few essential features of the sources of data providing the
input for kinetic models of tracer dynamics. We consider first the standardized uptake
value (SUV), which approximates the tracer metabolic assessment by using a single time
frame (static imaging); next we consider (dynamic) estimates of the time course of tracer
concentration in blood (input function) and tracer concentration in the target tissue, which
are both obtained from a time series of images.

2.1. Standardized Uptake Value

Perhaps, the standardized uptake value (SUV) is the simplest parameter which is used
to quantify tracer accumulation from reconstructed PET images. First, the concentration
of tracer emitters in a region of interest (ROI) of the target tissue is recovered at a given
time, as the solution of an appropriately defined inverse problem. Next, the corresponding
normalized radioactivity concentration is estimated by the SUV, which is defined as [18]

SUV =
activity concentration per unit mass [Bq/kg]

injected activity [Bq]/ body mass [kg]
.

According to this definition, the radioactivity concentration in the ROI is normalized
to the radioactivity concentration in the body, which is estimated as the ratio between
the injected activity and the patient body mass. There are slightly different definitions
available; moreover, SUV measurements are affected by physiological and technological
factors [17,18].

Overall, the SUV is an oversimplified index depending on the time interval between
injection and observation, location and dimensions of the ROI, and uptake by other tis-
sues [17]. Nevertheless, the localized SUV has been used to stage tumors and to assess
response to therapies.

2.2. Input Function

Tissues extract the tracer from blood. Indeed, only free FDG is available for tissue
uptake, while the radioligand bound to blood cells and metabolites is firmly constrained to
remain in blood [19,20]. In the present work, the concentration Cb of the tracer available
for input to tissues is identified with the measured concentration in arterial blood, which
means in particular that the bound tracer is disregarded. Considerations about bound
tracer are discussed in Reference [20].

Tracer is delivered to tissues via blood flow, so that the amount of tracer locally
extracted by a tissue is highly dependent on the concentration of radioactivity in blood.
Thus, the reconstruction of FDG kinetics requires the knowledge of the arterial plasma
time-activity concentration curve of the tracer, which in turn provides an estimate of the
radioactivity available for uptake. There are several ways for the determination of the
time course of concentration: serial arterial sampling, which is independent of PET data
acquisition; images of tracer concentration in blood pools [21], such as the left ventricle; a
variety of statistical reconstruction methods [22].

In the present work, the arterial plasma activity concentration curve is regarded as
given and plays the role of input function (IF). We assume that the IF, as well as any other
activity curve, has been corrected for tracer decay.
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2.3. Activity Concentration of Target Tissue

The target tissue (TT) is the tissue selected for measuring the activity concentration
CT [kBq/mL]. Specifically, the tissue response is the time course of CT , which is computed
by realizing a ROI-based analysis of a dynamical series of reconstructed PET images [9,23].
Of course, these data are corrected for attenuation and possible systematic errors, and
the resulting CT depends on several factors like the injected dose, the shape of the IF, the
characteristics of the TT, and the pato-physiological conditions of the patient.

We point out that the activity concentration measured by a PET device is the superpo-
sition of different signals: the one emitted by tracer molecules in the blood that occupies
the ROI volume, the one associated to the tracer in the interstitial volume, and the one
emitted by the FDG molecules phosphorylated in the cell. The analysis of these PET data
aims at the reconstruction of the detailed kinetics of the tracer. In a sense, the measured
signal has to be resolved into the activity pertaining to each source. To this aim, tracer
kinetics takes into account the flow of radioactive molecules between the various sources.
This is achieved by the application a mathematical models, as described in the next section.
Comparison between model predictions and measured data leads to the determination of
tracer kinetics, through solution of an inverse problem.

3. The Construction of Compartmental Models
3.1. Generalities

Compartmental models relate the measured dynamical PET data to either specific
metabolic states or tracer chemical compounds, also accounting for their distribution in
space. These functional states are known as compartments (or also as sources, or pools).
Compartmental analysis relies on the so-called well-mixed assumption, stating that the
tracer distribution in each compartment must be considered as homogeneous, and the
tracer is instantaneously mixed when it is exchanged between compartments. A discussion
of further assumptions will be described in detail in the next subsection.

In the framework of compartmental analysis, compartments have specific functional
meanings and are characterized by specific time-dependent tracer concentrations. There-
fore, different compartments may occupy the same spatial volume as typically occurs, for
instance, in the case of free and phosphorylated FDG molecules. Conversely, a specific
chemical compound may be associated to multiple spatially distinguished compartments
and, in them, it may be characterized by different concentrations.

A compartmental model is a set of interconnected compartments, whose number
depends on the chemical, physiological, and biological properties of the tracer [7,9,24]. In
the compartmental framework, a biological system with complex physiological properties
is approximated by a limited number of basic functional constituents. In this context, even
the blood could be regarded as a compartment; however, in this review, we will assume that
the tracer concentration in the blood is known and provided by ad hoc measurements [23].

The concentrations of the various pools are the state variables of the CM, their time
dependence being determined by tracer exchange. The tracer flux between compartments,
e.g., from the free to the phosphorylated pool, occurs according to mass conservation.
Usually, it is assumed that the outgoing flux depends on the concentration of the source.

Assuming that the conservation of the tracer concentration occurs implies that the
time rate of the tracer concentration for each compartment is given by the difference
between the amount of tracer entering the pool and the amount of tracer leaving the same
pool, per unit time and unit volume. This assumption, therefore, leads to a system of
ordinary differential equations (ODEs), in which the IF providing the tracer supply to
the compartments represents the forcing function of the system. We also assume that all
the initial concentrations are zero, i.e., that there is no tracer available to the tissue at the
starting point of the experiment. In the resulting mathematical model, the state variables
represent the solutions of the Cauchy problem, which is made of linear ODEs with constant
and homogeneous rate coefficients (also named transfer coefficients or microparameters)
representing the rate of tracer flux between compartments, i.e., the phosphorylation rate
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for the FDG molecules [25]. Given the rate coefficients and the initial state, the numerical
solution of the Cauchy problem describes the tracer kinetics. However, in compartmental
analysis, the rate coefficients are unknown and must be determined in such a way that
the resulting estimates are in accordance with the measured overall tissue concentration.
Therefore, the compartmental problem is intrinsically a non-linear inverse problem, and the
first step for its solution is the proof that these rate coefficients can be uniquely determined
from the measured data. This need implies a limitation on the number of microparameters
and, in turn, on the number of functional compartments. The result of this approach is
a trade-off between an exhaustive accordance to reality, and the need of simplifying the
formal description and the corresponding system of equations.

In the course of this section we first recall the basic conditions needed to ensure
the applicability of compartmental analysis. The general reference framework has been
described by the previous discussion, which also provides some motivation, and, with
some more detail, in [26]. Next, we examine a few CMs, which are of rather common
use, and hence are regarded as highly significant. Particular attention is devoted to the
formulation of the inverse problem equation (IPE), which provides the starting point for
the formulation of the inverse problem, whose solution determines the kinetics of the tracer.
Finally, we introduce a compact (matrix) form of CMs, we present the formal solution of
the direct problem, and we write down the IPE in a general form.

3.2. Basic Applicability Conditions

In a typical PET experiment, a fraction of tracer is adsorbed by tissues after injection
into blood, while some tracer is lost by tissues and poured back into blood. The previous
discussion has indicated that application of compartmental analysis allows a reliable
reconstruction of tracer kinetics, but this can be achieved only if a certain number of
conditions are satisfied in the course of the experiment [9,10,19,23,27]. The following list
describes the most common and relevant requirements.

• Tracer is administered in trace amounts. The number of injected molecules is supposed
to be sufficiently high so that diffusion may described by application of a continuous
model. However, such a number is not so high as to influence physiological processes
and molecular interactions. In particular, tracer does not affect glucose metabolism.

• During an experiment, physiologic conditions are in a steady state which is not
affected by measurement devices of tracer concentration. This holds true, in particular,
for glucose metabolism.

• The well-mixing condition holds for each compartment. In practice, this means
that equilibrium is reached in a time interval, which is rather short with respect to
the time of data acquisition. As a consequence, the spatial homogeneity condition
follows, which implies that the tracer concentration in each compartment depends
only on time.

• Transport of tracer molecules and related composites between compartments follows
a first order kinetics, which ultimately leads to linear ODEs.

• Bound tracer in blood is disregarded, and the arterial concentration of tracer available
for tissue uptake is regarded as a valuable approximation of capillary concentration.

We have described general assumptions underlying most used compartmental mod-
els. More specific aspects of tracer kinetics may be considered in order to generate highly
realistic models. For example, a distinction may be introduced between free interstitial
tracer and free intracellular tracer; permeabilities of blood vessels and cellular membranes
may be considered, as well as dependence of activity on spatial variables. CMs explic-
itly devoted to the modeling of particular physiologic conditions will be examined in a
subsequent section.

3.3. Examples of Standard CMs

The following examples are itemized according to growing complexity. We adopt
typical notations and conventions of the nuclear medicine framework. To simplify, com-
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partments and corresponding concentrations [kBq/mL] are denoted by capital letters Ca
and Ca, respectively, where the low index a identifies the specific compartment. Rate
constants [min−1] are denoted by kb, where the low index refers to the specific function
in the set of interconnected compartments. Equal low indexes in different compartment
models correspond to the same interpretation; at each step, interpretations already dis-
cussed for the previous steps are not repeated. We recall that, unless otherwise specified,
the initial state is always considered at vanishing concentrations. In figures, compartments
are denoted as boxes; by a slight abuse, the same box notation is adopted for the blood
compartment; arrows represent flux of tracer between compartments; superposed indexed
letters identify the rate constants.

3.3.1. 1-Compartment Model

The 1-compartment model (1-CM) was proposed in order to quantify blood perfu-
sion [23,27]; recently, it has also been applied to describe tracer exchange during the flow
of blood through a capillary [28].

The 1-CM is an oversimplified model where there is only one tissue compartment C f
with state variable C f , accounting for the overall tracer content. The concentration Cb of
the IF is given. The differential equation for C f is

Ċ f = −k2 C f + k1 Cb , (1)

where k1 and k2 are the rate constants for the incoming and outgoing tracer. In other words,
k1 Cb is the rate of the incoming flow of tracer per unit volume, while k2 C f is the analogous
rate of the outgoing flow; thus, the net rate of tracer concentration per unit volume, Ċ f ,
is the difference k1Cb − k2C f , consistently with conservation of the tracer mass. Notice
explicitly that the plus and minus signs refer systematically to incoming and outgoing
flows, respectively, for the compartment considered. The case k2 = 0 corresponds to
irreversible uptake, which means that tracer cannot escape from the compartment.

The solution of Equation (1) (vanishing at t = 0) is

C f = k1

∫ t

0
e−k2 (t−τ) Cb(τ) dτ. (2)

Therefore, the concentration C f is proportional to k1, which is related to the absorption
capacity of the tissue. The parameter 1/k2 is related to the asymptotic equilibrium time.
For example, in the case Cb(t) = C̄ constant, it is found that C f = h (1− e−k2 t), where
h = C̄ k1/k2 denotes the asymptotic equilibrium value. If t = 1/k2, it is found that
C f = 0.63 h, rather close to the asymptotic value.

Consider the measured activity concentration per unit volume, CT . This PET measure-
ment is set equal to the weighted sum of the free tracer activity concentration in tissue and
a contribution arising from the distributed blood and vessels, of the same concentration Cb
as that of the whole blood. Thus, we have

CT = (1−Vb)C f + Vb Cb , (3)

where the dimensionless parameter Vb denotes the volume fraction of tissue occupied by
blood. Replacing (2) into (3) provides the IPE for the 1-CM for the unknown rate constants
k1 and k2.

3.3.2. 2-Compartment Model

Figure 1 depicts a standard 2-compartment model (2-CM) that has been used to
model the intracellular processes of phosphorylation and dephosphorylation of FDG
through two compartments, C f and Cp, accounting for free and phosphorylated tracers,
respectively [23,29]. The corresponding linear system of ODEs involves two state variables,
namely the concentrations C f and Cp, and four rate constants, and is written as
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Ċ f = −(k2 + k3)C f + k4 Cp + k1 Cb, (4)

Ċp = k3 C f − k4 Cp. (5)

The two equations express the conservation of tracer exchanged between the com-
partments C f and Cp. Thus, the outgoing flux −k3 C f from C f in (4) corresponds to the
incoming flux k3 C f into Cp in (5). Similar remarks hold for the flux k4 Cp. The constants k3
and k4 are related to phosphorylation and dephosphorylation rates, respectively, resulting
from the action of the enzymes HK and G6Pase. Again, k1 and k2 are the rate constants for
the incoming and outgoing tracer between the compartment C f and blood.

The case k4 6= 0 is usually referred to as the reversible 2-CM, since the tracer is allowed
to leave the compartment Cp. Conversely, the case k4 = 0 corresponds to the irreversible
2-CM, in the sense that dephosphorylation does not occur; hence, the tracer is trapped
inside Cp; as a consequence, the corresponding concentration Cp grows in time. In general,
a compartmental system is said to be irreversible if it contains at least one irreversible
compartment; otherwise, it is called reversible. The irreversible 2-CM was considered first
in a seminal paper by Sokoloff et al [29]. A great number of reconstruction of rate constants
performed over years have shown that, in general, the value of k4 is relatively small, so that
the irreversible 2-CM is often regarded as a mathematical model providing a satisfactory
approximation of tracer kinetics.

For later convenience, we observe that the solution of the system (4), (5) in the irre-
versible case (k4 = 0) takes the form

C f = k1

∫ t

0
e−(k2+k3) (t−τ) Cb(τ) dτ (6)

Cp =
k1 k3

k2 + k3

∫ t

0
Cb dτ − k3

k2 + k3
C f . (7)

The solution of the system (4), (5) in the reversible case (k4 6= 0) is given as

C f =
k1

λ1 − λ2

[
(k4 + λ1) I1 − (k4 + λ2) I2

]
(8)

Cp =
k1 k3

λ1 − λ2

[
I1 − I2

]
. (9)

where

I1 =
∫ t

0
eλ1 (t−τ) Cb(τ) dτ, I2 =

∫ t

0
eλ2 (t−τ) Cb(τ) dτ (10)

with
λ1,2 = [−(k2 + k3 + k4)±

√
∆]/2, (11)

and
∆ = (k2 + k3 + k4)

2 − 4 k2 k4 = (k2 + k3 − k4)
2 + 4 k3 k4.

In other words, the concentrations are expressed as linear combination of the integrals
I1 and I2, with coefficients depending on the rate constants.

The connection between the mathematical model and the PET data is given by the IPE

CT = (1−Vb) (C f + Cp) + Vb Cb. (12)

The concentration CT in the left side of (12) refers to the total activity of the target
tissue, reconstructed from the analysis of PET images; the contribution Vb Cb in the right
side comes from tracer molecules in blood, while (1− Vb) (C f + Cp) comes from tracer
molecules in tissue cells: here Cb is given, while C f and Cp are the formal solutions of the
system of ODE, expressed in either the irreversible form (6), (7), or the reversible form (8),
(9) . Overall, Equation (12) expresses the fact that the measured tracer concentration, in the
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ROI considered, results from FDG molecules in blood, and free and phosphorylated FDG
in tissue and molecules.

We point out that there are situations where the tracer content of blood may be
disregarded, which corresponds to setting Vb = 0. Conversely, if needed, the volume
fraction Vb may be regarded as an additional unknown parameter.

Figure 1. Standard Sokoloff’s 2-compartment model.

3.3.3. 3-Compartment Model

Biochemistry explains that the endoplasmic reticulum (ER) [30] plays a crucial role in
the activation of G6Pase and that, specifically, the hydrolysis of G6P and FDG6P with the
corresponding creation of free glucose and FDG molecules and a phosphate group occurs
after the transmembrane protein glucose-6-phosphate transporter (G6PT) transports the
phosphorylated forms into ER [31]. After this process, free FDG can be released into the
cytosol. This argument and further biochemical, pharmacological, clinical, and genetic
data implies the interpretation of ER as a specific functional compartment [32].

Driven by biochemical reactions involving FDG molecules, a 3-compartment model (3-
CM) has been developed, which is formed by the following compartments: C f , accounting
for free tracer in the cytosol and possibly in the interstitial space, Cp for phosphorylated
FDG in cytosol, and Cr for phosphorylated FDG in ER [13,33]. The resulting compartment
model is depicted in Figure 2. The standard compartmental 2-CM is recovered from the
3-CM under the assumption that the ER compartment is removed.

3-CM has been applied to the reduction of data coming from in vitro [13] and in
vivo [33] experiments. Although we deal with the same set of three compartments, the
resulting models and the related approaches differ in various significant aspects. For
example, the process of data acquisition in vitro requires the use of a dedicated device
(Ligand Tracer) with a properly defined calibration process, while activities replace concen-
trations as state variables [13,33]. However, the most outstanding result obtained from the
mathematical analysis of data via 3-CM, i.e., that tracer is accumulated in ER, holds both
in vitro and in vivo, and this has been confirmed by the localization of fluorescent FDG
analogues in the case of in vitro experiments [13].

Coherently with the general approach of this review, in this section we restrict our
attention to applications of 3-CM to the analysis of in vivo data.

The state variables are the concentrations C f , Cp, and Cr. The system of ODEs is
given by

Ċ f = −(k2 + k3)C f + k6 Cr + k1 Cb, (13)

Ċp = k3 C f − k5 Cp, (14)

Ċr = k5 Cp − k6 Cr. (15)

The rate constant k5 is related to tracer transport across the membrane of the ER, or
the action of the transporter G6PT. The parameter k6 is related to dephosphrylation by
G6Pase; thus it may be regarded as the correspondent of k4 in the 2-CM system. Since
dephosphorylation occurs only inside ER, the parameter k4, which corresponds to a flux
from Cp to C f , is set equal to 0.

Following the previous definitions, the case k6 6= 0 is referred to as the reversible
3-CM, since the tracer is allowed to leave the ER after dephosphorylation. Conversely, the
case k6 = 0 corresponds to the irreversible 3-CM: dephosphorylation does not occur, and
the tracer cannot leave the ER compartment.
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For later reference, we observe that the solution of the irreversible version (k6 = 0) of
the system (13)–(15) may be written as

C f = k1

∫ t

0
e−(k2+k3) (t−τ) Cb(τ) dτ, (16)

Cp = k3

∫ t

0
e−k5 (t−τ) C f (τ) dτ, (17)

and

Cr = k5

∫ t

0
Cp(τ) dτ . (18)

The connection between the tracer concentration CT estimated over a suitable ROI
and the formal solution of the ODEs (13)–(15) is obtained as follows [33]. The volume Vtot
of the ROI is partitioned as

Vtot = Vint + Vcyt + Ver + Vblood , (19)

where Vblood and Vint denote the volume occupied by blood and interstitial fluid, respec-
tively; Vcyt and Ver denote the total volumes of cytosol and ER in tissue cells. The total
activity VtotCT in Vtot is related to the state variables and the IF by

VtotCT = VintC f + VcytC f + VcytCp + VerCr + VbloodCb . (20)

The volume fractions of blood and interstitial fluid are defined as

Vb =
Vblood
Vtot

, Vi =
Vint

Vtot
, (21)

and the further dimensionless parameter vr as

vr =
Ver

Vcyt + Ver
. (22)

Notice that vr is independent of the number of cells and may be estimated as the
ratio of the ER volume and the sum of the cytosolic and reticular volumes of any cell. It is
found that

Ver

Vtot
= vr(1−Vb −Vi) ,

Vcyt

Vtot
= (1− vr)(1−Vb −Vi) . (23)

Accordingly, Equation (20) may be written in the equivalent form

CT = α1 C f + α2 Cp + α3 Cr + Vb Cb , (24)

which is the IPE of 3-CM and where the positive dimensionless constants α1, α2, and α3 are
defined as

α1 = Vi + (1− vr)(1−Vb −Vi) , (25)

α2 = (1− vr)(1−Vb −Vi) , (26)

α3 = vr(1−Vb −Vi) . (27)

Remark 1. As intentionally suggested by similarities in notation, 2-CM is a simplification of
3-CM. It has already been observed that the rate constant k6 in 3-CM corresponds to k4 in 2-CM,
in that both parameters are related to the process of dephosphorylation of the tracer molecules.

More in general, there are various possibilities of analyzing the correspondence be-
tween models from a formal viewpoint. For example, consider the system of ODE for
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3-CM and suppose that Cp is almost constant. Indeed, repeated applications of 3-CM have
shown that Cp reaches a stationary value after a very short transition time [13,33]. In that
case, Equation (14) reduces to k3 C f = k5 Cp (as a consequence, C f also becomes constant,
consistent with simulations). After substitution of this condition, (14) takes the form

Ċr = k3 C f − k6 Cr. (28)

Equations (13) and (28) coincide with (4) and (5) of 2-CM, provided Cr and k6 are identified
with Cp and k4, respectively. This is also consistent with the observation that accumulation
of FDG occurs in ER, rather than cytosol [13,33]. In a sense, a stable amount of phospho-
rylated tracer remains in cytosol, providing a similarly stable flux k5 Cp = k3 C f towards
ER. A further point to consider while connecting the two models is related to the fact that
phosphorylated tracer in 2-CM occupies the volume Vcyt, while Cr in 3-CM occupies the
volume Ver.

Figure 2. 3-compartment model for cell absorption.

3.4. Compact Formulation and General Formal Solution of the Direct Problem

We describe an alternative formulation of the ODEs for CMs which is given in matrix
form, and is used in a number of developments. This compact formulation writes

Ċ = M C + k1 Cb e . (29)

In this equation, C is the n-dimensional column vector made of the tracer concentra-
tions in each compartment; M is a square matrix of order n, with constant entries given
by the rate coefficients; e is a constant n-dimensional normalized column vector. Combin-
ing Equation (29) and the initial condition C(0) = 0 leads to a Cauchy problem for the
unknown state vector C. We refer to its solution as the solution of the direct problem.

For 2-CM, comparison with (4), (5) shows that

M =

[
−(k2 + k3) k4

k3 −k4

]
, C =

[
C f
Cp

]
, e =

[
1
0

]
. (30)

Notice that the matrix M is singular for irreversible models; conversely, M is non-
singular with eigenvalues λ1 and λ2 from Equation (11) for reversible models. Similarly,
the system (13)–(15) for 3-CM is written in the form (29) with

M =

−(k2 + k3) 0 k6
k3 −k5 0
0 k5 −k6

, C =

C f
Cp
Cr

, e =

1
0
0

. (31)

The general structure and properties of the system matrix M have been extensively
discussed, e.g., in Reference [34,35]. We only observe that, if the system is irreversible,
then there is at least one compartment, say Cn, such that the tracer cannot get out. This is
equivalent to the statement that the diagonal element Mnn of the matrix M vanishes. As
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an immediate consequence of (30) and (31), the system matrix of irreversible 2-CMs and
3-CMs is singular. The result holds in general for irreversible CMs.

The solution of the direct problem can be written as

C(t; k, Cb) = k1

∫ t

0
eM (t−τ) Cb(τ) dτ e, (32)

where k = (k1, k2, . . . , km)T is the vector whose components are the microparameters, with
upper T denoting the transpose, while M depends on the specific CM. We adopted a
notation that points out the dependence of C on the rate constants and the input function.

The compact form of the IPE is given by

CT = α C(t; k, Cb) + Vb Cb, (33)

where α is a constant row vector of order n, with components possibly depending on the
physiological parameters. Equation (33) reduces to (12) for 2-CM if α = [1− Vb, 1− Vb].
Similarly, we recover Equation (24) for 3-CM by letting α = [α1, α2, α3].

Replacing expression (32) of C into (33) provides the IPE governing the inverse
problem for the unknown vector k, at given CT and Cb.

Remark 2. In the present approach, we have described a rather simple and essential formulation of
compartmental analysis, which however is sufficient to deal with standard applications in nuclear
medicine. In more general situations, tracer could be delivered from blood to more than one
compartment, with different time rate constants, which implies a change in the definition of the
vector e. Furthermore, we have assumed that the observed activity results from the superposition of
the activities of all tissue compartments, but it may happen that more than one, say h outputs, could
be observed, so that the IPE should be replaced by a system of h equations.

4. Patlak and Logan Graphical Approaches

Graphical methods are essentially based on the following observation. Two appro-
priate functions of the measurements identify the parametric representation of a time
dependent plane curve which becomes linear for large time values. Application of a linear
regression method to the plot provides an estimate of a corresponding slope, which can
be given an interpretation in terms of either tracer absorption (irreversible CMs) or tracer
distribution (reversible CMs). In other words, graphical methods may be regarded as
procedures for the solution of a simplified inverse problem, yielding useful information on
the overall tracer kinetics.

Here we describe the Patlak graphical approach (PGA) and the Logan graphical
approach (LGA) which apply to irreversible and reversible CMs, respectively [36,37].
The procedure leading to the generation of the asymptotically linear curves follows from
the properties of the specific CM, but the final parametric equation of the curve depends
only on the available data. Therefore, we first describe the algorithm for the construction
of the (asymptotically linear) curves for irreversible CMs, and we show how it works by
application to a 2-CM and a 3-CM. A general approach to reversible CMs is then proposed,
with specific examples.

4.1. PGA

PGA provides a useful consequence of the IPE holding for a family of irreversible
CMs, in that it is used to estimate the net influx rate of radiotracer at large time values.
Subsequent multiplication by the so-called lumped constant provides an estimate of the rate
of glucose uptake [13]. The general process for deriving PGA is described in the following
procedure, which is divided into three steps, for the sake of clarity. Then, applications to
2-CM and 3-CM will be described.
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• First step. The vector solution C of the irreversible system of ODE (29) is substituted
into the IPE (33), which is then divided by Cb. The resulting equation takes the form

CT
Cb

= αP

∫ t
0 Cb

Cb
+ βP(t), (34)

(see the Appendix A) where αP [min−1] is a constant macroparameter [25], and βP
depends on Cb and the components of C.

• Second step. In a number of relevant cases it may be shown that βP is asymptoti-
cally constant. Then, in the plane referred to Cartesian coordinates (x, y), define the
functions x(t) and y(t) by

x(t) =

∫ t
0 Cb

Cb
, y(t) =

CT
Cb

, (35)

t ∈ (0, ∞). The points (x(t), y(t)) give the parametric representation of a curve which
is known as the standard Patlak plot [38]. Comparison with Equation (34) and the
condition on βP show that the curve is asymptotically linear. Thus the slope αP and
the adimensional constant intercept βP are estimated in terms of the data by linear
regression [38]. The procedure may be applied pixel-wise.

• Third step. The interpretation of αP is achieved by comparison with the stationary
solution of the system of ODEs (29), corresponding to a constant IF. It is shown that
αP measures the rate of tracer uptake by the tissue at stationary conditions.

The PGA is illustrated with an example in Figure 3. The input function shown in
Figure 3A has been taken from the public repository (https://github.com/theMIDAgroup/
BCM_CompartmentalAnalysis.git, last accessed date to the website: 5th of August 2021)
accompanying the publication [33], while the total concentration depicted in Figure 3B
has been computed by solving the forward model of a 2-CM described by Equations (4)
and (5). To this end, we set Vb = 0.15, k1 = 0.29 min−1, k2 = 0.66 min−1, k3 = 0.18 min−1,
according to the results shown in [33], and k4 = 0 min−1 so to have an irreversible CM as
required by the PGA. As shown in Figure 3C, the Patlak plot tends asymptotically to a line.

The general proof of the procedure is given in the Appendix A. Here we show how
and why it works by considering in detail irreversible 2-CMs and 3-CMs.

Figure 3. Illustrative example of the Patlak graphical approach. (A) Experimental input function
Cb(t) as a function of time. (B) Simulated total concentration CT(t) as a function of time. (C) Patlack
plot (black circles). The red dotted line is the results of a linear regression model fitted to the points
of the plot. The value of the corresponding slope αP and of the coefficient of determination R2 are
also reported.

https://github.com/theMIDAgroup/BCM_CompartmentalAnalysis.git
https://github.com/theMIDAgroup/BCM_CompartmentalAnalysis.git
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4.1.1. PGA for 2-CM

Consider an irreversible 2-CM system: the concentrations C f and Cp are given by (6)
and (7), so that C f + Cp takes the form

C f + Cp =
k1 k3

k2 + k3

∫ t

0
Cb dτ +

k2

k2 + k3
C f . (36)

Replacing this expression into the IPE (12)and then dividing by Cb, leads to (34) with

αP2 = (1−Vb)
k1 k3

k2 + k3
, (37)

and

βP2(t) = (1−Vb)
k2

k2 + k3

C f

Cb
+ Vb, (38)

where the suffix P2 refers to the PGA for the 2-CM.
Following Step 2, we observe that, if the ratio C f /Cb is asymptotically constant, then

the adimensional quantity βP2 is constant, as well, for large t values, and the Patlak plot is
asymptotically linear. It may be shown that constancy of C f /Cb occurs in two remarkable
cases: when the IF Cb is (asymptotically) constant or exponentially decaying. The latter
condition may be regarded as typical for tracer concentration in plasma [22].

According to Step 3, the direct interpretation of αP2 is obtained as follows. Consider
the system (4) and (5) in the irreversible case (k4 = 0), suppose that the IF Cb is constant,
and look for stationary solutions. Denote by an upper star the constant values. From the
system of ODES it follows that C f and Ċp assume constant values. Specifically, we find

C∗f =
k1

k2 + k3
C∗b , Ċ∗p =

k1 k3

k2 + k3
C∗b . (39)

Replacing expression (39) of Ċ∗p in the time derivative of the IPE (12), and comparing the
result with the definition of αP2 shows that

Ċ∗T = αP2 C∗i . (40)

We conclude that CT grows at the constant rate αP2 C∗i . In other words, αP2 C∗i repre-
sents the net tracer rate uptaken by the tissue in stationary conditions; it may be estimated
directly from data, without explicit knowledge of the values of the rate constants. A pixel
by pixel evaluation is also allowed. Finally, we remark that the rate of FDG uptake has been
used to estimate glucose uptake through multiplication by the lumped constant [9,13,29].

Remark 3. The coefficient αP is obtained by re-writing the IPE (33) in the form of the Patlak
plot. Since in general (33) depends on the volume fraction, the same holds for αP2, as brought into
evidence by definition (37). The slope coefficient αP2, which is related to the rate of tracer uptake,
comes from application of linear regression to the whole Patlak curve, with t varying from 0 to ∞.
The coefficient α2P is different from the slope of the line asymptotically approximating the Patlak
curve [38]. This remark holds independently of the number of compartments.

Remark 4. A required condition for application of PGA is that k4 = 0. Nevertheless, it is rather
common to use PGA for 2-CMs in order to estimate the rate of tracer uptake. To discuss here the
feasibility of this approach, we look at IPE for small values of k4. We show that the sum C f + Cp
converges to the expression of the irreversible case (k4 = 0) for k4 → 0. In other words, the
reversible model converges to the irreversible one, as to the formulation of IPE. Thus, the value of
the accumulation rate obtained by application of the irreversible model (which coincides with αP2)
may be interpreted as an approximation of the overall tracer uptake rate for small k4.
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Suppose now that k4 6= 0. According to (8) and (9), we have

C f + Cp =
k1

λ1 − λ2

[
(k3 + k4 + λ1) I1 − (k3 + k4 + λ2) I2

]
.

Further, accounting for the definitions, we find that

λ1 → 0, λ2 → −(k2 + k3), λ1 − λ2 → (k2 + k3) ,

I1 →
∫ t

0
Cb, k1 I2 → k1

∫ t

0
e−(k2+k3) (t−τ)Cb(τ) dτ = C f ,k4=0

for k4 → 0; in particular C f ,k4=0 refers to the expression (6) of C f , evaluated at k4 = 0. It
follows that

C f + Cp →
k1 k3

k2 + k3

∫ t

0
Cb dτ +

k2

k2 + k3
C f ,k4=0 (k4 → 0),

which corresponds to Equation (36) and which leads to the Patlak plot. Thus the estimate of
the rate of tracer uptake αP2 by application of the PGA is taken as an approximate estimate
of the rate in the presence of a small dephosphorylation effect.

4.1.2. PGA for 3-CM

Consider now the irreversible 3-CM. To accomplish Step 1, Equation (24) is re-written
in the equivalent form

CT = (α1 − α3)C f + (α2 − α3)Cp + α3(C f + Cp + Cr) + VbCb. (41)

Next, the sum of the differential Equations (13)–(15) is re-written as

d
dt
(C f + Cp + Cr) = −k2 C f + k1 Cb .

Evaluation of the integral from 0 to t, and substitution of the explicit expression of C f
from (16) leads to

C f + Cp + Cr =
k1 k3

k2 + k3

∫ t

0
Cb +

k2

k2 + k3
C f . (42)

Replacing the expression (42) into (41), and dividing by Cb leads to the standard
equation for the Patlak plot (34), where

αP3 = α3
k1 k3

k2 + k3
, (43)

βP3(t) = (α1 − α3 +
k2

k2 + k3
)

C f

Cb
+ (α2 − α3)

Cp

Cb
+ Vb . (44)

According to Step 2, if βP3 is asymptotically constant then an asymptotically linear
Patlak plot is obtained.

Step 3 provides the interpretation of αP3. In fact, consider the system of ODEs
(13)–(15), under the assumption of irreversibility (k6 = 0) and look for stationary solutions
at constant Cb = C∗b . It is found, in particular, that

Ċ∗r =
k1 k3

k2 + k3
C∗b .

Evaluation of the asymptotic value of the time derivative of the IPE (24) shows that
Ċ∗T = α3 Ċ∗r . Substitution of the previous expression of Ċ∗r and comparison with the
definition of αP3 leads to

Ċ∗T = αP3 C∗b . (45)
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In other words, CT grows at the constant rate αP3 C∗b .

Remark 5. Equation (45) for 3-CM is the analog of (40) for 2-CM. This is consistent with the
general discussion of PGA for irreversible CMs of generic order n, which is given in the Appendix A.

As exemplified by Equations (37) and (43), the explicit form of the equation connecting
the general slope αP to the rate constants k depends on the structure of the CM. Indeed,
PGA is model-independent, but requires the use of CMs for its motivation, development,
and proof.

4.2. LGA

Under suitable assumptions, LGA provides a useful consequence of IPE, which holds
for reversible CMs; specifically, we obtain the estimate of a macroparameter representing a
ratio between equilibrium concentrations. The procedure is somehow similar to that of
Section 4.1 for PGA; we reproduce here the main steps in the case of a general reversible
CM [7,20,37].

• First step. Consider the integral in time of the IPE equation in the compact form (33):

∫ t

0
CT =

∫ t

0
α C + Vb

∫ t

0
Cb. (46)

where α C is related to data through the ODE (29). Indeed, multiplication of (29) by
M−1 yields

C = M−1 Ċ− k1 M−1 e Cb.

Further multiplication by α, and integration with respect to time from 0 to t gives∫ t

0
α C(τ; k) dτ = α M−1C− k1 α M−1 e

∫ t

0
Cb dτ

Substitution into (46), followed by division by CT gives the necessary condition∫ t
0 CT

CT
= αL

∫ t
0 Cb

CT
+ βL(t) (47)

where the dimensionless constant αL and the function βL(t) [min−1] are defined as

αL = −k1 α M−1 e + Vb, (48)

βL(t) =
α M−1C

CT
. (49)

• Second step. Following the analogy with the GPA approach of Section 4.1, in a number
of relevant cases it may be shown that βL is asymptotically constant. In such a case,
consider the functions x(t) and y(t) defined by

x(t) =

∫ t
0 Cb

CT
, y(t) =

∫ t
0 CT

CT
, (50)

t ∈ (0, ∞). In analogy with (34) the points (x(t), y(t)) of the Cartesian plane define
a parametric representation of the standard Logan plot, which is an asymptotically
linear curve. The adimensional slope αL and the intercept βL are macroparameters
determined by the data, which are estimated by linear regression.

• Third step. The interpretation of αL follows from the equilibrium solution of the
system (29) at constant IF C∗b . The equilibrium state C∗ is given by

C∗ = −k1 M−1 e C∗b .
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According to the IPE (33), the previous equation, and the definition of αL, it follows that

C∗T = α C∗ + Vb C∗b = −k1 α M−1 e C∗b + Vb C∗b = αL C∗b (51)

Thus, the slope αL = C∗T/C∗b is the ratio between the constant equilibrium value of the
total tissue concentration and the blood concentration.

Figure 4 shows an example of the application of the LGA. The input function plotted
in panel (A) is the same as in Figure 3A, while the total concentration plotted in panel
(B) has been computed by solving Equations (4) and (5) or the forward model of a 2-CM
where we set Vb = 0.15, k1 = 0.29 min−1, k2 = 0.66 min−1, k3 = 0.18 min−1 according to
the results shown in [33]. To satisfy the reversibility condition, we set k4 to a value close to
that of k3, namely we defined k4 = 0.3 min−1. As can be seen in Figure 4C, the Logan plot
tends asymptotically to a line.

Remark 6. It should be noticed that C∗T takes into account the total tracer content of a tissue
volume, which means that the contribution due to the presence of blood is also considered.

An alternative interpretation of αL in terms of volumes is obtained as follows. Suppose
VT and Vb are tissue and blood volumes containing the same amount of radioactivity at
the equilibrium concentrations. This means that

C∗T VT = C∗b Vb , (52)

whence, it follows that
Vb
VT

=
C∗T
C∗b

= αL . (53)

Accordingly, αL may also be interpreted as the ratio between blood and tissue volumes
containing the same amount of tracer at equilibrium concentrations. We conclude that αL
assesses the overall capability of the tissue to concentrate or dilute tracer in equilibrium
conditions.

Figure 4. Illustrative example of the Logan graphical approach. (A) Experimental input function
Cb(t) as a function of time. (B) Simulated total concentration CT(t) as a function of time. (C) Logan
plot (black circles). The red dotted line is the results of a linear regression model fitted to the points
of the plot. The value of the corresponding slope αL and of the coefficient of determination R2 are
also reported.

4.2.1. LGA for 2-CM

We consider a reversible 2-CM system (k4 6= 0). Explicit computations show that

k1 α M−1 e = −(1−Vb)
k1

k2

(
1 +

k3

k4

)
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and
α M−1 C = −(1−Vb)

( k3 + k4

k2 k4
C f +

k2 + k3 + k4

k2 k4
Cm
)
.

Substitution into the definitions (54) and (55) leads to

αL2 = (1−Vb)
k1

k2

(
1 +

k3

k4

)
+ Vb, (54)

and

βL2(t) = −(1−Vb)
[ k3 + k4

k2 k4

C f

CT
+

k2 + k3 + k4

k2 k4

Cp

CT

]
, (55)

where the low index L2 refers to the Logan plot for 2-CMs.
Suppose that Vb is small enough to be negleted. Then, αL2 reduces to (k1/k2) (1 +

k3/k4) = DVT , which is called the total distribution volume [20,27,39].

4.2.2. LGA for 3-CM

Consider a reversible 3-CM (k6 6= 0). Following the same procedure as Section 4.2.1,
with M, α, and e properly updated, it is found that∫ t

0 CT

CT
= αL3

∫ t
0 Cb

CT
+ βL3(t) (56)

with
αL3 = α M−1 e + Vb =

k1

k2

(
α1 + α2

k3

k5
+ α3

k3

k6

)
+ Vb (57)

βL3(t) =
α M−1 C

CT
= −

(α1

k2
+

α2 k3

k2 k5
+

α3 k3

k2 k6

) C f + Cp + Cr

CT
− α2

k5

Cp

CT
− α3

k6

Cp + Cr

CT
(58)

If βL3(t) is asymptotically constant, then Equation (56) provides a standard Logan
plot with slope αL3.

An analysis of the system (13)–(15) and Equation (24) at constant values of C f , Cp, Cr,
and Cb shows that αL,3C coincides with C∗T/C∗b = Vb/VT such that C∗T VT = C∗b Vb.

5. Issues on the Solvability of the Inverse Problem

The fundamental application of compartmental analysis deals with the reconstruction
of tracer kinetics via estimate of the rate constants, which cannot be measured directly.
A natural requirement is that the parameters that identify the mathematical model are
uniquely defined, up to noise in the data. This is known as the identifiability problem.
There are, at least, two reasons to asses identifiability [40]. Since the rate constants have
a kinetic meaning, we are interested in knowing whether their values can be determined
uniquely from the available experimental data. Moreover, we expect difficulties in the
estimate of parameters of a non-identifiable model. The discussion of a few aspects of
these problems is the main aim of the present section with a particular focus on linear
compartment models. The analysis of identifiability for nonlinear compartmental systems,
such as those arising when fluxes between compartments are modeled by the Michaelis-
Menten law is still an open problem. A comparison of currently available techniques for
nonlinear model is beyond the scope of this review and can be found in Reference [40].

5.1. Identifiability of Linear CMs

In some scenarios, many distinct models may exist equally fitting the recorded
data [33]. Here, we assume that a linear compartmental model has been fixed by ex-
ploiting, e.g., some a priori information on the biochemical process under consideration.
Additionally, we assume all the physiological parameters, such as the blood volume fraction
Vb, to be known, and we investigate the identifiability of the kinetic parameters k.
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A standard approach to discuss the identifiability of linear CMs consists in computing
the Laplace transform of both sides of the IPE (33) and of the system of ODEs (29), leading
to, respectively,

C̃T(s) = α C̃(s) + Vb C̃b(s) , (59)

and
(s I −M) C̃(s) = k1 C̃b(s) e , (60)

where we have indicated by f̃ (s) the Laplace transform of a function f (t), and we have
assumed suitable regularity conditions.

Provided the matrix (s I −M)−1 is invertible, by computing the solution C̃(s) of the
linear system (60) and substituting it into Equation, (59) we obtain

C̃T(s)−Vb C̃b(s)
C̃b(s)

= k1α(s I −M)−1e = k1
Q(s, k̂)
D(s; k̂)

, (61)

where k̂ = [k2, ..., km]T , D(s; k̂) := det(s I−M) is a polynomial of degree n in the variable s
with coefficients depending on k̂, and similarly Q(s; k̂) := α adj(s I −M) e is a polynomial
of degree up to n− 1, adj(s I −M) being the adjugate of the n× n matrix (s I −M). In the
following, we assume that Q(s; k̂) and D(s; k̂) are coprime and that they have a leading
coefficient equal to 1.

Any alternative set h = [h1, ..., hm]T of kinetic parameters that satisfies the IPE (33) and
the system of ODEs (29) for the recorded input function Cb(t) and total concentration CT(t)
must satisfy Equation (61), with k replaced by h. Since the left-side of Equation (61) does
not depends on the value of the kinetic parameters, the following necessary condition holds:

k1
Q(s, k̂)
D(s; k̂)

= h1
Q(s, ĥ)
D(s; ĥ)

. (62)

By exploiting the fact that Q(s, k̂) and D(s; k̂) have leading coefficients equal to 1, it
can be easily shown that Equation (62) implies k1 = h1. Then, since Q(s, k̂) and D(s; k̂) are
coprime, from Equation (62) it follows that

Q(s, ĥ) = Q(s; k̂), D(s, ĥ) = D(s; k̂). (63)

If these two equations imply ĥ = k̂, then identifiability is proved. The actual imple-
mentation of this last step depends on the particular CM under consideration and may be
rather involved when many compartments are included in the model.

As an illustrative example, we consider a reversible 2-CM. In this case,

Q(s; k̂) = s + k3 + k4 (64)

and
D(s; k̂) = s2 + (k2 + k3 + k4)s + k2k4 , (65)

which do not have any common roots and have a leading coefficient equal to 1. In this case,
the necessary conditions in Equation (63) lead to the system

k3 + k4 = h3 + h4

k2 + k3 + k4 = h2 + h3 + h4

k2k4 = h2h4

(66)

that straightforwardly implies k̂ = ĥ.
Some additional results on the identifiability of 2-CMs and 3-CMs can be found in

Reference [41] where more general models are also consider, including, e.g., multiple
compartments exchanging a tracer with blood.
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5.2. Sensitivity Analysis

In the previous section, we showed how to analytically prove the identifiability of the
rate constants of a linear CM. However, in practical scenarios, this analytic result does not
guarantee that the rate constants may be effectively and reliably estimated. This may occur
when changes in one or more parameters only slightly affect the data. For this reason, a
local (or global) sensitivity analysis needs to be performed to investigate to what extent
the state of the system changes when parameter values are perturbed from a reference
value [42–44]. For example, the Matlab code for performing a local sensitivity analysis
of a 3-CM is provided in the github repository accompanying [33]. More comprehensive
toolboxes implementing various global sensitivity analysis approaches are available either
in Matlab [45] or Python [46].

While for standard 2-CMs local sensitivity analysis shows that perturbations of the rate
constants significantly affect the system variables, the 3-CM show a poor sensitivity with
respect to k5 and k6 [33]. As a consequence, even though the parameters are identifiable,
multiple configurations exist that equally fit the noisy recorded data. The uniqueness of
the solution of the inverse problem can be restored by incorporating in the optimization
procedure information on biologically feasible interval for the values of such parameters
available a priori [33] or derived by a previous sensitivity analysis [47].

6. Physiology-Driven Compartmental Models

CMs provide a highly flexible instrument which may be adapted to the analysis of
tracer kinetics in non standard conditions. We examine here a few examples, focusing
on the essential features of each approach. Each example accounts for a set of specific
conditions and available PET data, which in turn suggest the most convenient approach to
the modelling of tracer kinetics. The main characteristics of all the considered compartment
models shall be summarized in Table 1.

Table 1. Comparison among different compartment models. For each of the models we summarize
the main characteristic (Scope), the involved tracer compartments (Compartments), and the number of
unknow rate constants to be estimated (Size of k). The last to columns indicate whether the Patlak
graphical approach can be applied (PGA), and whether the identifiability of the considered model
has been proved (Identifiability).

Model Scope Compartments Size of k PGA Identifiability

2-CM Basic standard model C f , Cp 4 X X

3-CM Focus on
endoplasmic reticulum C f , Cp, Cr 5 X X

RTM Avoids use of IF C f , Cp, CR 6 × X

Liver Role of gut for the
dual input (HA and PV) C f , Cp, C ′f , C ′p, Cv 8 × ×

Kidney Focus on tubules and bladder C f , Cp, Ct, Cu 7 × X

CM = Compartment Model; RTM = Reference Tissue Model; IF = Input Function; HA = Hepatic Artery; PV =
Portal Vein.

6.1. Reference Tissue Models

In the present formulation, reference tissue models (RTMs) result from the combination
of 1-CM, 2-CM, and a graphical approach. RTMs have been introduced to overcome
difficulties in the reconstruction of the TAC of the IF. Often, the IF is determined by
measurements of activity on an ROI which is drawn over a sufficiently large blood pool,
such as the left ventricle, but the procedure is subject to systematic errors. Possible sources
of error are given by spillover, cardiac motion, and the low resolution of PET cameras
(see Reference [22] and the related references). Moreover, at the very beginning of the
diffusion process the arterial TAC shows a very high peak, which is difficult to reliably
estimate [48]. The essential idea of RTMs, is that the TAC of a suitably chosen reference
tissue (RT) replaces the TAC of the IF of the target tissue.
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We consider an RTM which is formed by a reversible 2-CM for the TT, and a 1-CM
for the RT, as shown in Figure 5. In particular, CR denotes tracer concentration in the RT,
while k1R and k2R [min−1] are the rate constants for incoming tracer flow from blood, and
outgoing flow to blood, respectively. Thus, the RTM depends on six unknown kinetic
parameters. The natural data are the time dependent radioactivity concentration CR of
the RT, and total concentration CT of the target tissue (TT). In the present formulation we
also assume that the concentration Cb of blood is known from t0 on, with t0 sufficiently
large. We show that the IPE for the unknown rate constants may be formulated in terms of
these data.

Following the approach of Reference [48] we firstly describe the RT. The concentration
CR solves the Cauchy problem for the 1-CM:

ĊR = −k2R CR + k1R Cb, CR(0) = 0 . (67)

We denote by VbR the given volume fraction of RT. Then the measured total radioac-
tivity concentration CR is expressed as

CR = (1−VbR)CR + VbR Cb. (68)

As to the TT, this is represented as a 2-CM. Hence Equation (29) applies, with M, C,
and e given by (30). It follows that

C = k1

∫ t

0
eM (t−τ) Cb(τ) dτ e , (69)

where the unknown parameters are (k1, k2, k3, k4). Notice that Equation (69) is a particular
case of the general representation (32), which has been restated here for convenience.
The connection between the measured total radioactivity concentration CT of the TT and
the related state vector C of Equation (69) follows from Equation (33), which here takes
the form

CT = αT C + VbT Cb, αT = (1−VbT)
[
1 1

]
, (70)

where VbT is the given volume fraction of the TT.
In order to find the IPE for the RTM we proceed according to three steps.
In the first step the constant k2R is expressed in terms of k1R by the use of RT data.

This reduces the number of the unknown parameters from 6 to 5, as well as and guarantees
the identifiability. Specifically, we set

k2R = λ k1R, (71)

where λ is a constant unknown parameter that may be estimated by a graphical approach.
Indeed, it follows from (67) and (68) that the following identity holds:∫ t

t0
CR

CR
= γ1

∫ t
t0

Cb

CR
,+γ2(t) , (72)

where
γ1 =

1−VbR
λ

+ VbR.

Under the assumption that γ2 is asymptotically constant, Equation (72) provides γ1
by linear regression, hence λ.

In the second step Cb is expressed in terms of CR as a consequence of Equations (67)
and (68) for the RT. It is found that

Cb =
CR
VbR
− (V−1

bR − 1) k1R

∫ t

0
e−γ k1R (t−τ) CR dτ . (73)
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In the third step, replacement of Cb in (69) with its expression (73) yields the state
vector C in terms of CR. Subsequent substitution of C and Cb in (70) provides the IPE for
the five unknowns k1R, k1, k2, k3, k4.

Identifiability is proved by considering the Laplace transforms of Equations (29) and
(70). The details can be found in Reference [48].

We conclude this section with a few remarks. The volume fraction VbR and VbT are
often set equal to zero. The number of the unknown parameters is reduced by the assump-
tion that the distribution volumes of tracer of the two tissues are equal; this corresponds
to imposing

k1

k2
=

k1R
k2R

but application of this the assumption to tumor tissues has been subject to criticism. We
refer again to Reference [48] for more details.

Figure 5. Compartment model for the reference tissue.

6.2. CMs for Liver

In applications of compartmental analysis to the liver system there are two input
functions to consider in that blood, hence the tracer, is supplied to liver by both the hepatic
artery (HA) and the portal vein (PV), which carries to the liver the blood outgoing from
the gut. While tracer concentration in HA may be estimated by the methods developed
for standard IFs, the PV is not accessible to PET images. As observed in Reference [16],
there have been several attempts to estimate the dual-input IFs from dynamic PET data.
According to the approach of Reference [16], a reliable solution is provided by combination
of three compartmental models and suitable physiologic remarks.

As described in Figure 6, we developed a compartmental approach resulting from the
combination of two 2-CM subsystems for tracer kinetics in the gut and the liver, respectively,
and a 1-CM subsystem for the portal vein, regarded as a pool connecting gut and liver.

The gut subsystem is regarded as a reversible 2-CM with arterial blood concentration
for IF, and portal vein concentration for the output function. The following system of ODEs
holds, which is simply a restatement of the ODEs for a 2-CM:

Ċ′f = −(k
′
v f + k′p f )C′f + k′f p C′p + k′f b Cb (74)

Ċ′p = k′p f C′f − k′f p C′p . (75)

Here, C′f and C′p denote the tracer concentrations of the free compartment C ′f , and
the phosphorylated compartment, C ′p, respectively; Cb is the arterial blood concentration.
We remark that the notation for the rate coefficients has been changed in order to take
into account the complicated structure of the model: specifically, kij denotes the rate
coefficient for tracer transfer to the target compartment Ci from the source compartment Cj.
In particular, k′v f is related to the rate of transfer to the PV from the gut.
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The total concentration CT,gut of the gut system and the IF Cb are accessible to mea-
surement and hence are regarded as data for the standard compartmental problem. Thus
the rate coefficients are determined by solving the IPE

CT,gut = C′f + C′p,

where a vanishing blood volume fraction is considered. The coefficients are replaced into
the system (74) and (75), so that the concentrations C′f and C′p are evaluated by solving the
related Cauchy problem with vanishing initial data. In particular, the time course of C′f is
required for further developments.

The PV subsystem, denoted as Cv, provides the input concentration to liver from gut.
Tracer carried by blood leaves the free gut compartment C ′f , goes through Cv, and enters
the free liver compartment C f . While observing that the incoming and the outgoing blood
flows of Cv are constant, it is found that k′v f = k f v. Thus, the ODE for the concentration Cv

takes the form
Ċv = k′v f C f − k′v f Cv;

its formal solution yields the expression of Cv in terms of C′f (t) and the rate constant k′v f .
The liver subsystem is modeled as a reversible 2-CM. The ODEs for the concentrations

C f and Cp, of free and metabolized compartments are

Ċ f = −(kp f + ks f )C f + k f p Cp + k f b Cb + k′v f Cv , (76)

Ċp = kp f C f − k f p Cp . (77)

The interpretation of the rate coefficients follows according to the general rules, with
the further remark that ks f is the rate towards the suprahepatic vein from the liver free
pool C f . The IFs Cb and Cv can now be regarded as given. The IPE takes the form

CT,liver = (1−Vb) (C f + Cp) + Vb (0.11Cb + 0.89Cv),

where CT,liver is the measured concentration in liver, while the numerical coefficients 0.11
and 0.89 refer to the rate of arterial and venous contributions to the hepatic blood content
Vb per unit volume. The unknowns are the 5 rate constants kp f , ks f , k f p, k f b, k′v f .

Figure 6. Compartment model for liver.
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6.3. CMs for the Renal System

Tracer subtraction from blood by the renal system, besides being of interest in itself,
may be influenced by the presence of drugs, thus leading to possible therapeutic applica-
tions [14]. A quantitative analysis of the process of renal excretion involves a compartment
anatomically represented by the bladder, which is thus, to be considered in the formulation
of the renal CM. Moreover, the change of tracer concentration in tubules associated with
re-absorption of liquid must also be considered. Insertion of these conditions makes the
CM of the renal system rather complex.

A concise description of models available in the literature can be found in Refer-
ence [14,49]. Here we describe the CM of Reference [14], which is capable of accounting for
a number of physiological conditions.

We refer to Figure 7, showing that the renal CM involves four compartments, which
can be given the following interpretations:

• An extravascular compartment C f accounting for tracer outside cells, whose exchange
with blood is free.

• A compartment Cp containing the phosphorylated FDG, the FDG in the cells, and
the preurine pool. In particular, following the flow of liquid, tracer is filtered in
the preurines and carried towards the proximal tubule. This compartment has been
denoted as Cp because tracer can also be in phosphorylated form.

• A tubular compartment Ct, where tracer flows towards bladder. Here, the concentra-
tion varies (increases) because of the re-absorption of liquids through the tubular walls.

• The urinary pool Cu, anatomically identified with the bladder, where the tracer carried
by the urine is accumulated. Notice the bladder volume varies with time.

Following the standard conventions, the system of ODEs may be written as follows:

Ċ f = −(kb f + kp f )C f + k f p Cp + k f b Cb , (78)

Ċp = kp f C f − (k f p + ktp)Cp + kpbCb, (79)

Ċt = −kut Ct + ktpCp, (80)

and
d
dt
(VuCu) = FutCt. (81)

Notice that Vu denotes the time dependent volume of the bladder, so that VuCu is the
corresponding total activity content. Fut (mL min−1) denotes the bulk flow of urine from
tubules to bladder; according to the assumption of stationarity, Fut is considered constant.

The total radioactivity CK of the kidneys may be written as

CK = (1− ηb − ηt)(C f + Cp) + ηtCt + ηbCb, (82)

where ηb and ηt denote the fractions of kidney volume VK occupied by the tubular compart-
ment and the blood compartment, respectively; they are regarded as given. The measured
data are CK, Cu, and Vu.

A rather complicated formal development (see Reference [14]) shows that, in view of
(78)–(80), Equations (82) and (81) are approximated by

AK = x1VKCb + x2

∫ t

0
AK + x3VK

∫ t

0
Cb + x4VK Au, (83)

Au = z1

∫ t

0

∫ τ

0
Ck + z2

∫ t

0

∫ τ

0
Cb + z3

∫ t

0
Au. (84)

Here, AK = VKCK and Au = VuCu represent the total activities of kidneys and bladder,
respectively. They are considered as given, since they are expressed in terms of given data.
The parameters (x1, x2, x3, x4) and (z1, z2, z3) depend on the rate constants kij, the volume
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fractions ηb and ηt, and the flow parameter Fut. System (83) and (84) provides the starting
point for the solution of the inverse problem for the unknown rate constants.

The number of unknowns is reduced by the introduction of two physiological constraints.
First, the constant flux rate Fut into bladder can be estimated from the measured

bladder volumes as

Fut =
Vu(t f )−Vu(t∗)

tt − t∗

where t f is the final time, and t∗ is any intermediate time.
Second, we recall that the bulk flow of carrier fluid from Ct toward the bladder is

around two orders of magnitude smaller than the reabsorbed flow through the boundary of
Ct. Therefore, the tracer balance equation in tubule implies ktp = 102kut. Finally, it follows
from the definitions that kut ηtVK = Fut, whence kut and ktp follow.

A simplified version of this renal system proposed in Reference [49] provides an
example of application of an inversion procedure inspired by biology. Here, the bladder
volume has been regarded as constant, while the compartment Ct, which accounts for the
presence of water re-absorption in tubule, has not been considered.

The ODEs of the simplified model take the form

Ċ f = −(kb f + kp f )C f + k f p Cp + k f b Cb, (85)

Ċp = kp f C f − (k f p + kup)Cp + kpbCb, (86)

Ċu = kupCp. (87)

The formal expressions of C f (t) and Cp(t) are obtained by solving the Cauchy Problem
(85) and (86) with vanishing initial conditions. Then, Cu(t) is determined by integration
in time of kupCp. The data are the total renal concentration CK, the bladder concentration
C̄u, and the IF Cp. The total renal concentration CK is related to the unknown rates by the
equation

CK = (1−Vb)(C f + Cp) + VbCb (88)

while C̄u and Cu are simply related by C̄u = C̄u.

Figure 7. Compartment model for the renal system.

6.4. The Role of the Endoplasmic Reticulum

In Section 3.3.3 we have discussed a three-compartment model that aims to account
for the crucial role played by the endoplasmic reticulum in cancer FDG metabolism. This
model relies on results obtained by means of an in vitro argument [13] and has been
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recently confirmed in vivo using data recorded by means of a PET device for animal
models [33]. A scheme of the model is illustrated in Figure 2 and the corresponding
equations have been discussed in Section 3.3.3.

6.5. Comparison among Different Models.

For the convenience of the reader, the most important models examined in the previous
sections are summarized in Table 1. For each of the models, all the relevant features
are outlined. Applicability of the PGA has also been considered, in view of its rather
general use.

7. Some Numerics: Optimization Schemes

The way compartmental analysis can be actually exploited for modeling the tracer
kinetics in nuclear medicine relies on the numerical solution of the IPE Equation (33).
In experimental applications, the input data is given by the time series CT = CT(t),
which is determined by computing the pixel content in Regions of Interest (ROIs) of the
reconstructed PET data at different time points; Cb = Cb(t) is the input function, which is
also determined from PET data; and the unknown is represented by the vector k, whose
components are the tracer coefficients, and by Vb. By denoting the right hand side of
Equation (33) as

F (k, Vb) := α C(t; k, Cb) + Vb Cb, (89)

the computational problem of compartmental analysis is, therefore, the one to determine,
at each time point,

(k∗, V∗b ) = arg min
k,Vb
‖CT −F (k, Vb)‖ . (90)

In this optimization equation, ‖ · ‖ denotes the topology with which the distance
between the experimental and predicted total concentrations is measured. Naive ap-
proaches to the computational solution of Equation (90) are typically characterized by three
main drawbacks:

• They typically suffer numerical instabilities related to the non-uniqueness and sensi-
tivity limitations discussed in Section 5.

• Since the operator F is clearly non linear and, further, the space where possible
minimizers can be searched for is typically big, they may suffer local minima.

• Particularly, in the case of three-compartment models, the number of kinetic parame-
ters to determine is high, which implies that they are computationally demanding.

Several numerical methods have been applied for the solution of Equation (90), whose
reliability and computational effectiveness depend on the choice of the topology ‖ · ‖ and
by the way possible prior information on the solution are encoded in the optimization
process. Further, the computational algorithms utilized for solving the minimization
problem typically belong to three general approaches: the deterministic, statistical, and
biology-inspired ones. In the following, we will provide a sketch of the main computational
aspects of these three approaches, assuming that Vb is known thanks to either experimental
or physiological information (the generalization to the case when also Vb is an unknown
parameter is straightforward).

7.1. Deterministic Approaches

Most deterministic approaches utilize numerical methods to solve the minimum
problem [50]

k∗ = arg min
k,Vb
{‖CT −F (k)‖2 + λ‖k‖p

p} , (91)

where λ is the so-called regularization parameter tuning the trade-off between the fitting
capability of the algorithm and its numerical stability. The least-squares problem corre-
sponding to λ = 0 is often addressed either by means of the standard Levenberg-Marquardt
scheme [51] or by using generalized separable parameter space techniques [52,53]. Other
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deterministic methods re-formulate the compartmental problem as the non-linear zero-
finding problem

FT = 0 , (92)

with
FT := CT −F (k) (93)

and apply an iterative Gauss-Newton approach for its solution [13,54]. Finally, more
recently, a regularized affine-scaling trust-region optimization method has been introduced
to solve the compartmental method in a rapid fashion, so that applications to parametric
imaging are possible and computationally effective [55].

7.2. Statistical Approaches

The general framework where statistical approaches are formulated is the Bayes
theorem, which, in this context, can be written as

π(k|CT) =
π(CT |k)π(k)

π(CT)
. (94)

In this equation, π(CT |k) is the likelihood distribution depending on F and on the
statistical properties of the noise affecting the measurements (which is Poissonian); π(k)
is the prior distribution encoding all the a priori information at disposal on the solution;
π(CT) is a normalization factor. The posterior distribution π(k|CT) is the solution of
the compartmental inverse problem, which can be utilized to compute k via either the
maximum a posteriori

kmap = arg max
k

π(k|CT) , (95)

or the conditional mean
kCM =

∫
π(k|CT)dCT . (96)

If the prior distribution is just concerned with the positivity of the solution, it is
well-established that kmap can be determined by means of the expectation maximization
iterative scheme [14,56,57]. Encoding more sophisticated prior information in the Bayesian
framework requires the implementation of more sophisticated Monte Carlo schemes for
the computation of the posterior distribution [58–63].

7.3. Biology-Inspired Approaches

Some recent approaches to the computational solution of tracer kinetics problems
exploit optimization schemes that rely on biological inspiration. An example of how this
perspective may be helpful in compartmental analysis is illustrated in Reference [49], where
an optimization scheme inspired by ant colony behavior is utilized to determine the kinetic
parameters. However, most optimization algorithms belonging to this group of methods
rely on neural networks that are formulated within the framework of machine and deep
learning theory [64–66].

In order to show how some of these methods behave in action, Figure 8 summarizes
some results obtained in the literature by using experimental measurements recorded by
means of a PET scanner for small animals. These results refer to the four CMs discussed
in Section 6. Specifically, in Figure 8 the parameter values obtained in panel (A) refer to
the reference tissue model in Figure 5 and have been obtained by means of a deterministic
Gauss-Newton scheme [48]. An analogous deterministic algorithm has been utilized in
panel (B) [16] to compute the parameter of the liver physiology illustrated in Figure 6. Panel
(C) and Panel (D) refer to the renal physiology modelled in Figure 7 and the parameters have
been computed by means the biology inspired Ant Colony Optimization algorithm [49] and
by the statistical Expectation Maximization iterative scheme [14], respectively. Finally, panel
(E) contains the tracer parameters provided by a regularized Gauss-Newton method [33]
in the case of the model including the endoplasmic reticulum illustrated in Figure 2. Just a
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few comments on these results: most standard errors are rather small, which shows the
stability effects related to the introduction of regularization in the optimization process;
the small value of kp f in panel (B) confirms the fact that metformin leave this parameter
essentially unaltered (indeed, these results have been obtained in the case of six tumor
models treated with metformin); panel (C) and panel (D) show the effect of metformin on
kb f ; panel (E) shows that the analogous parameter for the model accounting for the role of
the endoplasmic reticulum (i.e., k2) significantly decreases with respect to the case when
the reticulum is neglected.

Figure 8. (A) Kinetic parameters estimated for the reference tissue CM with a deterministic ap-
proach (B) Kinetic parameters estimated for the liver CM with a deterministic approach (C) Kinetic
parameters for a simplified CM for the renal system estimated with ant colony optimization, (D)
Kinetic parameters for the CM of the renal system estimated with a statistical approach (E) Ki-
netic parameters of the CM including the endoplasmic reticulum estimated with a regularized
Gauss-Newton approach.

Finally, we remark that a Matlab package equipped with a user-friendly graphi-
cal user interface (GUI) for the analysis of different compartmental models, namely
standard 2-CM, kidney, and liver, is available at https://github.com/theMIDAgroup/
CompartmentalAnalysis. Similarly, a Matlab package for analyzing a compartmental sys-
tem based on reference tissue modeling is available at https://github.com/theMIDAgroup/
ReferenceTissue_CompartmentalAnalysis, while the github repository https://github.
com/theMIDAgroup/BCM_CompartmentalAnalysis contains the Matlab code for the

https://github.com/theMIDAgroup/CompartmentalAnalysis
https://github.com/theMIDAgroup/CompartmentalAnalysis
https://github.com/theMIDAgroup/ReferenceTissue_CompartmentalAnalysis
https://github.com/theMIDAgroup/ReferenceTissue_CompartmentalAnalysis
https://github.com/theMIDAgroup/BCM_CompartmentalAnalysis
https://github.com/theMIDAgroup/BCM_CompartmentalAnalysis
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analysis of the 3-CM accounting for the endoplasmic reticulum. The last accessed date to
all the aforementioned websites is the 5th of August 2021.

8. Conclusions

Compartmental analysis is a well-established approach to the interpretation of dynam-
ical FDG-PET data and this review paper has aimed to point out the fact that numerical
algorithms for the reduction of compartmental models play a crucial role for the compre-
hension of cancer glucose metabolism from a quantitative viewpoint. Yet, some technical
issues are still open, whose solution would imply a further significant improvement in the
comprehension of glucose dynamics in cancerous tissues.

First, the approaches illustrated in this review all rely on an indirect perspective, in
which the compartmental analysis is performed on the reconstructed PET images. However,
direct parametric imaging [58,67] can be realized by using the raw PET sinograms as input
and then by solving the inverse problem relating the kinetic parameters to such sinograms.
These one-shot approaches are not currently employed for the systematic analysis of FDG-
PET data, mainly because they would have to account for the intertwining of temporal
and spatial correlations, which might increase the complexity of the optimization process.
However, they certainly present significant potential advantages, since they may exploit
the use of input data characterized by a well-established statistical distribution and a higher
signal-to-noise ratio.

Second, image processing could improve the numerical solution of the compartmental
equations by introducing morphological information that can be exploited in the com-
putation of the total concentration. More specifically, a possible scheme would rely on
a segmentation step applied on the co-registered CT image that automatically identifies
the voxels corresponding to the organ (namely, the tumor) and by the generation of a
binary map that is multiplied against the FDG-PET reconstructed map in order to allow an
accurate computation of the total concentration.

Finally, all methods described in this review explicitly assume that the tracer con-
centration in blood at the beginning of the compartmental experiment is zero. This is
reflected into a vanishing initial condition in the Cauchy problem that significantly simpli-
fies the computation. However, in clinical applications the initial concentration is not zero
and a significant improvement of the reliability of the compartmental models would be
gained by dealing with a non-vanishing Cauchy condition as a further unknown in the
differential problem.
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Appendix A

We show the main steps of the procedure leading to Equation (34) for the Patlak plot.
Consider an irreversible CM with n compartments, and suppose that Cn is the irreversible
compartment where accumulation of tracer occurs. In principle, Cn acquires tracer from
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C1, ... Cn−1 with rates h1, ..., hn−1; no compartment receives tracer from Cn. As in the rest of
the paper, C1 is the compartment which exchanges tracer with the exterior environment.

The original n-dimensional system (29) is decomposed into a reduced (n− 1)-dimensional
system for Ĉ = [C1, . . . , Cn−1]

T and a single differential equation for Cn. To this aim, denote
as h the n− 1 row vector of components h1, ... , hn−1 and consider the block decomposition

M =

[
M̂ 0
h 0

]
, C =

[
Ĉ
Cn

]
, (A1)

where M̂ is a non-singular square matrix of order n− 1, and 0 is the (n− 1)-column vector
of vanishing components. The system (29) is equivalent to the ODEs

dĈ
dt

= M̂ Ĉ + k1 Cb ê,

Ċn = h Ĉ,

where ê is the (n− 1)-column vector of vanishing components with the exception of the
first, of value 1.

It is found by integration of the two differential equations that

Ĉ = k1

∫ t

0
eM̂ (t−τ) Cb(τ) dτ ê, (A2)

Cn = h
∫ t

0
Ĉ(σ) dσ. (A3)

Substitution of (A2) into (A3) leads to

Cn = h
∫ t

0
k1

∫ σ

0
eM̂ (σ−τ) Cb(τ) dτ dσ ê.

Partial integration provides an alternative expression of Cn as

Cn = h M̂−1
[
k1

∫ t

0
eM̂ (t−τ) Cb(τ) dτ − k1

∫ t

0
Cb(τ) dτ

]
ê (A4)

The vector C = [Ĉ, Cn]T is recovered by substitution of (A2) and (A4). Further
insertion of C into the IPE (33) and division by Cb leads to Equation (34). Precisely, consider
Equation (33) in the form

CT = α̂Ĉ + αn Cn + Vb Cb,

where α has been decomposed according as α = [α̂, αn]. Division by Cb and substitution of
Cn leads to

CT
Cb

= −αn h M̂−1 ê k1

∫ t
0 Cb

Cb
+ αn h M̂−1 k1

∫ t
0 eM̂ (t−τ) Cb(τ) dτ

Cb
ê + α̂

Ĉ
Cb

+ Vb

that is,
CT
Cb

= αP

∫ t
0 Cb

Cb
+ βP(t),

where, in particular,
αP = −αn h M̂−1 ê k1.

For example, in the case of a 3-CM the expression of αP reduces to the form (43),
as expected.
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To find the interpretation of αP, consider the case of a constant IF C∗b . The correspond-
ing equilibrium value of Ĉ is given by

Ĉ∗ = −k1 M̂−1ê C∗b .

Substitution shows that the rate Ċn is constant and is expressed as

Ċ∗n = h Ĉ∗ = −k1 h M̂−1ê C∗b

Finally, evaluation of the time derivative of (33) under the above conditions shows that

Ċ∗T = αn Ċ∗n = −αn k1 h M̂−1ê C∗b = αP C∗b

We conclude that αP represents the rate of tracer accumulation at constant IF, namely,
αP = Ċ∗T/C∗b .
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