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Extended spectrum beta-lactamase (ESBL)-producing bacteria are resistant to
extended-spectrum cephalosporins and are common in broilers. Interventions are
needed to reduce the prevalence of ESBL-producing bacteria in the broiler production
pyramid. This study investigated two different interventions. The effect of a prolonged
supply of competitive exclusion (CE) product and compartmentalization on colonization
and transmission, after challenge with a low dose of ESBL-producing Escherichia coli,
in broilers kept under semi-field conditions, were examined. One-day-old broilers (Ross
308) (n = 400) were housed in four experimental rooms, subdivided in one seeder
(S/C1)-pen and eight contact (C2)-pens. In two rooms, CE product was supplied
from day 0 to 7. At day 5, seeder-broilers were inoculated with E. coli strain carrying
blaCTX−M−1 on plasmid IncI1 (CTX-M-1-E. coli). Presence of CTX-M-1-E. coli was
determined using cloacal swabs (day 5–21 daily) and cecal samples (day 21). Time
until colonization and cecal excretion (log10 CFU/g) were analyzed using survival
analysis and linear regression. Transmission coefficients within and between pens were
estimated using maximum likelihood. The microbiota composition was assessed by
16S ribosomal RNA gene amplicon sequencing in cecal content of broilers on days
5 and 21. None of the CE broilers was CTX-M-1-E. coli positive. In contrast, in the
untreated rooms 187/200 of the broilers were CTX-M-1-E. coli positive at day 21.
Broilers in C2-pens were colonized later than seeder-broilers (Time to event Ratio
3.53, 95% CI 3.14 to 3.93). The transmission coefficient between pens was lower
than within pens (3.28 × 10−4 day−2, 95% CI 2.41 × 10−4 to 4.32 × 10−4 vs.
6.12 × 10−2 day−2, 95% CI 4.78 × 10−2 to 7.64 × 10−2). The alpha diversity of
the cecal microbiota content was higher in CE broilers than in control broilers at days
5 and 21. The supply of a CE product from day 0 to 7 prevented colonization of
CTX-M-1-E. coli after challenge at day 5, likely as a result of CE induced effects on the
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microbiota composition. Furthermore, compartmentalization reduced transmission rate
between broilers. Therefore, a combination of compartmentalization and supply of a CE
product may be a useful intervention to reduce transmission and prevent colonization of
ESBL/pAmpC-producing bacteria in the broiler production pyramid.

Keywords: poultry, compartments, intervention, antimicrobial resistance, ESBL, Escherichia coli, colonization

INTRODUCTION

Extended spectrum beta-lactamase and plasmid AmpC beta-
lactamase (ESBL/pAmpC)-producing bacteria are resistant
to extended-spectrum cephalosporins (ESC). ESBL/pAmpC-
producing bacteria are present in humans, animals and the
environment (Blaak et al., 2015). Poultry is known as a source of
ESBL/pAmpC-producing bacteria and high prevalence in poultry
and poultry products have been reported in several European
countries, as reviewed by Saliu et al. (2017). ESBL/pAmpC-
producing bacteria are present at all levels of the broiler
production pyramid (Dierikx et al., 2013; Agerso et al., 2014;
Nilsson et al., 2014; Zurfluh et al., 2014a,b; Projahn et al., 2018).
Different routes of transmission within the broiler production
pyramid have been described, for example between generations,
via the hatcheries, and on and between farms (Dame-Korevaar
et al., 2019a). As a consequence, introduction of ESBL/pAmpC-
producing bacteria can occur at several levels of the broiler
production pyramid, for example at the farm or at the hatchery.
A recent study estimated that, based on the proportional
similarity index (PSI), the average transfer of ESBL/pAmpC
genes between subsequent generations in the broiler production
pyramid is almost 50% (Apostolakos et al., 2019). However, for
most of the routes it is unknown to what extent they contribute
to the presence of ESBL/pAmpC-producing bacteria in the
broiler production pyramid. In Netherlands, antimicrobial
resistance in broilers has decreased significantly since 2010 (Hesp
et al., 2019), following the trend of reduced antimicrobial usage.
However, additional interventions are needed to further reduce
this prevalence in the broiler production pyramid.

Interventions can aim to reduce exposure of broilers to
ESBL/pAmpC-producing Escherichia coli. This can be done
by improving biosecurity. For example hygiene barriers can
help reduce exposure to bacteria from the farm environment,
or by cleaning and disinfection between production rounds.
However, even after cleaning and disinfection, ESBL/pAmpC-
producing bacteria might remain in the poultry house and
result in colonization of the new flock (Daehre et al., 2018).
In addition, housing measures may reduce the prevalence
of ESBL/pAmpC-producing E. coli in poultry flocks. In
turkeys, subdividing the flock was associated with a reduced
risk for the presence of resistant E. coli on the farm
(Jones et al., 2013). Experimental studies showed that spatial
separation between infectious and susceptible animals reduced
the transmission rate of Campylobacter in broilers (van Bunnik
et al., 2012) and Streptococcus suis in pigs (Dekker et al.,
2013). Further, interventions aiming at preventing colonization
by ESBL/pAmpC-producing E. coli in broilers have been
described, such as acid-based feed additives (Roth et al., 2017)

or competitive exclusion (CE) products (Nuotio et al., 2013;
Ceccarelli et al., 2017; Methner et al., 2019; Dame-Korevaar
et al., 2020). CE products are aimed at establishing a natural
community of intestinal bacteria to protect broilers from
colonization by invaders (Nurmi et al., 1992). In modern
broiler production, due to strict hygiene practices in commercial
hatcheries, the initial bacterial load to colonize the chicken
intestinal tract shortly after hatch is low (Varmuzova et al.,
2016; Donaldson et al., 2017). Eggs are usually disinfected
to remove bacterial contamination before placement in the
hatcher. Consequently, the chicks are exposed mostly to bacteria
from environmental sources rather than parental sources upon
hatching. Microbial treatment supplied after hatch has been
shown to affect the development of bacterial taxa found in
growing chickens (Ballou et al., 2016; Schokker et al., 2017).
This suggests that early supply of CE products might influence
microbiota composition and act as a possible intervention to
prevent colonization by ESBL/pAmpC-producing E. coli in
young broilers. A single supply of CE product before challenge
with a high dose of ESBL-producing E. coli has already showed
to reduce colonization, cecal and fecal excretion (CFU/g), as
well as transmission of ESBL-producing E. coli (Nuotio et al.,
2013; Ceccarelli et al., 2017; Methner et al., 2019). Additionally,
CE products resulted in a reduced intestinal and cecal excretion
(CFU/g) after challenge with pathogenic E. coli (Hofacre et al.,
2002). A prolonged supply of CE product via the drinking water
to broilers kept in isolators, from day of hatch until day 14
resulted in a delay and even prevention of colonization after
challenge with a in the field realistic low dose of ESBL-producing
E. coli (Dame-Korevaar et al., 2020).

The aim of this study was to determine the effect of
interventions on colonization and transmission of ESBL-
producing E. coli in young broiler chicks kept under semi-field
circumstances. Two interventions were included: (1) prolonged
supply of CE product from day of hatch until day 7, and (2)
compartmentalization of a broiler flock. To investigate the effect
of CE product on microbial composition, microbiota in cecal
content was assessed before and after challenge by 16S ribosomal
RNA (rRNA) gene amplicon sequencing.

MATERIALS AND METHODS

Ethics of Experimentation
Broilers were observed daily and the presence of clinical signs,
abnormal behavior and mortality was recorded. The study
protocol was approved by the Dutch Central Authority for
Scientific Procedures on Animals and the Animal Experiments
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Committee of Utrecht University (Utrecht, Netherlands) under
registration number AVD108002015314; all procedures were
done in full compliance with Dutch legislation, and is thus
compliant with legislation in the EU directive 2016/3/EU.

Birds, Housing and Management
Conventional broiler chicks (Ross 308, n = 416), from a parent
stock flock of 37 weeks of age, were transported directly after
hatch to the animal facilities (Utrecht University, Utrecht,
Netherlands). Upon arrival, the broilers were individually tagged,
weighed, and randomly divided over four experimental rooms
(n = 104 broilers per room). Each room was subdivided into nine
pens, with one seeder (S/C1)-pen in the middle (2 m2, n = 24
broilers), surrounded by eight contact (C2)-pens (1 m2, n = 10
broilers per pen) (Figure 1). The S/C1-pen was separated from
the C2-pens by a mesh panel (30 cm solid panel at the bottom,
40 cm mesh panel, 10 cm solid panel on top). Feed and water
systems were also separated, and strict hygiene measures between
pens were taken. No direct contact between the broilers was
possible, but small particles (e.g., litter, dust) could be transferred
between pens potentially. The C2-pens were separated from each
other with wooden panels of 80 cm height, assuming no contact
and no spread of particles was possible. At day 5, just before
challenge with ESBL-producing E. coli, the number of broilers
in the S/C1-pen was reduced to 20, by removing the surplus
broilers. Ten of the remaining 20 broilers in each S/C1-pen were
randomly selected and transported to four separate isolators. In
these isolators, the broilers (seeder (S) broilers) were inoculated
with CTX-M-1-E. coli and after 1 h moved back to the original
S/C1-pens (see section “E. coli Challenge”). Before the start of the
experiment the parent flock, hatchery and research facilities were
tested for the absence of ESBL/pAmpC-producing bacteria.

Broilers were housed on fine wood shavings. A standard
broiler diet without any antibiotics or coccidiostats, radiated
with 9 Gy, was available ad libitum. The intervention was
supplied in the drinking water (see section “Intervention
Competitive Exclusion”); therefore, drinking water was not

FIGURE 1 | Schematic representation of the experimental set up of one of
four broiler rooms (1–4). Each room was subdivided in nine pens, with one
seeder (S/C1) pen in the middle (2 m2) (n = 10 S-broilers, 10 C1-broilers),
surrounded by eight contact (C2) pens (1 m2) (n = 10 broilers per pen). The
S/C1-pen was separated from the C2-pens by 80 cm high mesh panels. The
C2-pens were separated from each other by 80 cm high wooden panels.

available ad libitum during the first seven days of the experiment
in both intervention and control groups. Five out of 400 broilers
died or were euthanized before the end of the experiment due
to causes unrelated to the experiment, but by common causes in
young broilers, i.e., not starting to eat or drink or omphalitis.

Intervention Competitive Exclusion
In two of four rooms a CE product was supplied, containing
“natural, live intestinal microflora derived from specific pathogen
free (SPF) chickens and manufactured by fermentation”
(Aviguard

R©

, MSD Animal Health, Netherlands). From the
moment of arrival in the rooms (day 0, 10:00 a.m.) until day
7, (4:00 p.m.), CE product was supplied in the drinking water,
twice per day. Water solutions containing the CE product
were prepared in pre-dilution, with a dose level according to
recommendations of the manufacturer, i.e., 0.125 g CE product
per 10 broilers. The amount of drinking water was restricted
between day 0 and 7, based on the expected water consumption
of 10 (C2-pen) and 20 (S/C1-pen) broilers in a pen to ensure that
all supplied CE product would be consumed.

E. coli Challenge
Broilers were challenged with E. coli strain E38.27, which carries
the ESBL gene blaCTX-M-1 on an IncI1 plasmid (CTX-M-1-
E. coli), isolated from conventional healthy broilers at slaughter
age and resistant to cefotaxime (Dierikx et al., 2010). Oral
inoculation of seeder (S) birds was performed on day 5 at 8:00
a.m. using a 1 mL syringe without a needle with 0.5 mL of
102 CFU/mL. The bacterial dilution was measured with the
McFarland reader and retrospective colony counting. From 1 h
after inoculation onward, 10 contact (C1) birds were exposed to
10 seeder birds, by moving the inoculated seeder birds to the
corresponding S/C1-pens containing the contact birds.

Cloacal and Cecal Samples
Samples were taken using sterile dry cotton swabs (Copan 155C,
Copan Diagnostics, United States). Broilers were sampled at day
5 at 4:00 a.m., just before inoculation to confirm absence of
ESBL/pAmpC-producing bacteria, and from day 6 until day 21
daily at 8:00 a.m. At day 21, after the last sampling, post mortem
examination was done within 30 min after euthanasia for each
broiler. Broilers were weighed and sex was determined, exterior
and interior abnormalities were assessed, and ceca were collected
and stored on dry ice for further analysis.

Microbiota Sample Collection and
Analysis
Cecal content samples were collected from five surplus broilers
of the control group and from five surplus broilers of the CE
intervention group (n = 10) at day 5. At day 21, cecal content
of all broilers in the S/C1-pen in all four rooms (n = 80) was
collected. The closed side of one of the two ceca was cut and
cecal content was gently squeezed into a 2 mL sterile cryotube
and snap frozen on dry ice and stored at −80◦C for genomic
DNA extraction. To determine the microbial composition of
the CE product, Aviguard

R©

was suspended in PBS according to
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the manufacturer’s instructions and four aliquots of 2 mL were
stored at −80◦C for bacterial genomic DNA extraction. The
full protocol for DNA extraction and determining microbiota
composition was previously described (Kers et al., 2019). Briefly,
DNA was extracted from 0.25 g cecal content or frozen CE
product, using 700 µL of Stool Transport and Recovery (STAR)
buffer (Roche Diagnostics Nederland BV, Netherlands). All
94 samples were transferred to a sterile screw-capped 2 mL
tube (BIOplastics BV, Netherlands), used for bead beating. The
DNA concentrations were measured with a NanoDrop ND-1000
spectrophotometer (NanoDrop

R©

Technologies, United States),
and the DNA samples were stored at −20◦C until further
use. Barcoded amplicons covering the variable regions V5–V6
and primers 784F and 1064R were used for 16S rRNA gene-
based microbial composition profiling as previously described
(Ramiro-Garcia et al., 2016).

To ensure high quality sequencing data, synthetic
communities of known composition were used as positive
controls (Ramiro-Garcia et al., 2016) and nuclease free water
as negative controls. Sequencing of resulting libraries was
performed on Illumina Hiseq 2500 (Eurofins Genomics
Germany GmbH). The 16S rRNA data was analyzed using
NG-tax 2.0 (Ramiro-Garcia et al., 2016). In short, to generate
amplicon sequence variants (ASVs), NG-Tax 2.0 employed a
fast de novo ASV-picking algorithm. To assign taxonomy the
SILVA 128 16S rRNA gene reference database was used (Quast
et al., 2013). Bacterial names were identified on the genus-level,
however, if this level was unknown, we used the lowest known
taxonomic classification. Raw sequence data were deposited into
the Sequence Read Archive (SRA) at the NCBI, under accession
number PRJNA647260.

ESBL-Producing E. coli Detection
All cloacal samples were enriched in 3 mL Luria-Bertani (LB)
broth. After overnight incubation at 37◦C, 10 µL broth were
inoculated on MacConkey plates supplemented with 1 mg/L
cefotaxime and incubated overnight at 37◦C. E. coli colonies
growing on MacConkey plates supplemented with cefotaxime
were referred to as CTX-M-1-E. coli. If visual assessment
was not conclusive on the presence of E. coli, colonies were
selected for further analyses using MALDI-TOF MS (Bruker
Daltonik, Germany).

ESBL-Producing E. coli and Total E. coli
Quantification
At day 21, content from one of two ceca of 80 selected broilers
from rooms 1 and 2 was collected. For both rooms, selection
included all broilers (n = 20) from the S/C1-pen and additionally
20 broilers from the C2-pens which were excreting CTX-M-1-
E. coli. Samples were processed as previously described (Dame-
Korevaar et al., 2019b). Concentrations of ESBL-producing E. coli
and total E. coli were determined semi-quantitatively. CFU/gram
feces was calculated based on the highest dilution showing growth
of typical E. coli colonies (Jett et al., 1997) and the weight of
the feces on the swabs or the amount of cecal content collected
(Ceccarelli et al., 2017). E. coli colonies growing on MacConkey

plates supplemented with cefotaxime were referred to as CTX-
M-1-E. coli. If visual assessment was not conclusive on the
presence of E. coli, colonies were selected for further analyses
using MALDI-TOF MS.

Statistical Analysis
Statistical analyses were performed in R, version 3.4.3 (RStudio
Team, 2016), using packages survival, phyloseq, microbiome, and
vegan. Regressions were performed with function glm().

Time Until Colonization
Time until colonization was analyzed using parametric survival
regression with an accelerated failure time model using a Weibull
distribution (Kalbfleisch and Prentice, 2002). The hazard ratio
was expected to be non-proportional during the experiment,
because of the compartmentalization. This accelerated failure
time model models the effect of the variables on the acceleration
or deceleration of the time until colonization with CTX-M-
1-E. coli. Colonization of individual broilers was measured as
excretion of CTX-M-1-E. coli and time until colonization was
defined as the time point of the first cloacal swab of two
consecutive cloacal swabs tested positive for CTX-M-1-E. coli. If
the last swab (day 21) and the ceca tested positive, broilers were
assumed to be colonized at day 21. If only the ceca tested positive,
broilers were not included as colonized birds within the time span
of the experiment.

Microbiota Composition
Differences of relative abundance were tested with Wilcoxon
rank-sum test and corrected for multiple testing using
Benjamini–Hochberg (BH) procedure. Alpha and beta diversity
metrics were calculated and univariate and multivariate
statistical analyses were applied to determine differences
in the cecal microbiota. Alpha diversity (within sample
richness) was determined using Faiths phylogenetic diversity,
taking into account the phylogenetic relatedness (Faith,
2007). Differences in alpha diversity were tested using a non-
parametric Kruskal–Wallis test. Beta diversity (between sample
differences) was determined using weighted and unweighted
UniFrac metrics (Lozupone et al., 2007). Principal coordinates
analysis (PCoA) was used to visualize the data. To test
differences within multivariate community data, non-parametric
permutational analysis of variance (PERMANOVA) were used
(Anderson, 2001).

Transmission Coefficient
The transmission coefficients for within and between pen
transmission (βwithin and βbetween) were estimated based on a
stochastic multi-pen SI model (Klinkenberg et al., 2002; Velthuis
et al., 2007) in which the number of new cases is determined
by transmission from excreting (I) birds to susceptible (S)
birds for a total population of (N) birds, using maximum
likelihood estimation.

The probability (pk) for a susceptible animal in
pen k to become colonized during time interval
1t was calculated based on the force of infection
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(foi) within the pen and between pens (S/C1-pen to
C2-pen):

pk = 1− e−(foiwithin+foibetween)1t Equation1

Two models were used in which the foi was based
in model 1 on direct transmission or in model 2 on
indirect transmission with a build-up of infectivity in
the environment. In model 1 foi was determined by the
proportion of excreting birds in the same pen ( Ik

Nk
) and

the proportions of excreting birds in the adjacent pen
connected through a mesh panel ( Iadj

Nadj
) during a time interval

1t:

pk = 1− e
−

(
βwithin

Ik
Nk
+βbetween

Iadj
Nadj

)
1t

Equation2

The unit of βwithin and βbetween in model 1 is 1/day, and is
interpreted as the number of new colonized broilers per day, due
to one positive broiler.

In model 2 the foi in pen k was assumed to be a result of
a build-up of infectivity in the environment. The cumulative
sum of hours that all excreting birds were excreting in a pen
(cumexcrhoursk) and in the adjacent pen connected with a mesh
panel (cumexcrhoursadj) up to the beginning of the interval was
used as a measure for environmental accumulation:

pk

= 1− e−
(
βwithincumexcrhoursk+βbetweencumexcrhoursadj

)
1t Equation3

The unit of βwithin and βbetween in model 2 is 1/day2 and is
interpreted as the number of new colonized broilers per day,
caused by each day that one positive broiler has been excreting
CTX-M-1-E. coli (Dekker et al., 2013; Dame-Korevaar et al.,
2020).

Cecal Excretion Levels
The differences in cecal content of total E. coli and CTX-
M-1-E. coli (CFU/g) were tested using a linear regression
model including the variables room, pen, sex, weight at
day of hatch, weight at day 21, type of bird (S, C1,
C2) and time until colonization. The best fitting model
was obtained by backward selection based on lowest AIC
value. The correlation between cecal content of CTX-M-1-
E. coli and time until colonization was tested using Pearson’s
correlation coefficient.

RESULTS

Time Until Colonization
Broilers in the CE groups (room 3 and 4) were not colonized
with CTX-M-1-E. coli. In the control groups all broilers in
room 1 (n = 100), and 87/100 broilers in room 2 were
colonized at the end of the experiment (Figure 2). Time until
colonization was delayed for broilers in room 2 compared
to broilers in room 1 (Time Ratio (TR) 3.00, 95% CI 1.82
to 4.95), and for C2 broilers compared to seeder broilers
(TR 3.53, 95% CI 3.14 to 3.93). No difference in time until
colonization was observed between seeder and C1 broilers
(TR 1.14, 95% CI 1.00 to 1.30). Weight at day of hatch,
weight at day 21 and sex did not influence time until
colonization (Table 1).

Microbiota Composition in Cecal
Content
The alpha diversity (phylogenetic diversity) was higher in cecal
content samples of the broilers supplied with CE product (CE
broilers) compared to the control broilers on day 5 and day
21 (Figure 3). On day 21 no differences in alpha diversity
between the two intervention rooms were observed (X2 = 1.90,
p = 0.17), but the control broilers in room 1 had a lower
alpha diversity than control broilers from room 2 (X2 = 4.92,
p = 0.03). Within rooms, no differences between seeder and

FIGURE 2 | Time until colonization (days) of CTX-M-1-E. coli per pen (S/C1, C21, C22, C23, C24, C25, C26, C27, C28) and type of bird [seeder (S), contact 1 (C1),
contact 2 (C2)] for room 1 (left) and room 2 (right). The violin plot indicates the total range of observations; the black dot indicates the median.
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TABLE 1 | Regression coefficients of time until colonization (95% CI) of
CTX-M-1-E. coli for an accelerated failure time model.

Variable Accelerated
failure time (days,

95% CI)*

Baseline survival (Room 1, Seeder, Male) 3.00 (1.82–4.95)

Room 2 1.24 (1.15–1.33)

Animal type Contact 1 1.14 (1.00–1.30)

Contact 2 3.53 (3.14–3.93)

Sex Female 0.97 (0.91–1.03)

Bodyweight at day 0 1.00 (0.99–1.02)

Bodyweight at day 21 1.00 (1.00–1.00)

*Accelerated failure time, indicating the acceleration or deceleration of the time
until colonization with CTX-M-1-E. coli in the mentioned group compared to the
reference (baseline) group. A ratio of >1 indicates a longer time until colonization,
and a ratio of <1 indicates a shorter time until colonization.

contact (C1) broilers were found. Weight at day of hatch,
weight at day 21 and sex did not influence the alpha diversity
(data not shown).

In weighted and unweighted UniFrac (wuf and uf) distance
based analysis, the supply of the CE product explained 60%
(wuf) and 69% (uf) of the variation between the cecal content
samples on day 5 (Figure 4, principal coordinate analysis (PCoA),
PERMANOVA, wuf: R2 = 0.598, p = 0.009, uf: R2 = 0.688,
p = 0.008). On day 21, application of the CE product explained
46% (wuf) and 51% (uf) of the variation between the cecal
content samples (Figure 4, PERMANOVA, uf:R2 = 0.461,
p = 1.0 × 10−4, wuf: R2 = 0.510, p = 1.0 × 10−4). Within
rooms, being a seeder or contact broiler did not explain
any of the variation between the cecal content samples. The
variation between the two control groups was larger than
between the two intervention rooms (wuf: R2 = 0.351 vs.
R2 = 0. 210).

The heatmap (Figure 5) shows all genera that significantly
differed in relative abundance between CE broilers and
control broilers at day 5 and 21. Selection of the first four
clusters reveal two clusters with control broilers: one for
the broilers of 5 days of age, and one for the broilers

of 21 days of age. The other two clusters consist of CE
broilers, one cluster contains broilers of both 5 and 21 days
of age, while the second cluster contains only CE broilers
of 21 days of age.

In the CE product, 22 different genera were identified
(Table 2). Of these genera, five were more abundant
in CE broilers than in control broilers at day 5:
Collinsella, Eubacterium, Flavonifractor, Lachnoclostridium,
and Lactobacillus. At day 21, genera Eubacterium
coprostanoligenes, Bacteroides, Collinsella, Enterococcus,
Eubacterium, Megamonas, Megasphaera, Slackia, and
Sutterella were more abundant in CE than in control
broilers (Table 2).

Transmission
Broilers in the CE groups (room 3 and 4) were not colonized with
CTX-M-1-E. coli, and transmission was thus not observed.

In the control groups, the transmission coefficient
between pens (βbetween) was lower than the transmission
coefficient within pens (βwithin) for both models. Model
2, with accumulated environmental transmission, was
preferred over model 1, assuming direct transmission
(AIC 402.1 vs. 438.1, Table 3). For model 2, βbetween was
3.28 × 10−4 day−2 (95% CI 2.41 × 10−4 to 4.32 × 10−4)
and βwithin was 6.12 × 10−2 day−2 (95% CI 4.78 × 10−2 to
7.64× 10−2) (Table 3).

Cecal Excretion Levels
Mean CTX-M-1-E. coli (log10 CFU/g) was lower in cecal samples
from broilers from C2-pens than from the S/C1-pen, except for
pen C26 and C27 (Table 4). CTX-M-1-E. coli (log10 CFU/g) was
lower in cecal samples from broilers kept in room 2 than broilers
kept in room 1 (estimate −0.52, 95% CI −0.91 to −0.13 log10
CFU/g). Broilers with a higher bodyweight at day of hatch had
slightly higher cecal CTX-M-1-E. coli levels (estimate 0.08, 95%
CI 0.01 to 0.15 log10 CFU/g). Cecal CTX-M-1-E. coli levels were
correlated with time until colonization, the shorter the time until
colonization, the higher the cecal level (r = −0.60, 95% CI −0.73

FIGURE 3 | Alpha (phylogenetic) diversity of cecal microbiota at day 5 (n = 5 broilers per intervention) and day 21 (n = 40 broilers per intervention), for the control
(rooms (R) 1, 2) and intervention groups (rooms (R) 3, 4).
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FIGURE 4 | Principal coordinate analysis (PCoA) of microbiota composition based on weighted UniFrac (A) and unweighted UniFrac (B) distances between control
(dark blue) and CE (light blue) groups. Different symbols indicate different sampling days: triangles are samples of day 5, and circles are samples of day 21.

FIGURE 5 | Heatmap representing the abundance of amplicon sequence variants (ASVs) in all individual broiler chickens analyzed (n = 90). Only ASVs that are
significantly different at day 5 and day 21 between CE and control are shown (Wilcoxon rank-sum test, adjusted p-values are corrected p-values for multiple testing,
Benjamini–Hochberg, p < 0.05). Each red, white, or blue rectangle represents the relative abundance of a genus in an individual broiler. Clustering of broilers is
based on Ward’s minimum variance method and based on weighted UniFrac distances matrix.
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TABLE 2 | Relative abundance and standard deviation (SD) of genera that were present in the CE product, and the significantly different relative abundance in cecal
content of CE broilers vs. control broilers at day 5 (n = 10) and 21 (n = 80).

Relative abundance CE product Change in relative abundance CE vs. control broilers

Day 5 Relative abundance (%) Day 21 Relative abundance (%)

Genera Relative abundance (%) SD (%) Control CE p-value Control CE p-value

[Eubacterium] coprostanoligenes group 0.65 0.22 0.70 1.11 8.05 × 10−07

Bacteroides 0.47 0.06 – 1.12 9.06 × 10−15

Blautia 0.30 0.09 18.48 6.64 2.75 × 10−12

Candidatus_Soleaferrea 0.39 0.06

Clostridium sensu stricto 1 2.77 0.45 14.67 0.72 0.03 0.04 – 0.04

Clostridium sensu stricto 2 0.72 0.12

Collinsella 0.53 0.07 – 12.98 0.03 – 4.28 3.34 × 10−15

Enterococcus 10.80 1.07 31.76 13.40 0.03 0.46 0.94 2.67 × 10−03

Erysipelatoclostridium 2.53 0.09 0.03 1.84 0.99 0.03

Escherichia-Shigella 0.57 0.02 15.09 0.99 0.03 0.09 3.72 × 10−03 2.04 × 10−04

Eubacterium 0.66 0.04 – 3.31 0.03 – 0.20 2.22 × 10−07

Flavonifractor 1.02 0.14 – 0.79 0.03

Lachnoclostridium 9.78 0.93 – 1.77 0.03

Lactobacillus 14.96 1.33 – 10.77 0.03

Megamonas 1.55 0.56 – 10.36 3.34 × 10−15

Megasphaera 3.30 0.74 – 0.27 3.82 × 10−05

Negativicoccus 3.62 0.66

Oscillibacter 1.94 0.18

Peptostreptococcus 30.97 4.04

Sellimonas 1.31 0.38 1.14 0.64 2.60 × 10−04

Slackia 0.34 0.09 – 0.03 7.57 × 10−03

Sutterella 1.76 0.21 – 0.99 3.34 × 10−15

uncultured 4.45 3.56

Unknown 0.08 0.09

Results are based on differences of relative abundance tested with Wilcoxon rank-sum test. Adjusted p-values (<0.05) are corrected for multiple testing with Benjamini–
Hochberg (BH). – = not detected.

TABLE 3 | Transmission coefficients (βwithin and βbetween, 95% CI) using an SI-model for transmission based on the proportion of excreting birds (model 1) and the
accumulative excretion time (model 2).

Transmission coefficient (β, 95% CI)

Unit* βwithin (95% CI) βbetween (95% CI) AIC

Model 1 proportion excreting birds day−1 1.31 (1.07–1.59) 0.03 (0.02–0.04) 438.1

Model 2 accumulative excretion time day−2 6.12 × 10−2 (4.78 × 10−2–7.64 × 10−2) 3.28 × 10−4 (2.41 × 10−4–4.32 × 10−4) 402.1

* The unit in model 1 is 1/day, and is interpreted as the number of new colonized broilers due to one positive broiler per day. The unit in model 2 is 1/day2 and is interpreted
as the number of new colonized broilers caused by each day that one positive broiler has been excreting.

to −0.43). Mean E. coli levels in cecal content did not differ
between rooms or pens.

DISCUSSION

The supply of CE product via drinking water from day of
hatch until day 7 prevented colonization of broilers with
ESBL-producing E. coli after challenge of seeder birds. In
the control group, 93.5% of the broilers were colonized at
the end of the experiment. These results are in line with

earlier experiments within isolators, in which a continuous
supply of CE product during the first 14 days was able to
prevent colonization (Dame-Korevaar et al., 2020). In the
isolators in which at least one bird was colonized with ESBL-
producing E. coli, application of CE products reduced the
rate of colonization, decreased excretion (CFU/g) and reduced
transmission, as previously shown in studies applying a single
supply of CE (Hofacre et al., 2002; Nuotio et al., 2013;
Ceccarelli et al., 2017; Methner et al., 2019). The enhanced
effect of CE product found in this study compared to these
earlier studies could have resulted from the prolonged supply,
the longer period between start of CE product and exposure
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TABLE 4 | Parameter estimates for cecal content levels at day 21 (log10 CFU/g
cecal content, 95% CI) of CTX-M-1-E. coli (n = 75) using a linear regression model.

Variable Estimate CTX-M-1-E. coli (95% CI)

Room 1, pen Seeder/C1 (intercept) 3.95 (0.93 to 6.98)

Room 2 −0.52 (−0.91 to−0.13)

Pen C21 −1.17 (−1.91 to −0.43)

Pen C22 −2.28 (−3.23 to −1.33)

Pen C23 −1.85 (−2.95 to −0.75)

Pen C24 −2.01 (−2.64 to −1.39)

Pen C25 −0.86 (−1.40 to −0.33)

Pen C26 −0.59 (−1.52 to 0.33)

Pen C27 0.34 (−0.77 to 1.46)

Pen C28 −2.69 (−3.49 to−1.88)

Bodyweight day of hatch (day 0) 0.08 (0.01 to 0.15)

to ESBL-producing E. coli, or the moment of challenge
with ESBL-producing E. coli and the low challenge dose
used in our study.

The microbiota composition was more diverse in the CE
broilers than in the control broilers on day 5 and 21. This
supports the hypothesis that microbial diversity plays a role
in preventing colonization. Successful CE of ESBL-producing
E. coli by specific genera being present in the CE broilers could
also have prevented colonization. Intestinal colonization with
microbiota of adult donor hens is associated with increased
resistance against colonization, e.g., with Salmonella (Varmuzova
et al., 2016). In a study where newly hatched layer chicks were
exposed to an adult hen, transfer of microbiota occurred within
24 h of contact and a 1–3 days longer contact period resulted
in an even more developed chick microbiota (Kubasova et al.,
2019). In our study, supplying a CE product derived from
intestinal bacteria of adult chickens possibly increased resistance
and prevented colonization with ESBL-producing E. coli. The
higher diversity observed in broilers at day 5 was maintained
during the experiment. At day 21, 2 weeks after the last supply
of the CE product, the intestinal microbiota composition was
still more diverse in the CE broilers. Next to genera identified
in the CE product, also other genera were found to be different
between CE and control groups, indicating that the intestinal
microbiota of CE broilers was early and persistently different
compared to the composition of the microbiota as observed in
the control broilers.

Direct competition between specific bacteria and inoculated
E. coli in CE broilers might have played a role in preventing
colonization, including competition for binding sites or
limiting nutrients (Nurmi et al., 1992; Callaway et al.,
2008). This could be related also with the production of
antimicrobial compounds, including volatile fatty acids,
inhibiting or eliminating species that compete for the same
niche (Callaway et al., 2008). Some genera were present
exclusively in the CE product and in CE broilers, but not in
control broilers (Table 2). Due to competition, these genera
might have prevented colonization. Next to preventing
colonization with E. coli, CE products have shown to
prevent or reduce colonization of different bacteria, e.g.,
Salmonella (Nakamura et al., 2002; Ferreira et al., 2003;

Luoma et al., 2017; Markazi et al., 2018) and Campylobacter
(Schneitz and Hakkinen, 2016).

In the control groups compartmentalization resulted in
a significantly lower transmission between pens than within
pens. Transmission between pens shows that environmental
transmission can occur and presence of ESBL/pAmpC-producing
bacteria in litter, air or dust plays a role in transmission
(Friese et al., 2013; Laube et al., 2013, 2014; Blaak et al.,
2014, 2015; Daehre et al., 2018). Delayed transmission as
result of compartmentalization has been described for other
pathogens (van Bunnik et al., 2012; Dekker et al., 2013). The
effect of compartmentalization can be two-fold: the physical
barrier prevents direct contact between broilers, and next
to that, during the time needed for transmission between
pens to occur, the microbiota of the susceptible broilers
might develop further, making it more difficult for ESBL-
producing E. coli to colonize. In chickens, microbiota in the
first week of life contains Enterobacteriaceae (Videnska et al.,
2014; Ballou et al., 2016; Jurburg et al., 2019) suggesting that
E. coli can easily colonize during the first week. Older bird
might get less susceptible for colonization (Dame-Korevaar
et al., 2020), however in our study colonization with ESBL-
producing E. coli still occurred at 21 days of life, maybe as a
result of accumulation of excreted ESBL-producing E. coli in
the environment. Once transmission between pens occurred,
transmission within pens followed rapidly. In room 1, within
S/C1-pen transmission occurred very fast: all except one bird
were positive at the first sampling after challenge. Therefore,
this pen could not be included in the estimation of within
pen transmission.

Estimation of the transmission coefficients was done using the
proportion of excreting birds (model 1) and the accumulative
excretion time (model 2). The model including excretion time
fitted better to the observed data, indicating that accumulation
of ESBL-producing E. coli in the environment most likely plays a
role in the transmission within a flock. This increased infectivity
by accumulation of the bacteria has been modeled also for other
pathogens in pigs and chicken (Lurette et al., 2008; Dekker et al.,
2013; van Bunnik et al., 2014). In our model, environmental
accumulation is assumed to be unlimited, whereas in practice it
is likely that there is a certain maximum, as postulated by van
Bunnik et al. (2014) that assumed the force of infection to be
limited by a maximum exposure capacity for recipient animals.
However, in our study models including a maximum exposure
capacity rendered a model that did not converge, which might
indicate that the maximum exposure capacity was not yet reached
at the end of the experiment.

In poultry practice, the interventions studied in this
experiment could be used to control the spread of ESBL-
producing E. coli. CE product could be supplied on the farm
via the drinking water system. Supply should be done as
soon as possible after hatching, before exposure to ESBL-
producing E. coli occurs. In this study compartmentalization,
including separation of feed- and water systems and strict hygiene
measures, reduced transmission of ESBL-producing E. coli but
could not prevent it. In practice, with less strict hygiene measures,
the effects might be smaller.
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CONCLUSION

Overall, our study shows that CE is a useful intervention tool to
prevent colonization of ESBL-producing bacteria after challenge
with a low dose in the first week in a broiler flock. Transmission
within a flock could be delayed by compartmentalization,
however as soon as ESBL-producing bacteria are excreted and
accumulate in the environment spread to other birds seems
inevitable. Therefore, compartmentalization of large flocks into
smaller groups of birds, which is for instance more common
in breeding flocks at higher levels of the broiler production
chain, could be combined to enhance the efficacy of other
interventions. CE products could be supplied to young chicks
after hatching at different levels of the broiler production pyramid
to prevent colonization of birds. The insights provided by this
study may provide a basis for further developments toward
practically applicable measures to further reduce antimicrobial
resistance in poultry.
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