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Abstract

Background—Gene expression in archived newborn blood spots remaining from newborn 

screening may reflect pathophysiological disturbances useful in understanding the etiology of 

cerebral palsy (CP).

Methods—We quantified the expression of gene sets representing four physiological pathways 

hypothesized to contribute to CP in archived unfrozen residual newborn blood spot specimens 

from 53 children with CP and 53 age, gender, and gestational-age–matched controls. We selected 

four empirical and three canonical gene sets representing inflammatory, hypoxic, coagulative, and 

thyroidal pathways, and examined mRNA expression using an 8×60K oligonucleotide microarray. 

The log2 fold change of gene expression between matched cases and controls were analyzed using 

the Generally Applicable Gene Set Enrichment (GAGE) method.

Results—The empirical inflammatory and empirical hypoxic gene sets were significantly down-

regulated in term-born CP cases (N = 33) as compared to matched controls (P = 0.0007 and 

0.0009, respectively), while both gene sets were significantly up-regulated (P = 0.0055 and 
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0.0223, respectively) in preterm-born CP cases (N = 20). The empirical thyroidal gene set was 

significantly up-regulated in preterm-born CP (P = 0.0023).

Conclusion—The newborn blood spot transcriptome can serve as a platform for investigating 

distinctive gene expression patterns in children who later develop CP.

Introduction

Cerebral palsy (CP) is a neurological syndrome of onset in early childhood, characterized by 

impaired control of motor function (1), with a prevalence of about 2–3 per 1,000 live births 

in Western countries (2). The etiology of conditions, such as CP, that originate with 

exposures occurring in pregnancy and the perinatal period is difficult to study, because our 

capacity to interrogate such exposures once disease is manifest years later is limited. We 

here report on the assessment of biological processes occurring around birth, via 

examination of the transcriptome in residual filter paper blood spots archived after newborn 

genetic screening in 53 singleton children with CP and 53 age-, gender-, and gestational-

age– matched controls.

Examination of the transcriptome has found little application thus far in etiologic 

epidemiology. Messenger RNA (mRNA) is hard to retrieve from serum samples, because 

ribonucleases and micro RNAs degrade mRNA quickly once transcriptional activity is 

complete. But while blood is ordinarily collected in glass or plastic tubes, permitting such 

enzymatic activity to continue, newborn blood is directly spotted from a heel stick incision 

onto filter paper, completely drying at room temperature within 3 hours (3,4). RNA 

degradation is an enzymatic process tightly controlled by ribonucleases (RNases), water-

soluble enzymes that require one water molecule for each reaction (5). Drying of the sample 

interferes with this reaction and also limits access of RNases to RNA.

White blood cells share more than 80% of the transcriptome with at least 9 organs, including 

the brain (6); 82% of the 13,961 genes expressed in brain, according to the UNIgene 

database, are expressed in blood (7). We hypothesized that gene sets reflecting four 

pathophysiological pathways to CP (inflammatory, hypoxic, coagulative and thyroidal) 

would be dysregulated shortly after birth in children later diagnosed with CP, and that this 

dysregulation would be detectable in newborn blood spots. We also performed exploratory 

gene set analyses using a database of clinically relevant gene sets (8). The hypothesized 

gene sets were obtained by searching the literature, aiming for one canonical gene set (i.e. 

based on expert opinion (9) and one experimental gene set (i.e. based on experimental 

findings) for each pathway. For coagulation, we could only find a canonical gene set.

Results

Comparability of cases and controls

Cases and controls were similar in gestational age, a matching criterion, but fetal growth 

was somewhat reduced in cases. More cases were admitted to newborn intensive care and 

had lower Apgar scores. Mean day of blood spot collection did not differ between cases and 

controls. Cases and controls were broadly comparable in socio-economic and demographic 

characteristics (Table 1).
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Analysis of seven pre-selected gene sets

Each case-control pair received a score (expressed as a GAGE t-statistic) summarizing the 

case-control difference in expression of all genes (from 31–200 genes, depending on the 

gene set). This score can be interpreted as the difference between cases and controls 

expressed as fractions of a standard deviation. These score differences were then 

summarized across pairs and assessed for the statistical significance of the summarized 

difference, expressed as the global P-value for the contrast of cases and controls for each 

gene set.

Three gene sets, all empirical, showed significantly different gene regulation across the 

population of case-control pairs (Table 2). The empirical inflammatory and asphyxial gene 

sets were both significantly down-regulated in CP cases, compared to controls, with effect 

sizes of −0.19 SD units and −0.16 SD units respectively. The thyroidal gene set was 

significantly up-regulated by +0.13 SD units. These three differences were highly 

significant, either with (q value) or without (p value) correction for multiple testing.

To illustrate gene set differences across case and control pairs, the distribution of GAGE t-

statistics for each of the gene sets is shown in Figure 1. The three significant gene sets 

showed many pairs with large inter-pair differences in gene expression, while the canonical 

hypoxic and thyroidal gene sets showed modest inter-pair differences. The coagulation gene 

set and the canonical inflammatory gene set showed virtually no differences. Heterogeneity 

across pairs in the direction of differential expression (either up or down) is notable for all 

three statistically significant gene sets (Table 2, Figure 1).

Individual Genes in the Fetal Inflammatory Response Syndrome (FIRS) Gene Set

The largest case-control differences in gene expression (0.19 SD) were seen for the FIRS 

gene set. Differences in gene expression are often described as “fold changes”, that is, the 

ratio of the degree of gene expression in cases compared to controls, most conveniently 

expressed as the binary logarithm (log2 n = logarithm to the base 2) of the fold change. 

Figure 2 shows the heatmap of the log2 fold change of all genes in the FIRS gene set for all 

case-control pairs ordered by the magnitude of the GAGE t-statistics. The largest pair 

differences were seen in the following genes: S100A9 (S100 calcium binding protein A9), 

S100A12 (S100 calcium binding protein A12), ALOX5AP (arachidonate 5-lipoxygenase-

activating protein), PGLYRP1 (peptidoglycan recognition protein 1), HP (haptoglobin), 

FLOT1 (flotillin 1), and FGR (Gardner-Rasheed feline sarcoma viral oncogene homolog) 

(Figure 2).

Assessing Significant Gene Set Findings in CP sub-sets

The heterogeneity of GAGE t-statistics across pairs suggests the need to stratify on 

covariates such as gestational age and motor type. Table 3 shows the findings for each gene 

set for children born at 37 weeks or later (N pairs = 33), before 37 weeks (N pairs = 20), 

with quadriplegia (N pairs = 24), diplegia (N pairs = 15) and hemiplegia (N pairs = 13).

FIRS showed a clear interaction with gestational age; among 20 preterm pairs, FIRS was 

significantly up-regulated in CP cases, whereas among 33 term-born pairs, FIRS was 
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significantly down-regulated among cases. The FIRS up-regulation seen in preterm cases 

was paralleled by up-regulation in diplegic cases, who are dominantly preterm. In parallel, 

the strongest contribution to down-regulation of inflammation came from hemiplegic cases 

(N = 13) who are nearly all born at term. Quadriplegia also showed down-regulation of 

FIRS, but not as strongly as hemiplegia.

The empirical hypoxic gene set also showed significant up-regulation in preterm cases and 

the opposite with term cases. Down-regulation of the hypoxic gene set was seen in 

hemiplegia and quadriplegia. The thyroidal up-regulation signal was derived entirely from 

preterms and from children with quadriplegia. The sample size precluded consideration of 

interactions between gestational age and motor typology (Table 3).

Kyoto Encyclopedia of Genes and Genomes (KEGG) gene sets

We explored case-control differences for the 205 gene sets archived by KEGG (2009 

version) (8). The five most up-regulated gene sets in CP cases compared to controls were: 

Ribosome, Systemic lupus erythematosus (SLE), Olfactory transduction (OT), Cell cycle 

(CC) and Oxidative phosphorylation (OP). Down-regulation was seen most strongly for 

three of the above five - Ribosome, CC and SLE, and for leukocyte transendothelial 

migration (LTM) and Regulation of actin cytoskeleton (RAC) gene sets. Using the approach 

of Storey to control for the false discovery rate (FDR) (10, 11), Ribosome, SLE and OT 

were significantly up-regulated, Ribosome, LTM and RAC were significantly down-

regulated, and the Ribosome gene set was significantly bi-directionally regulated.

The analysis for all individual genes available in the arrays reveals that no individual gene 

was significantly differentially expressed between cases and controls, after adjusting for 

multiple testing. The lack of single gene expression differences confirms the value of gene 

set analysis for aggregating coordinated expression signals from related genes in gene sets in 

exploring pathophysiological pathways to disease (Table 4).

Quantitative polymerase chain reaction (qPCR) validation of mRNA data

To validate our microarray findings, we used qPCR techniques to examine the housekeeping 

genes, ACTB (beta actin) and PPIA (peptidylprolyl isomerase A), both commonly used in 

the literature to validate microarray findings. To validate genes differentially expressed, we 

selected FCGR2A (Fc fragment of IgG, low affinity IIa receptor), a representative gene of 

the Lupus pathway from the KEGG database.

For ACTB and PPIA genes, the correlation coefficient between the log2 intensity of 

microarray data and mean CT (cycle threshold value) of qPCR was −0.52 (P < 0.0001). For 

FCGR2A, the correlation coefficient between the log2 intensity of microarray data and mean 

CT of qPCR is −0.43 (P < 0.0001) and the correlation coefficient between log2 fold change 

of microarray data and −log2 fold change of qPCR data was 0.38 (P = 0.0197).

Ho et al. Page 4

Pediatr Res. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

Principal findings and their direction

We found three gene sets, each reflecting a separate pathophysiological pathway, to be 

significantly dysregulated in newborns who later developed CP. The direction of the signals 

was not entirely as expected. While the up-regulation of inflammation noted among 

prematures later developing CP is consistent with several previous studies (12, 13, 14), the 

significant down-regulation of inflammation in term CP, and up-regulation of thyroidal 

function in premature CP seem opposite to what might be expected based on the literature 

(15, 16). However, dysregulation of a molecular pathway, as measured by changes in gene 

expression, can result from the influences of several types of cellular control processes, not 

all in the same direction. For example, mitochondrial defects leading to decreased energy 

output activate a transcriptional response to increase energy output, registered as increased 

expression of mitochondrial genes (17). It is thus more useful to consider dysregulation in 

either direction as indicating some perturbation of cellular control systems involved in the 

pathophysiologic pathway of interest.

Validity Studies of Archived Newborn Blood Spots

In Michigan, spots are normally collected on day one or two of life, allowed to dry in 

ambient conditions for four hours, and sent to the Michigan Department of Community 

Health (MDCH), where, after testing, they have been stored in boxes at room temperature. 

Since 2009, with the establishment of the Michigan Biobank for Health (18), all new 

specimens are placed in −80°C storage. None of the spots used in this study were frozen.

Four sources of evidence support the validity of the mRNA data obtained from our samples:

1. Published research by others. Several studies have shown that even after 20 years 

of unfrozen storage, messenger RNA can be recovered from unfrozen blood spots 

(19, 20, 21, 22).

2. Our own published work. We have published two papers demonstrating the 

reliability and validity of the archived unfrozen newborn blood spots we use in this 

study. Haak et al have demonstrated the replicability (R > .90) of microarray gene 

expression (23), and Resau et al have shown that sex-specific genes such as XIST 

and KDM5D are distinguishable in male and female archived unfrozen neonatal 

blood spots (24). A third paper shows the high sensitivity of gene detection in 

blood spotted on filter paper with the Agilent 4 × 44K microarray system used in 

this study (Agilent Technologies, Santa Clara, CA) (25).

3. qPCR confirmation of microarray findings: In our earlier study (23), we showed 

that using qPCR we could identify two housekeeping genes (HKI and MRPLII) and 

two inflammatory genes (ITGAX and NFKB-1) in archived unfrozen blood spots. 

As shown above, in our present study we move beyond qPCR identification, and 

show the strong correlation between the amount of mRNA detected by microarray 

and qPCR for another three genes.
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4. Unpublished pilot data comparing frozen and unfrozen newborn blood spots. 

Microarray was performed in our laboratory on paired spots from the same 

newborns studied ten years ago. Frozen (−80°C) blood spots obtained from 5 

Michigan newborns as part of a research study were compared to the blood spots 

archived by the state after genetic screening obtained at about the same age. The 

average Pearson correlation coefficient in total gene expression between frozen and 

unfrozen spots was 0.94.

Exploratory gene set analyses

Our exploratory analysis of the KEGG gene set reinforced the importance of inflammatory 

processes in CP, since several gene sets related to such processes were significantly 

dysregulated. The lupus gene set, for example, contains genes such as T cell and B cell 

receptor signaling pathways and cytokine-cytokine receptor interaction. Several KEGG 

inflammatory gene sets that differed in case-control expression showed the same interaction 

with gestational age as FIRS, with up-regulation in preterm-born CP and down-regulation in 

term-born CP.

Sensitivity analyses

To determine whether values resulting from filtering procedures affect the results, we 

repeated the analyses with imputation for missing values and found nearly identical gene set 

findings. We also performed permutations on randomly selected gene sets of different sizes 

to evaluate the false positive rate of the GAGE method on our actual microarray data. The 

probability of false positive findings of the GAGE method is <0.05 when the significance 

level for the test is set at <0.05. (A detailed description is in the supplementary materials 

online.)

In conclusion, we find that archived unfrozen filter paper blood spots, even after many years 

of storage, retain enough mRNA to describe a distinct gene expression profile in neonates 

who later develop CP. The pathophysiological pathways we identify get us closer to 

understanding the changes that take place in the interval between prenatal or perinatal brain 

insult and the clinical manifestation of the CP syndrome. Our results also underline the 

scientific promise of using the large collections of state-archived newborn blood spots to 

develop compendia of expression profiles in disease states characterized by perturbations in 

gene expression that can be captured shortly after birth.

Methods

Study subjects

Children with clinically verified CP aged 2–15 (N = 53) were recruited in specialty clinics in 

Lansing, Ann Arbor, and Grand Rapids, MI, if they had GMFCS scores >1, and did not have 

a recognized malformation syndrome accounting for the CP. Control subjects were recruited 

in primary care settings in Michigan and were individually matched on year of birth, sex, 

and gestational age in four categories (<28 weeks, 28–32 weeks, 33–37 weeks, >37 weeks) 

and were free of major brain disorders. Birth certificates, maternal and infant hospital 

discharge abstracts and residual newborn blood specimens were retrieved from MDCH, after 
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obtaining written informed consent from the mother or guardian of the study subject. Case 

and control mothers were interviewed by telephone about reproductive exposures. Approval 

for this study was obtained from the Institutional Review Boards of all participating 

institutions.

RNA isolation and cDNA preparation

RNA isolation, cDNA synthesis, and microarray on blood spot samples was performed at 

the Laboratory of Microarray Technology at VARI as per our published protocol (25). Three 

3-mm blood spot punches were homogenized using a TissueLyser (Qiagen, Valencia, CA) 

before isolation using the illustra RNAspin Mini kit (GE Healthcare, Buckinghamshire, 

UK). DNase digestion was carried out during RNA isolation to remove any contaminating 

DNA in RNA. Total RNA was then concentrated with an RNA Clean & Concentrator-5 Kit 

(Zymo Research, Orange, CA). RNA quality and quantity were evaluated using an RNA 

Pico Lab Chip on the Agilent BioAnalyzer. The average RIN (RNA Integrity Number) was 

2.3±0.71. The WT-Ovation Pico RNA Amplification System (NuGEN Technologies, San 

Carlos, CA) based on the Ribo-SPIA technology was used to amplify total RNA and 

synthesize first and second-stranded cDNA. Since this amplification system is initiated both 

at the 3′ end and randomly throughout the whole transcriptome, it has the advantage of 

amplifying non-poly A transcripts and compromised RNA.

Gene expression microarray assays

For gene expression microarray, cDNA was labeled with Alexa Fluor 3 fluorescent dye from 

the BioPrime Total Genomic Labeling System (Invitrogen Life Technologies, Carlsbad, CA) 

before purification using the PureLink PCR Purification System (Invitrogen). Purified 

labeled product was then applied onto a 8×60K whole human genome gene expression 

microarray (Agilent). Each array contains 60,000 oligonucleotide probes (60bp probe) 

covering 27,958 Entrez gene RNAs and 7,419 long intergenic non-coding RNAs. The arrays 

were hybridized for 17 hours at 65 °C and 10 rpm rotation speed, then washed for 2 min 

each with wash buffer 1 and 2 and scanned with an Agilent G3 high-resolution scanner. 

Probe features were extracted from the microarray scan data using Feature Extraction 

software v. 10.7.3.1 (Agilent).

Microarray confirmation by qPCR

Masked cDNA samples synthesized from neonatal blood spot RNA were used for qPCR 

analysis. Specific optimized Taqman probes and primers were obtained from Applied 

Biosystems by Life Technologies (Carlsbad, CA) and qPCR was performed using Applied 

Biosystems 7500 Fast Real-Time PCR System. We examined the correlation between log2 

intensity of microarray data and mean CT of qPCR data for all three genes, and for the 

FCGR2A gene, we also assessed the correlation between log2 fold change of microarray 

data and −log2 fold change of qPCR.

Selection of 7 gene sets representing 4 hypothesized pathways to CP

The empirical Hypoxic gene set is based on responses of cells in tissue culture exposed to 

hypoxemia compared to normoxemia (26) while the canonical Hypoxic gene set is based on 
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the view that hypoxia-inducible transcription factor (HIF) binds a consensus DNA sequence 

termed the hypoxia-responsive element (HRE) (27). A similar approach was used to 

construct the canonical thyroid responsive element (TRE) gene set (28). The experimentally 

derived thyroid gene set was isolated following human exposure to thyroid hormone (29). 

The canonical inflammation pathway is GO:005072; inflammatory response (30), while the 

empirical gene set is from an experiment in prematures with and without evidence of fetal 

inflammation and infection (31). The coagulation cascade was represented by GO:0007596; 

(blood clotting biological processes) (30).

Statistical methods

Data processing and analysis were performed using statistical software R (version 2.13.2). 

Unqualified spots were filtered using the method of Patterson et al, where expression data 

were removed whenever the gProcessed signal was less than twice the gProcessed signal 

error (32). Gene expression data were normalized using a between-array quantile 

normalization method (33) and further aggregated to the gene level using the mean of the 

expression signal of all probes of each gene. Differential expression of individual genes was 

examined with the moderated paired t-test (appropriate for matched pairs) of the linear 

model and an empirical Bayes method implemented in R package limma (34). The 

significance of gene expression was corrected for multiple testing, setting the false discovery 

rate (FDR) at 0.05 (10). We chose the Generally Applicable Gene Set Enrichment (GAGE) 

method (35) the only published method applicable to a matched case-control study among 

several methods for gene set analysis (36,37). A fuller description of the GAGE method is 

provided in the supplementary materials (online). For case-control comparisons of clinical 

data, exact conditional logistic regression and paired t-tests were used for categorical 

variables and continuous variables, respectively.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
GAGE t-statistics for the seven pre-hypothesized gene sets. (a) canonical coagulation, (b) 

canonical inflammation, (c) empirical inflammation, (d) canonical asphyxia, (e) empirical 

asphyxia, (f) canonical thyroid, (g) empirical thyroid gene sets respectively. For each graph: 

X-axis: matched pair (total 53 pairs); Y-axis: scale of GAGE t-statistic; each bar within each 

graph: the GAGE t-statistic of the gene set for each pair.
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Figure 2. 
Heatmap of FIRS gene set with pairs ordered by magnitude of GAGE t-statistics. (a) FIRS 

gene set in which the matched pairs are ordered by the values of the GAGE t-statistics of the 

pairs from most positive to most negative. (b) Heatmap: X-axis: matched pairs in the same 

order as the upper graph; Y-axis: gene names. Each small square represents log2 fold change 

of each of all genes of FIRS gene set of each of all pairs. Gradient scale for color from 

bluest (most negative log2 fold change or the gene expresses lowest in case vs. control) to 

white (log2 fold change is zero or the gene expresses equally in case vs. control) to reddest 

(positive log2 fold change or the gene expresses highest in case vs. control): −4 to 0 to + 4. 

Grey color: absence of data (missing values) due to unmet filtering criteria.
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Table 1

Characteristics of cases and controls at birth of child

37 weeks and above Under 37 weeks

Cases (n =33) Controls (n =33) Cases (n =20) Controls (n = 20)

Biological/Clinical

Mean Gestational Age 39.5 wks (±1.2) 39.6 wks (±1.1) 30.2 wks (±3.6) 31.8 wks (±3.7)

Mean Birthweight 3,372 g (±495) 3,562 g (±432) 1,884 g (±889) 2,106 g (±902)

Fetal Growth Ratioa 0.99 1.04 0.95 1.01

% Small for Gestational Agea 9% 6% 10% 5%

Mean 5 minute Apgar Score 8.2 (± 1.6) 8.8 (±0.6) 7.5 (±1.4) 8.5 (±0.7)

% Admitted to NICU 36% 9% 95% 78%

Age blood spot obtained 1.7 days (±1.9) 1.3 days (±0.5) 1.5 days (±1.7) 1.2 days (±0.9)

Socio-Demographic

 % Black 12% 3% 10% 20%

 % Hispanic 0 4% 6% 0

 % White or other 88% 93% 84% 80%

 % Mother married 82% 82% 71% 82%

 % Home ownership 86% 68% 59% 71%

 % Medicaid support 21% 6% 25% 35%

a
Ref. (38) was used as the source of fetal growth standards. (Fetal growth ratio = infant’s BW/median BW for gestational week.)

Bolded case-control contrasts, p <.05
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