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Abstract

Although most Salmonella serovars are able to infect a range of animal hosts, some have
acquired the ability to cause systemic infections of specific hosts. For example, Salmonella
enterica serovar Choleraesuis is primarily associated with systemic infection in swine.
Adherence to host epithelial cells is considered a prerequisite for initial infection, and fim-
brial appendages on the outer membrane of the bacteria are implicated in this process.
Although type 1 fimbriae encoded by the fim gene cluster are commonly found in Salmo-
nella serovars, it is not known whether S. Choleraesuis produces this fimbrial type and if
and how fimbriae are involved in pathogenesis. In the present study, we demonstrated that
only four out of 120 S. Choleraesuis isolates from pigs with salmonellosis produced type 1
fimbriae as assayed by the yeast agglutination test and electron microscopy. One of the
116 non-type 1 fimbria-producing isolates was transformed with plasmids carrying different
fim genes from S. Typhimurium LB5010, a type 1 fimbria-producing strain. Our results indi-
cate that non-type 1 fimbria-producing S. Choleraesuis required only an intact fimH to
regain the ability to produce fimbrial appendages. Sequence comparison revealed six
amino acid variations between the FimH of the non-type 1 fimbria-producing S. Cholerae-
suis isolates and those of the type 1 fimbria-producing S. Choleraesuis isolates. S. Choler-
aesuis that produced type 1 fimbriae contained FimH with an amino acid sequence identical
to that of S. Typhimurium LB5010. Site-directed mutagenesis leading to the replacement of
the non-conserved residues revealed that a change from glycine to valine at position of 63
(G63V) resulted in a non-type 1 fimbria-producing S. Choleraesuis being able to express
type 1 fimbriae on its outer membrane. It is possible that this particular amino acid change
prevents this polypeptide from proper interaction with other Fim subunits required for
assembly of an intact type 1 fimbrial shaftin S. Choleraesuis; however, it remains to be
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determined if and how the absence of type 1 fimbriae production is related to the systemic
infection of the swine host by S. Choleraesuis.

Introduction

The Salmonella genus is composed of Salmonella enterica and Salmonella bongori species,
which comprise six subspecies (I, II, ITa, IIb, IV, and V) subdivided into about 2800 serovars
[1]. Most Salmonella serovars that are pathogenic to human and animals belong to the species
Salmonella enterica. Many serovars infect a broad range of animal hosts and cause gastroenteri-
tis, but some serovars are highly virulent in specific hosts [2]. For example, Salmonella enterica
serovar Choleraesuis is primarily associated with systemic invasive infection in swine, but may
sometimes infect other animals, including humans [3].

Fimbriae are hairlike appendages on the outer membrane of many Enterobacteriaceae and
are involved in adherence to host epithelial cells, a prerequisite for infection. Although at least
13 gene clusters within Salmonella may have the potential to produce fimbrial appendages,
type 1 fimbriae are the most commonly found type and are easily detected in vitro [4, 5]. Some
fimbrial proteins can only be detected by flow cytometry from those samples that have been
recovered 8 h after infection of bovine ligated ileal loops with S. Typhimurium [6]. The pheno-
typic expression of type 1 fimbriae is primarily a result of cooperation among several Fim pro-
teins and arginine tRNA encoded by fimU within the fim gene cluster. FimA, FimI, FimH, and
FimF are fimbrial subunits that form the shaft of type 1 fimbriae, with FimA as the major fim-
brial subunit [7]. Type 1 fimbriae adhere to a variety of cells that possess mannose residues,
such as erythrocytes, leukocytes, yeast, and respiratory cells [8]. This binding capacity is con-
ferred by the FimH adhesin [9]. FimC and FimD are a chaperone and usher protein, respec-
tively, whose respective functions are to assist the fimbrial subunit to the outer membrane of
the cell and to assemble type 1 fimbriae in the proper order [10]. FimZ, FimY, STM0551,
FimW, and fimU are involved in a delicate regulatory circuit for the production of type 1 fim-
briae [11-15]. The precise contribution of type 1 fimbriae to virulence is still unclear because
several factors, such as the Salmonella strain used, the inoculation route, and the laboratory
animal chosen, affect the results [16, 17]. Nonetheless, this type of fimbria may play an impor-
tant role at some stage of the infectious cycle of Salmonella [18].

Recent genome sequencing studies of host-adapted, invasive Salmonella serovars, including
Choleraesuis, have revealed that extensive deletions and truncations occur in these serovars
[19, 20]. The majority of the lost genes have functional counterparts in systemically noninva-
sive serovars; for example, pseudogenes have been found in most fimbrial clusters, including
fim in serovar Typhi [21]. Since information regarding the type 1 fimbriae of S. Choleraesuis is
limited, the present study investigated the distribution of the expression of fimbrial appendages
among S. Choleraesuis isolates from diseased swine in the field. We report that most S. Choler-
aesuis isolates did not produce type 1 fimbriae and that allelic variation in fimH could be one
of the reasons for this non-fimbriate phenotype.

Materials and Methods
Bacterial strains and plasmids

The S. Choleraesuis strains were originally isolated from pigs with a tentative diagnosis of
swine salmonellosis in swine farms at different locations of Taiwan. The pigs with clinical signs
had either died recently or had been euthanized by electric shock and examined post-mortem
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Table 1. Bacterial strains and plasmids used in this study.

Strain or plasmid

Salmonella Typhimurium
LB5010
Salmonella Choleraesuis
SC-15, 27, 30, 46, 77
SC-31, 34, 39

Escherichia coli
DH5a

Plasmids

yT&A
pACYC184
pISF101
pfimAICDHF
pfimZY0551WU
pfimAl
pfimAICD
pfimHF
pfimH
pfimHL57P
pfimHG63V
pfimHR89Q
pfimHA115T
pfimHS131Y
pfimHG177S

doi:10.1371/journal.pone.0151126.t001

Genotype or relevant features

Reference or source

a LT2 strain derivative, Fim* and fimbrial phase variable [23]

Clinical isolate, Fim This study

Clinical isolate, Fim* and fimbrial phase variable This study
[24]

2.7 kb cloning vector that contains T7 promoter; Am"
4.2 kb cloning vector; Tet" and Cm"

Yeastern, Taiwan
ATCC

12.8 kb DNA with the complete fim genes of S. Typhimurium cloned into pACYC184 [25]

8.0 kb fimAICDHF DNA fragment cloned into pACYC184; Cm" This study
3.7 kb fimzY0551WU DNA fragment cloned into pACYC184; Cm' This study
1.4 kb fimAl DNA fragment cloned into pACYC184; Cm" This study
6.1 kb fimAICD fragment cloned into pACYC184; Cm" This study
1.6 kb fimHF fragment cloned into pACYC184; Cm" This study
1.2 kb fimH DNA fragment cloned into pACYC184; Cm" This study
A fimH coding sequence with L57P cloned into pACYC184; Cm" This study
A fimH coding sequence with G63V cloned into pACYC184; Cm’ This study
A fimH coding sequence with R89Q cloned into pACYC184; Cm' This study
A fimH coding sequence with A115T cloned into pACYC184; Cm" This study
A fimH coding sequence with S131Y cloned into pACYC184; Cm" This study
A fimH coding sequence with G177S cloned into pACYC184; Cm' This study

by a registered veterinarian. Specimens from liver, spleen, or lung were obtained by the veteri-
narian and brought back to the laboratory and cultured for Salmonella on Xylose Lysine Deso-
xycholate Agar (Difco/Becton Dickinson, Franklin Lakes, NJ). Suspected Salmonella colonies
were initially screened by Salmonella O antiserum poly A-I, and Vi (Difco/Becton Dickinson).
S. Choleraesuis were identified by Salmonella O Group C1 antiserum (Difco/Becton Dickin-
son) and then confirmed by polymerase chain reaction (PCR) analysis according to the proto-
col reported by Chiu et al. [22], and stored at -80°C. The major sources of our Salmonella were
collected from swine farms located in Taichung, Tainan, Chiayi, Pingtung, and Changhua
counties in Taiwan from 2001 to 2015. Each isolate stocked was from one swine. One hundred
and twenty strains were selected from our stock (n = 185) by simple random sampling and
included in this study. The other specified bacterial strains and plasmids used are listed in
Table 1.

Yeast agglutination test

The expression of type 1 fimbriae on the bacterial surface was analyzed by the yeast agglutina-
tion test [26]. Briefly, the bacterial isolate was cultured in 10-mL of Luria-Bertani (LB) broth
(Difco/Becton Dickinson, Franklin Lakes, NJ) at 37°C for 48 h statically or grown on LB agar
(Difco/ Becton Dickinson) at 37°C for 24 h. Cells were pelleted from broth by centrifugation
for 10 min or scraped from agar and resuspended in 1 x phosphate-buffered saline. Aliquots of
bacterial suspension and 3% Saccharomyces cerevisiae (Sigma-Aldrich, St. Louis, MO) were
mixed on a glass slide and gently agitated for 1 min. Visible agglutination indicated the pres-
ence of type 1 fimbriae. Positive samples were mixed again with yeast cells and 3% D-mannose
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Table 2. Primers used in this study.
primer

fimAICDHF-F
fimAICDHF-R
fimZY0551WU-F
fimZY0551WU-R
fimAI-R
fimAICD-R
fimHF-F
fimHF-R
fimH-R
L57P-F
L57P-R
G63V-F
G63V-R
R89Q-F
R89Q-R
A115T-F
A115T-R
S131Y-F
S131Y-R
G177S-F
G177S-R

doi:10.1371/journal.pone.0151126.t002

solution (Sigma-Aldrich). Mannose-sensitive agglutination conferred by type 1 fimbriae was
indicated by inhibition of agglutination in the presence of mannose.

DNA manipulation

Complementation test. The primers used for amplification are listed in Table 2. The tem-
plate was genomic DNA extracted from SC-39, a Fim" strain with a commercial kit (Gene-
Mark, Taipei, Taiwan). Briefly, the PCR mixture contained 1 pg of template DNA, 10 mM of
primers, 2.5 mM of dNTP, 5 x Phusion High Fidelity Buffer, and 1 unit of Phusion DNA poly-
merase (ThermoFisher Scientific, Wltham, Massachusetts, USA). The PCR conditions con-
sisted of initial denaturation at 98°C for 3 min, followed by 35 cycles at 98°C for 30 s, 50°C for
30 s, and 72°C for 30 s/kb, and extended at 72°C for 10 min. The PCR products were cleaned
with a GeneJet PCR purification kit (ThermoFisfer Scientific). Amplified DNA fragments were
incubated at 37°C for 30 min with 1 unit of Taqg DNA polymerase to add an adenine residue
before the subsequent TA-cloning step. Insert DNA was cloned into the T&A Cloning Vector
by blue-white selection according to the protocol provided by the manufacturer (Yeastern Bio-
tech, Taipei, Taiwan). The recombinant plasmid was isolated with a Plasmid Miniprep Purifi-
cation kit (GeneMark), and the insert DN A was sequenced (Mission Biotech, Taipei, Taiwan)
to confirm that no error had been introduced during PCR. The insert in the plasmid was
retrieved after cleavage with BamHI and Sphl (FastDigest, ThermoFisher Scientific) and cloned
into vector pACYC184. The recombinant plasmid was introduced into the Fim™ SC-15 strain
by electroporation (ECM 830 Electroporation System, Harvard Apparatus, Holliston, Massa-
chusetts, USA). The transformants were tested for their ability to produce type 1 fimbriae with
the yeast agglutination test.

Sequence 5°-3’

ACGGATGAGGATCCACGTTTGCTTGCGACATAAATCTGTGA
TTCAGCGTGCATGCTCTGGCCAATGAAATGTCTAACAAAGA
ATTGACTGGGATCCTGATCAATTACAATTAGTGTCCGTTATT
CTCAAGAGGCATGCCGAAAATAAAAATAGAAGACTTTCGCTT
CTCAAGAGGCATGCGGCGTCTGCGGCAAATT
CTCAAGAGGCATGCCAAGCCGCATCGATAAAT
AGATGAGGATCCATGAAAATATACTCAGCGCTATTG
TAGCGTGCATGCCTAATTGTAATTGATCAGGAAGTTC
TAGCGTGTCGACAATATTCACTTCGCCCAGAGATGAG
GTGGTTACGCTGCCGGAAAAATCAGGTTGG
CCAACCTGATTTTTCCGGCAGCGTAACCAC
AAATCAGGTTGGGTCGGCGTAAACGCG
CGCGTTTACGCCGACCCAACCTGATTT
GAATTACGGGTACAAAGCACCGAAGGAAAT
ATTTCCTTCGGTGCTTTGTACCGGTAATTC
ACCGATAGTGTCACTGGGGTATTTTAT
ATAAAATACGCCAGTCACACTATCGGT
ATGGGCGTCGACTATAACGTGTCGCAGCAA
TTGCTGCGACACGTTATAGTCGACGCCCAT
ACGACCTCTACCAGCGACGCGTTGAGCACG
CGTGCTCAACGCGTCGCTGGTAGAGGTCGT
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Site-directed mutagenesis of fimH. A mutant allele of fimH was generated by site-
directed mutagenesis using an overlapping-extension PCR with SC-15 strain genomic DNA
template and mutagenic oligonucleotide primers L57P-F and L57P-R [27]. Briefly, fimH-F and
L57P-R were used to amplify the first DNA fragment using Phusion DNA polymerase. The
PCR conditions consisted of initial denaturation at 98°C for 30 s, followed by 35 cycles at 98°C
for 10 s, 50°C for 30 s, and 72°C for 40 s. The second DNA fragment was amplified using
fimH-R and L57P-F primers by the same PCR conditions described above. These two DNA
fragments were purified with a GeneJet PCR Extraction Kit. Ligation of these two DNA frag-
ments with two overlapping ends was achieved with fimH-F and fimH-R primers as follows:
denaturation at 98°C for 30 s, ligation at 50°C for 30 s, and elongation at 72°C for 45 s, followed
by 35 cycles at 98°C for 10 s, 50°C for 30 s, and 72°C for 45 s. The amplified fragments were
cloned into the T&A Cloning Vector and sequenced to determine whether the codon encoding
leucin at amino acid 57 had been replaced with proline. The other fimH alleles were con-
structed with the same methods. The insert DNA was cloned into the pACYC184 vector and
transformed into a SC-15 strain by electroporation and tested for its ability to produce type 1
fimbriae as described above.

Electron microscopy

The bacterial strains were resuspended in ddH,0, and 20 pL was taken to mix with 20 uL of
2% phosphotungstic acid in a microcentrifuge tube. A drop of this mixture was placed onto a
formvar grid and left for 20 s. Excess fluid was removed with filter paper. The grid was
observed with a JEOL JEM-1400 transmission electron microscope (JEOL Ltd, Tokyo, Japan).

Results

Among the 120 S. Choleraesuis isolates screened for type 1 fimbrial expression with the yeast
agglutination test, only four produced type 1 fimbriae (4/120 = 3.3%). Because many Salmo-
nella isolates exhibited multidrug-resistant phenotypes, which would interfere with our further
cloning studies, all of these Fim' isolates were tested for chloramphenicol sensitivity using the
Kirby-Bauer method and interpreted according to the CLSI guidelines [28]. We found five S.
Choleraesuis isolates that were chloramphenicol sensitive and thus potential recipients of
recombinant pACYC184 plasmids. One of these isolates, SC-15, was chosen for complementa-
tion tests.

To determine whether the SC-15 type 1 fimbria-negative strain carried defects in the fim
gene cluster, pISF101 and different derivatives from the fim of SC-39 were introduced into SC-
15. Transformants that carried pACYC184 only did not produce type 1 fimbriae. pISF101,
which possessed the entire fim gene cluster, allowed SC-15 to produce type 1 fimbriae and
mediate yeast agglutination. To further dissect which structural or regulatory portion of the

fim gene cluster was responsible for fimbrial expression in SC-15, pfimAICDHF and pfim-
ZY0551WU were constructed and it was revealed that the SC-15 transformed with pfi-
mAICDHEF had fimbriae. On the basis of this finding, pfimAI, pfimAICD, pfimHF, and pfimH
were further constructed to test which elements of the structural genes would permit SC-15 to
produce type 1 fimbriae. We found that plasmids that carried fimHF or fimH alone were able
to produce a fimbriate phenotype in SC-15 (Fig 1).

Since FimH confers binding specificity for type 1 fimbriae [29], fimH of non-fimbriate iso-
lates SC-15, 27, 30, 46, and 77 and that of fimbriate isolates SC-31, 34, and 39 were sequenced.
The FimH of S. Typhimurium LB5010 (Fim") and S. Choleraesuis SC-B67 (Fim") [19] were
also aligned for comparison. It was interesting to find that the Fim" S. Choleraesuis isolates and
SC-B67 strain possessed the same FimH sequences, whereas those of FimH from Fim™ S.
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fimA  fiml fimC fimD fimH fimF fimz fimYy  stm0551 fimW  fimU
(+) pISF101
(4) pfimAICDHF
(-) pfimZY0551WU

(-) pfimAl
(-) pfimAICD

(+) pfimHF

(+) pfimH

Fig 1. Summary of the yeast agglutination test results of SC-15 transformed with different
recombinant plasmids. The signal peptide regions of the structural and biosynthetic fim genes are shown
as filled black boxes. Solid lines indicate the fim gene(s) retained on the pACYC184. (+): positive result in the
yeast agglutination test, (-): negative result in the yeast agglutination test.

doi:10.1371/journal.pone.0151126.9001

Choleraesuis isolates and S. Typhimurium LB5010 were identical. The difference between the
Fim" and Fim™ groups resides in only six amino acid residues: Fim*/Fim™ (position): P/L (57),
V/G (63), Q/R (89), T/A (115), Y/S (131), and S/G (177) (Table 3).

The introduction of plasmids with fimH inserts carrying the various amino acid changes
demonstrated that only the SC-15 transformant that carried pfimHG63V changed the pheno-
type to Fim™ (Fig 2).

Discussion

S. Choleraesuis is the most common cause of swine salmonellosis and infection of these ani-
mals manifests primarily as septicemia, whereas S. Typhimurium accounts for most cases of
enterocolitis in swine [30, 31]. The type 1 fimbriae of S. Typhimurium bind to enterocytes of
swine in vivo [32], but little information regarding this type of fimbriae in S. Choleraesuis has
been reported. In this study, we found that most S. Choleraesuis isolates from diseased swine
(116 of 120) did not mediate yeast agglutination. Appendages like type 1 fimbriae in nonty-
phoidal Salmonella serovars may play an important role in inducing the inflammatory

Table 3. Amino acid variations in FimH of Fim* and Fim™ strains.

Strain\ position 57 63 89 115 131 177
LB5010 (Fim™*) P Vv Q T Y S
SC-31(Fim™) P Vv Q T Y S
SC-34 (Fim*) P Vv Q T Y S
SC-39 (Fim*) P Vv Q T Y S
SC-B67 (Fim’) L G R A S G
SC-15 (Fim’) L G R A S G
SC-27 (Fim’) L G R A S G
SC-30 (Fim’) L G R A S G
SC-46 (Fim’) L G R A S G
SC-77 (Fim’) L G R A S G

doi:10.1371/journal.pone.0151126.t003
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Yeast agglutination Electron microscopy Yeast agglutination Electron microscopy

;<2nm

SC-15 (pfimHL57P)

SC-15 (pfimHS131Y)

N

SC-15 (pfimHR89Q) SC-15 (pfimHG177S)

Fig 2. Results of the yeast agglutination test and electron microscopy. SC-15 transformed with pfimHG63V enabled the mediation of yeast agglutination
and produced fimbrial appendages (arrow) on the outer membrane of the bacterial cell. Other transformants did not mediate yeast cells to agglutinate, and no
fimbrial structures other than flagella were observed.

doi:10.1371/journal.pone.0151126.g002

response during the course of intestinal infection, thus facilitating the survival of fimbriated
Salmonella in such a milieu and restricting infection to the gastrointestinal tract [33]. In con-
trast, some host-restricted Salmonella serovar, such as Gallinarum, are deficient in mannose-
sensitive binding activity [34-36], instead, they produce morphologically similar fimbriae
called type 2 fimbriae, with a preferable binding ability to avian leukocyte than to mammalian
cells [37]. These differences in binding specificity are primarily associated with allelic variations
in FimH adhesins [36, 38]. S. Choleraesuis that are deprived of type 1 fimbriae are perhaps
unable to colonize the intestinal mucosa. They might cause less of an inflammatory response
and are able to enter the bloodstream more rapidly than strains expressing type 1 fimbriae.
Most Salmonella serovars isolated from swine carcasses, live swine, or their environments are
primarily those with a broad host range, such as Typhimurium, Derby, and Anatum, whereas
Choleraesuis has only rarely been identified as predominant serovar [39, 40].

Although proteins other than Fim proteins, such as leucine-responsive regulatory protein,
were also found to modulate type 1 fimbrial expression [41], we focused only on the fim gene
cluster. Our results demonstrated that fimH from S. Typhimurium was uniquely able to cause a
Fim+ phenotype in strain SC-15. In contrast, E. coli which has been reported to have the ability
to assemble a fimbrial shaft even in the absence of FimH [42], S. Choleraesuis was unable to
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produce type 1 fimbriae without FimH. This finding is in line with the report of Zeiner et al.
that indicated that FimA, FimF, and FimH are necessary for the assembly of type 1 fimbriae in
Salmonella [7].

It has been postulated that the repeated occurrence of phylogenetically unlinked mutations
at the same amino acid positions, or hot spot mutations, may represent evidence of adaptive
evolution via the molecular convergence of protein variants [43]. A comparison of the amino
acid sequences of FimH alleles from Fim" and Fim™ S. Choleraesuis isolates revealed that all six
amino acid differences between these two groups were included in the previously described hot
spot mutations in the fimH of a large set of Salmonella strains [44, 45]. Fim"/Fim” (position):
P/L (57), V/G (63), and Q/R (89) were identified as recent structural mutations, indicating that
they have emerged only recently, whereas Y/S (131) is a long-term structural mutation that
occurred in protein variants that are persistent in nature over long evolutionary periods [45,
46]. Positions 115 and 177 of Fim™ S. Choleraesuis and SC-B67 strain were A and G, respec-
tively; whereas those positions were T and S in Fim" S. Choleraesuis and S. Typhimurium
LB5010. Interestingly, we found that only FimH of S. Schwarzengrund exhibited T and S; all
others showed A and G at these positions according to the current Microbial Variome Data-
base provided by Dr. Sokurenko (http://depts.washington.edu/sokurel/variome/). Nevertheless,
a switch between these two amino acids in different fimH alleles at position 115 or 177 did not
have an impact in terms of fimbrial production in our study.

Site-directed mutagenesis analysis showed that only one amino acid substitution in FimH
(G63V) was sufficient to restore the ability of SC-15 to produce type 1 fimbriae. This finding cor-
related with observations in S. Gallinarum. The FimH of S. Gallinarum and S. Typhimurium
only differ by six residues, and one amino acid substitution (I78T) in the hot spot mutation zone
was sufficient to restore the ability of serovar Gallinarum to gain mannose-specific binding activ-
ity [35, 47]. The ability of Salmonella to colonize or cause diseases in different hosts probably
depends not only on the presence of an array of specific genes, but also on the allelic variation
within these genes [38]. In our study, the lack of capability to produce type 1 fimbriae is not likely
a result of the absence of FimH, but it nonetheless may be attributable to the property of the
FimH polypeptides [48]. The amino acid variations in SC-15 are located at the N-terminal lectin-
domain of FimH. We can only hypothesize that glycine at residue 63 may interfere with the bind-
ing of the chaperone-adhesin FimC/FimH complex to the N-terminal domain of usher protein
FimD, which is the first step of type 1 fimbrial biogenesis in the well-studied E. coli model [49].

One limitation of our study was that most of the clinical S. Choleraesuis isolates from dis-
eased swine were multidrug-resistant and could not be used in the same manner as strain SC-
15. The fact that many S. Choleraesuis isolates were Fim" could suggest that this phenotype
could contribute to the virulence of this serovar in swine.

Conclusions

Although the results from the present study were obtained with only one S. Choleraesuis iso-
late, it appears likely that allelic variation in fimH is a cause of the widespread nonfimbriate
phenotype of S. Choleraesuis shown in this study. This hypothesis is supported by observation
that the FimH amino acid sequences of the Fim* S. Typhimurium LB5010 and Fim" S. Choler-
aesuis SC-B67 differ only by 6 amino acids. Sequencing of FimH from more Fim™ S. Cholerae-
suis is currently underway in our laboratory.
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