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Without neuromorphic hardware, artificial stereo vision suffers from high resource
demands and processing times impeding real-time capability. This is mainly caused by
high frame rates, a quality feature for conventional cameras, generating large amounts of
redundant data. Neuromorphic visual sensors generate less redundant and more relevant
data solving the issue of over- and undersampling at the same time. However, they require
a rethinking of processing as established techniques in conventional stereo vision do not
exploit the potential of their event-based operation principle. Many alternatives have been
recently proposed which have yet to be evaluated on a common data basis. We propose a
benchmark environment offering the methods and tools to compare different algorithms
for depth reconstruction from two event-based sensors. To this end, an experimental
setup consisting of two event-based and one depth sensor as well as a framework
enabling synchronized, calibrated data recording is presented. Furthermore, we define
metrics enabling a meaningful comparison of the examined algorithms, covering aspects
such as performance, precision and applicability. To evaluate the benchmark, a stereo
matching algorithmwas implemented as a testing candidate andmultiple experiments with
different settings and camera parameters have been carried out. This work is a foundation
for a robust and flexible evaluation of the multitude of new techniques for event-based
stereo vision, allowing a meaningful comparison.
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INTRODUCTION

Frame-based visual sensors produce large amounts of redundant data while operating with a limited
temporal resolution, which leads to over and undersampling at the same time. Meaning huge amount
of redundant data with an insufficient resolution is generated. Event cameras, due to their
asynchronous operation principle, overcome both issues opening up new opportunities for
computer vision Delbruck (2008) and Delbruck (2016). As artificial stereo vision has always
been especially suffering from high resource demands and computation times, researchers
developed many event-based techniques for this problem Steffen et al. (2019). Beside profiting
from less redundant data, event-based methods offer an additional matching criterion: Time. An
important assistance to develop sophisticated algorithms and improve the state-of-the-art in any
field are standardized comprehensive evaluations. A profound and reasonable evaluation of any
algorithm greatly benefits from open benchmark datasets. While they have been done intensively for
frame-based stereo vision Seitz et al. (2006); Scharstein and Szeliski (2002), comparable studies are
still missing for respective event-based techniques.
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A comprehensive overview of the biological and technical
background of neuromorphic visual sensors is given in Posch
et al. (2014); Delbruck (2016); Steffen et al. (2019), including a
comparison of well known exponents like the Dynamic Vision
Sensor (DVS), the Asynchronous Time-based Image Sensor
(ATIS) and the Dynamic and Active Pixel Vision Sensor
(DAVIS). A survey on event-based vision focusing on
applications and algorithms was done in Gallego et al.
(2019). Furthermore, Steffen et al. (2019) provides a survey
of event-driven depth perception. Depth reconstruction from
event streams can be categorized in spiking and non-spiking
approaches; the former does apply Spiking Neural Networks
(SNN) and the latter does not. Examples for spiking stereo
vision approaches are techniques like Dikov et al. (2017);
Kaiser et al. (2018); Osswald et al. (2017) which are based on
the cooperative algorithm Marr and Poggio (1976) and its
extensions with Gabor filters Camunas-Mesa et al. (2018) or
Belief Propagation Xie et al. (2017). An interesting example
for an SNN-based approach working with an entirely different
technique is demonstrated in Haessig et al. (2019). Here the
depth information is correlated to the amount of defocus
present at the focal plane. This approach works with only one
sensor using a focus-tuneable lens. To meet the demand of
open benchmarks, the large event-based vision datasets, like
Li et al. (2017) focusing on pattern recognition and object
classification and Hu et al. (2016) emphasizing dynamic
vision tasks, were published. A review about benchmarks in
event-based vision is provided in Tan et al. (2015) and in the
scope of Frontiers’ research topic Benchmarks and Challenges
for Neuromorphic Engineering, many researchers published
standard datasets recorded with neuromorphic vision sensors.
This includes Barranco et al. (2016) targeting navigation,
Rueckauer and Delbruck (2016) regarding optical flow as
well as Liu et al. (2016), in which DVS recordings are
complemented by simulated event-based data generated
from images with spike encoding. The vast majority of
datasets and benchmarks for event-based data is done with
the DVS Liu et al. (2016); Li et al. (2017) or the DAVIS
Barranco et al. (2016); Rueckauer and Delbruck (2016); Hu
et al. (2016). In contrast to that, we use the ATIS.
Furthermore, many benchmark datasets regarding event-
based vision, like Barranco et al. (2016); Rueckauer and
Delbruck (2016); Liu et al. (2016); Li et al. (2017), are
recorded with only one sensor. In our benchmark
environment, a stereo setup allowing 3D reconstruction is
applied. The objective of this work is to develop a benchmark
environment providing the methods and tools to evaluate
algorithms for event-based depth reconstruction. This allows
a comprehensive and flexible evaluation for respective
algorithms in a reproducible fashion. To this end, we
designed and implemented a setup capable of capturing
calibrated and synchronized data from event-based sensors
while providing a ground truth for the depth information. To
compare different approaches in a meaningful and
reproducible way, metrics are defined covering core aspects
like performance, precision and applicability of the examined
algorithm.

THE BENCHMARK ENVIRONMENT

The theoretical concept of our benchmark environment
consists of three parts. Data acquisition, sensor calibration
and evaluation metrics. The sensor setup for data acquisition
provides event-based stereo data as well as ground truth in
form of depth information. The data acquisition also
comprises pre-processing and data fusion. We used
ROS–Robot Operating System–as framework to integrate
the event cameras, the stereo cameras, the experiment
scripts and the communication.

Data Acquisition
As we require a sensor setup capable of capturing calibrated
and synchronized data from event-based sensors and
providing a ground truth for the depth information
simultaneously, we developed a hardware framework
consisting of three sensors. Generating calibrated and
synchronized event-based data with ground truth is
hindered as operating three cameras simultaneously causes
severe technical issues regarding the USB controller and are
thus limited by its bandwidth. The problems range from bad
performance, complete system crashes, incomplete data
recordings to massive time lags. Even though some of the
underlying issues are solvable with additional hardware, we
found it to be a more stable and accessible approach to record
the stereo streams and point cloud separately on different host
computers. Consequently, the data acquisition yields four
different files, the event stream of each sensor as a raw-file,
a rosbag1 containing the stereo camera’s point cloud and a text
file holding the ROS timestamps for the recording’s start and

FIGURE 1 | Recording setup consisting of three sensors (gray), two
computers (blue), the ROS core (red), the two recorder ROS-nodes (orange)
and the different data structures (dark red). The arrows represent direct data
transfer while dashed lines symbolize which structures are synchronized
via the roscore’s timestamps.

1A ROS tool for recording and playing data. For more information see http://wiki.
ros.org/rosbag
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end. In order to prepare the data for evaluation purposes like
analyzation and visualization, the recordings have to be pre-
processed and merged.

In Figure 1, the developed ROS environment for data
acquisition including all hardware and software components
as well as their synergies is visualized. For publishing the
Kinect’s data, we use IAI_Kinect22 based on
libfreenect2 Xiang et al. (2016), while we extended the ROS
driver of the ATIS sensor’s manufacturer (Prophesee) to
support stereo publishing with synchronized time stamps.3

The computers communicate via an Ethernet connection to
each other. The ATIS sensors are connected and synchronized
using trigger IN-/OUT-Pins enabling the left ATIS to force the
right one to synchronize its timestamps. The output streams of
both ATIS are recorded by a ROS-Node hosted by Computer
A. The stereo camera’s point cloud is recorded by a rosbag-
node which is hosted by Computer B. The synchronized
timestamp of both recordings is provided by Computer A.
A photography of the hardware setup of all three sensors is
shown in Figure 2. As datasets recorded this way naturally
consist of different formats, the data has to merged. This is
done by subtracting the starting timestamp from the plain text
file (see Figure 1) from each point cloud’s timestamp and
subsequently assign each pair of potentially corresponding
events to the point cloud with the closest timestamp.

Calibration
In order to determine the geometrical relations between the
applied cameras, as well as the mapping from the camera’s
lenses to their sensors, a calibration is required. This process
involves four cameras: two event cameras (ATIS left and ATIS
right), the Kinect’s infrared sensor (IR) and its RGB camera
(RGB). Conventionally, a printed checkerboard pattern is used
to perform camera calibration. For neuromorphic vision this is
not possible, as event-based sensors cannot observe static
scenes. Instead, a blinking checkerboard on a monitor is
used. However, the IR cannot observe the checkerboard on

a screen. To retrieve the geometrical relations of the IR to one
of the event cameras, we can calibrate the IR with the RGB
using a printed pattern. Subsequently, the RGB is calibrated
with one of the event cameras using a monitor. After that we
can convert a point from the IR’s to the event camera’s
coordinate system by applying chained homogeneous
transformation. In order to be able to calibrate the event
cameras using a standard calibrator, we need to extract a
static checkerboard pattern from the recorded event
streams. To do so a scene of 500 ms of the blinking
checkerboard is recorded. Afterward the recorded event
streams can be accumulated to extract a static image.
Subsequently, the accumulation is median filtered, inverted
and normalized to gain a 8 bit grayscale image. The images
generated this way can be fed to a calibrator like Matlab or
OpenCV to extract the intrinsic and extrinsic camera
parameters.

Table 1 shows the results of the calibration process. It includes
the monocular calibrations for each camera individually, four in
total, as well as the three stereo calibrations relating the cameras
to each other. It can be seen that for the event camera’s
calibrations only a subset (selections) of all recordings
#recordings is used. The reason is that the pattern detection
for the event camera is not run online as it is for the stereo
camera Xiang et al. (2016) and therefore, the pattern is more
prone to detection failures due to blur.

Metrics
To compare different algorithms in a reproducible manner, we
define two quantitative criteria 1) performance and 2) precision, as
stated in Table 2.

FIGURE 2 | Sensor setup featuring the Kinect mounted on top and two
ATIS underneath. All sensors are fixed on a 3D-printed camera mount. The
blue, red and gray cables are connecting the trigger IN/OUT pins required for
synchronizing the event-based sensor’s individual clocks.

TABLE 1 | Calibration results. #recordings refers to how many images were taken
in the calibration process, while #selections indicates how many pictures the
calibration algorithmwas applied to (post outlier deletion). Error is the Reprojection
error. IR refers to the infrared sensor of the Kinect and RGB to the color camera.

Sensor #Recordings #Selections Error

ATIS left 42 34 0.0837
ATIS right 46 36 0.0984
ATIS stereo 41 34 0.1399
Kinect IR 50 50 0.1028
Kinect RGB 61 61 0.1633
Kinect stereo 55 55 0.1529
Kinect to ATIS 45 30 0.4264

TABLE 2 | The quantitative criteria of performance and precision defining our
evaluation metrics and their sub classes.

Performance Reconstructed points per
second (rps)

Precision Median error
# False matches

2Published in https://github.com/code-iai/iai\_kinect2
3https://github.com/prophesee-ai/prophesee_ros_stereo_driver/pull/1
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The first category performance, is an important factor as it
limits potential use cases of the algorithm drastically. A low
performing algorithm is not suited for real-time processing which
is indispensable in areas such as human robot collaboration or
autonomous driving. As the performance is strongly influenced
by the hardware used for processing, it is crucial to specify the
applied system and to compare all algorithms on the same
hardware. In neuromorphic vision, many algorithms are
heavily dependent on neuromorphic hardware. Comparing
their performance to algorithms that do not make use of
neuromorphic hardware is extremely challenging. In
conventional computer vision performance is often measured
in amount of processed frames per second. Hereby, real-time
capability can be deduced easily. If the amount of processed
frames per second exceeds the camera’s frame rate, the algorithm
is capable of real-time processing. In contrast to that,
neuromorphic sensors have no frame rate and the amount of
events generated heavily depends on the scene and illumination.
Consequently, we used the amount of reconstructed points per
second (rps) as a valid andmeaningful value. The second category
is about the precision of the 3D reconstruction. As a ground truth
to evaluate against, we use a point cloud. To compare it with the
reconstruction values, those must be transformed to the stereo
camera’s coordinate system. Afterward, each point from the
reconstructed point cloud is matched with the closest point of
the stereo camera in a spatio-temporal space. We can now define
the minimum distance dmin of a reconstructed point p to the
stereo camera’s point cloud K as

dmin(p) � minK(∣∣∣∣∣∣∣∣p − k
∣∣∣∣∣∣∣∣), k ∈ K (1)

Applying Equationfootnote:footnote 1, the precision of the
algorithm can be specified by two criterions, themedian error and
the number of false matches. Regarding the mean error

mprec,1 � median(dmin) (2)

the error is calculated as the distance of the matched point pairs.
As falsely matched events can cause extremely high errors for
single points, influencing the mean value overproportionally, the
mean value is not meaningful in this case. The median, however,
is not influenced by such gross outliers which makes it the better
metric for this use case. As the second criterion (false matches), we
define all points whose distance to their corresponding ground
truth point is greater than 10% of their depth value. The threshold
is relative to the depth because the Kinect’s depth accuracy
deteriorates with distance. The number of false matches can
then be used to calculate the algorithm’s false match ratio
similar to Ieng et al. (2018). It is defined as the number of
false matches divided by the number of reconstructed points

mprec,2 � (∑ N
i�0H(dmin,i − 0.1 · zi)

N
), (3)

with H(x) being the Heaviside function, N being the number of
points and zi being the depth of the ith point.

Regarding the applicability of an algorithm, two characteristics
of event-based stereo vision techniques are crucial. Firstly, the

ability to process asynchronous event streams in a performant
way and secondly, the applicability to neuromorphic hardware. In
case an algorithm cannot process event streams asynchronously,
it requires frame reconstruction. Hence, event-buffering is often
necessary which slows down the system dramatically. On top of
this, such an algorithm does not profit from the high temporal
resolution of event-based sensors. Regarding the second
characteristic, the applicability to neuromorphic hardware has
benefits in terms of computation times making it an important
feature for real-time applications. In order to qualify for that,
algorithms must operate parallelized and asynchronously. A
property that usually only applies to SNN-based approaches.
Even though amethod’s applicability is very expressive andmight
already limit the algorithm’s use cases, it is complicated to judge
and to use for comparison. Moreover, the applicability is
implicitly already covered by the category Performance.
Therefor it is not considered as a separate criterion.

Potential Applications and Guidelines
To enable reproducibility, key points for potential applications
are provided. Even though, these constraints might reduce the
number of potential application areas we believe it adds value to
specify ideal applications. Regarding the topic area we focus on a
static camera setup and a moving scene. Hence, areas of interest
include industrial robotics and surveillance. Tasks like
autonomous driving and especially drones are less suitable.
Both are also inappropriate because of the preferred distance
from the sensor to the recorded objects. The principle of stereo
vision is generally limited in distance, because disparities can only
be achieved in pixel positions, which are naturally discrete. An
object at infinity will always yield in a disparity of zero assuming a
finite distance of the cameras. For parallel images the depth z of a
point can be calculated as (z � f · b/d · p) with camera’s focal
length f, the distance between the cameras b, the disparity d and
the sensor’s pixel pitch p. Assuming the ATIS parameters and a
distance between the cameras of 20 cm, an object in a distance of
80°m would yield a disparity of one. For objects further away a
disparity can not be perceived therefor the maximum distance is
80°m. Very close points can generally not be observed by both
cameras. However, the view angle and the distance between both
cameras are additional limiting factors for the minimum distance.
The overlap of the camera’s fields of view grow with the objects’
distance to the setup. The closest point observed by both sensors
is at d � tan(π − α/2) · (b/2) with alpha being the lens’s angle of
view and b the distance between both sensors. Assuming the
ATIS’s horizontal angle of view of 56.3 and a distance of 20 cm
this yields to approximately 18.7 cm. An overlap of the two
camera’s field of view of 80% is thus achieved at a distance of
approximately 1.68°m.

Regarding guidelines for future users we suggest the following
practical steps:

1. Sensor setup: Build a setup of two event-based sensors and
one depth camera. For example two ATIS and one Kinect
sensor mounted on a 3D printed fixture and a tripod.

2. Calibration:
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- Mono calibration for all four sensors
- stereo calibration ATIS to ATIS
- stereo calibration of one ATIS to the RGB sensor
- stereo calibration of the RGB sensor to the IR sensor

3. Calculate the projection matrix ATIS to IR by using the
projections from ATIS to RGB and RGB to IR.

4. Record evaluation scenarios with synchronized
timestamps. Synchronization can be achieved with the
proposed data acquisition method (see Data Acquisition).

5. For each algorithm to be evaluated:

- Calculate the 3D reconstruction of the scene
- Match every reconstructed point to the closest point of
the Kinect’s point cloud with the respective timestamp.

6. Calculate the distances.
7. Calculate the proposed criteria.

EXPERIMENTS

The event-based sensor we used to implement and evaluate our
concept is Prophesee’s4 Evaluation Kit Gen3 HVGA-EM. The
sensor is an implementation of the ATIS architecture introduced
in Posch et al. (2011). Important specifications of the ATIS
regarding our benchmark environment are listed in Table 3.5

The two depth cameras that were considered for this work are
the Kinect v2 and the RealSense D435. Even though the RealSense
has a higher frame rate, resolution and a larger Field of View,
many publications in the field of depth reconstruction on event-
based data used the Kinect as the source of ground truth Haessig
et al. (2019); Ieng et al. (2018); Osswald et al. (2017). As this
sensor supports a reconstruction precision of a few mm at 50 and
3 cm at 3 m Khoshelham (2012) and MacKnojia et al. (2012) it
proved to be sufficiently for our use case.

Test Candidate
To allow an evaluation of our environment, a stereo matching
algorithm for event streams Ieng et al. (2018) is chosen and
implemented. It is applied to recorded event streams of different
experiments. The reconstruction results are evaluated by

comparison with the ground truth. The implemented
algorithm is shown in Figure 3. It calculates the probability of
two events to be triggered by the same real-world point, by
applying four criteria in the form of energy functionals and then
minimizing their sum. The initial event pairs are chosen by
applying two tolerance thresholds: A temporal tolerance,
which says that events can appear no longer than εT apart
from each other and the a spatial tolerance, which says that
events cannot violate the epipolar constraints by more than εS
pixels. For each pair of events that meets these two conditions, the
four criteria are evaluated. These are the temporal, spatial, motion
and luminance criteria. The energy functional for the temporal
criteria equals zero if the events timestamps match and one if the
timestamp’s difference is equal to the temporal tolerance. The
energy functional for the spatial criteria can be calculated
analogously using the spatial tolerance. The motion criteria
defines a motion surface consisting of past events in the
neighborhood. The more similar these motion surfaces of the

TABLE 3 | Specifications of the Evaluation Kit Gen3 HVGA-EM sensor used for
this work.

Resolution 480 × 360
Pixel pitch 20 μm
Optical format 3/4 inch
Latency 200 μs
Temporal resolution 1 μs
Field of view (H × V) 56.3 × 43.7 °

Dynamic range 120 dB
Interface USB 3.0

FIGURE 3 | High-level flow chart of the evaluated algorithm.
Correspondences are determined by four criterions; the time criterion
comparing event’s time stamps, the spatial criterion exploiting epipolar
geometry, luminance criterion comparing luminance values and the
motion criterion calculating motion fields.

4https://www.prophesee.ai/
5Data source: https://support.prophesee.ai/portal/kb/articles/hvga-cd-em-event-
based-evaluation-kit
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two events are, the lower is the value of the energy functional. The
last criteria, the luminance, measures the similarity in gray value
change triggered by the events. This criteria was not implemented
here. However, the authors of Ieng et al. (2018) report very similar
matching precision applying just three or all four criteria.

Evaluation Scenarios
In conventional computer vision, a stereo algorithm would first
be evaluated using very easy scenes including only a few objects
and a completely static scene. Afterward, dynamics and more
complexity would be added to the scene. Thereby, algorithms
could be evaluated for their behavior with static and dynamic
scenes separately, as it is done in Giancola et al. (2018). For event-
based vision, this is not possible, because event-based sensors
cannot record static scenes. Hence, the most important criteria
for a test scenario in this benchmark environment is that the
scenario includes one or multiple moving objects. Despite that, an
object should be sufficiently big to cover a great part of the field of
view of the camera setup. Also, the object should be placed
centered in a distance of approximately 1–3 m as this is the
optimal position for highest accuracy of the Kinect Yang et al.
(2015). For the experiments of this work, two different scenarios
are used. One scenario shows a spinning office chair and the other
one a moving man. Both scenarios have been arranged as
described above. As an example, reconstructed depth maps of
those scenarios are shown in Figure 4.

RESULTS

After recording, prerocessing and merging the event-based and
depth data for analysis, as described in Data Acquisition, we
evaluate the quality of reconstructions in this section. This is
done using the metrics defined in Metrics. As mentioned in
Metrics two properties of the algorithm are decisive; its ability to
efficiently process asynchronous data and its scalability to
neuromorphic hardware. Regarding the former, the method
presented in Ieng et al. (2018) processes the asynchronous
input in a semi-asynchronous fashion. Event pairs are
matched within a certain time window. Hence, events need
to be buffered for the length of this window. This is different to
SNN-based techniques which instantly process every event
without any delay. However, it does not require to buffer a
whole frame and is–at least from this perspective–superior to
area- and feature-based approaches based on conventional 3D
reconstruction. The time windows required for buffering may be
set manually. In the scope of this work, a time window of 100 μs
is used. Hence, the buffering is shorter than a millisecond and
does not noticeably influence the temporal resolution of the
output stream. The algorithm is not an SNN-based approach. It
can therefore not be applied to neuromorphic hardware. While
this can be a disadvantage when compared to an algorithm that
is executed on neuromorphic hardware, it can also be seen as an
advantage: The algorithm is sufficiently efficient without the
need for dedicated hardware. This enhances its accessibility and
lowers the barriers to experiment with it. As suggested in
Table 2, an analysis of its performance is carried out in
Performance Analysis. This is complemented with an
evaluation regarding the algorithm’s precision, considering
the median error and the number of false matches in
Precision Analysis.

FIGURE 4 | Depth maps of reconstructed scenes from synchronized event-streams of two ATIS. The color bar on the side states which color represents which
distance. It can be seen that the areas closest to the camera like the left armrest or the left arm, are of a darker blue as these object’s distance to the sensor about
0.3–1.0 m. Respectively, areas further away, like the right edge of the back rest or the head, are colored green, representing a distance of ca. 1.6–2.1 m.

TABLE 4 | Specifications of the executing computer.

Operating system Ubuntu 18.04.4 LTS
Processor Intel Core i7-7700HQ 2.7 GHz
Memory 32 GB DDR4-2400
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Performance Analysis
As the performance of an algorithm is highly depending on the
applied hardware, the key specifications of the computer all
experiments were executed on is listed in Table 4.

The key parameter utilized for the performance analysis is
the number of reconstructed points per second (rps). This
number can vary from execution to execution, which decreases
its expressiveness. To counteract this, the algorithm is applied
five times on the same data and the mean value of rps is used.
The results of the performance evaluation are shown in
Figure 5.

The average reconstruction rate is almost 35 k rps. Although, it
is noteworthy that this result is highly affected by the camera
parameters. Without averaging about 42 k rps where reached for
single experiments. The authors of Ieng et al. (2018) claim to
achieve rates of 47 k rps to 49 k rps. However, they do not provide
details under what conditions these rates were determined. As can
be seen in Figure 5 the algorithm performs very poorly for high
contrast sensitivities. This behavior is due to the algorithm’s
runtime complexity being quadratic to the temporal density of
the events. Another weak spot is exposed for low maximum event
rates of up to 3 MEvs. Unfortunately, the cause for this is not
entirely clear. A possible explanation is that high dead times of
pixels lead to a high number of events without a possible
matching candidate in their spatiotemporal window. Those
events obviously do not contribute to the reconstruction.
Regarding the influence of the camera parameters the results
of the performance analysis are consistent with the comparison to
the point clouds. It can be concluded that the contrast sensitivity
should not be set higher than 40 and the maximum event rate
should be at least 4 MEv/s.

Precision Analysis
To evaluate the reconstruction results of the event-based stereo
matching algorithm in a meaningful manner, they are compared
to the ground truth generated by the stereo camera. Hereby, the
term distance always refers to the distance of a reconstructed
point to its closest point in the corresponding point cloud.

Figure 6 displays the median distance of all points for multiple
experiments. With a range from 15 cm up to 25 cm the median
distances are relatively big. This plot also reveals how the camera
parameters influence the accuracy of reconstructions. For
instance, higher contrast sensitivities cause a larger median
error because higher contrast sensitivities yield higher event
rates and a more noisy event stream. Hence, the algorithm
generates more false matches for events triggered by
reflections for instance. This effect is lessened for smaller
quantiles as the sensitivity does not affect the triangulation
and thereby the accuracy. For the maximum event rate, the
opposite effect can be observed. The higher the parameter, the
lower the distances. We assume that high pixel dead times often
prevent the generation of events that otherwise could be matched
correctly. The relatively large median distance in Figure 6 is
caused by three different problems. The first one is, that the
algorithm in Ieng et al. (2018) produces a high rate of
mismatches. The authors estimated a quote of false matches of
60̃%. Assuming this quote, the curves for the 0.4-quantile show
that the maximum distance of the correctly matched points is
between 10–15 cm depending on the camera parameters. The
second problem is the relatively low resolution and at the same
time comparatively big pixels of the ATIS. Bigger pixels introduce
a higher uncertainty in the triangulation process as the 3D space
that is projected to a single pixel is greater than with a smaller
pixel size. The root of the third problem is the calibration process
which introduces an uncertainty since the ATIS is not directly
calibrated with the Kinect’s IR sensor. Hence, the coordinate
transformation of the reconstructed points to the IR’s coordinate
system also has a higher error.

In Figure 7, the ratio of false matches is displayed. During this
experiment, different tests with different camera parameters were
compared. As described in Metrics, a reconstructed point is
considered a false match when its distance to the point cloud is
greater than 10% of the depth value of the corresponding Kinect point.

The distribution of the distances between the reconstructed
points from the stereo event streams and the point clouds is
shown in Figure 8. The graphs show the number of points that

FIGURE 5 | Number of reconstructed points in different experiments with different camera settings. On the left, the experiments have been carried out with a
maximum event rate of 5 MEv/s and varying contrast sensitivities. On the right, a fixed contrast sensitivity of 30 and varying maximum event rates were used. For each
data point represents the mean value of five trials.
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FIGURE 6 | The graphs show how certain camera parameters may influence themeasured distances between the reconstructed points and the closest once of the
point cloud. The distances are plotted for different contrast sensitivities on the left and for over the maximum event rate on the right. Each plot shows four lines for the
median at 0.4, 0.3 and 0.2 quantiles respectively.

FIGURE 7 | Relative representation of false matches over several experiments with different camera parameters. How contrast sensitivity affects the algorithm’s
results is shown on the left and how the results relate to the maximum event rate is shown on the right.

FIGURE 8 | Distribution of distances between the reconstructed points and the ground truth. On the left all reconstructed points are considered while the right
graph takes only the points below the 0.4-quantile into account.
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could be reconstructed in different experiments with different
camera settings. On the left the experiments have been carried out
with a maximum event rate of 5 MEv/s and varying contrast
sensitivities. On the right experiments were carried out with a
fixed contrast sensitivity of 30 and varying maximum event rates.
Hence, the left part shows all reconstructed points and the right
one only relatively good matches, which do not exceed distances
of 10 cm. Only about 40% of the reconstructed points fall into this
category. For each data point in the graphs the algorithm was
applied five times and the mean value of reconstructed points for
the five executions was used. In conclusion, Figure 8 illustrates
well that the performance depends heavily on the camera settings.

CONCLUSIONS AND FUTURE WORKS

Safe human machine collaboration is one of the big challenges in
automation and robotics. Neuromorphic vision systems inducing
low latency, a very high dynamic range, and no motion blur, are
one possible solution. However, due to their fundamentally
different output form, event streams instead of intensity
images, conventional computer vision provides no adequate
processing techniques for them. Therefore, research exploiting
the sensor’s asynchronous principle of operation and thereby
derived high temporal resolution is very active. Many new
approaches for depth reconstruction from event-based data
have been presented. This work provides a robust and flexible
way to evaluate this multitude of new algorithms by introducing a
comprehensive benchmark environment for depth
reconstruction. It covers all aspects necessary to evaluate 3D
reconstruction algorithms on event-based data. Therefore, we
presented all required techniques for data acquisition and
calibration. The theoretical contribution was complemented
with a metric to improve comparability. To test our approach,
we implemented an evaluation candidate and realized some
evaluation scenarios. These experiments have been evaluated
regarding the previously introduced metrics. The distributed
architecture we designed works well and yields a robust and
reliable synchronization of all applied sensors, as could be proven
by the evaluation. Despite its distributed design, the setup
provides an easy-to-use interface for recording, making the
environment very flexible. An interesting follow-up project
would be to utilize this environment to create a dataset similar
to Zhu et al. (2018); Binas et al. (2017). The datasets are focused
on automotive applications and use the DAVIS. To the best of our
knowledge, there is no data set providing stereo event streams of

an ATIS sensor with a ground truth. Publishing a data set with a
different sensor and different application area like industrial
robotics could greatly benefit the research community in the
field. The ATIS is a relatively sophisticated neuromorphic sensor
regarding pixel size, resolution and dynamic range. However, as
particular attention is paid to neuromorphic systems lately, more
powerful sensors have been brought onto the market. To improve
an evaluation for event-based stereo vision methods, it would be
interesting to apply our benchmark environment with more
potent technologies. Beyond that, an good future project
would be to integrate other stereo vision algorithms for
evaluation using this environment. The variety of approaches
is large and many of them seem promising. Implementing the
approaches is, however, very timeconsuming and open source
implementations of the authors themselves have not been
published in most cases.
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