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Decorin is an extracellular matrix protein that belongs to the family of small leucine-rich proteoglycans. As a matrix protein, the
first discovered role of decorin is participating in collagen fibril formation. Many other functions of decorin in various biological
processes have been subsequently identified. Decorin is involved in an extensive signaling network and can interact with other
extracellular matrix components, growth factors, receptor tyrosine kinases, and various proteases. Decorin has been shown to
be involved in wound repair, cell cycle, angiogenesis, tumor metastasis, and autophagy. Recent evidence indicates that it also
plays a role in immune regulation and inflammatory diseases. This review summarizes the characteristics of decorin in
immune and inflammatory diseases, including inflammatory bowel disease (IBD), Sjögren’s syndrome (SS), chronic obstructive
pulmonary disease (COPD), IgA nephropathy, rheumatoid arthritis (RA), spondyloarthritis (SpA), osteoarthritis, multiple
sclerosis (MS), idiopathic inflammatory myopathies (IIM), and systemic sclerosis (SSc) and discusses the potential role in these
disorders.

1. Introduction

Autoimmune and inflammatory diseases are major health
problems affecting over 200 million people worldwide [1].
The search for new therapeutic approaches is not only to
help understand the process of disease occurrence and devel-
opment but also to alleviate patients’ symptoms and reduce
the economic burden on society. The extracellular matrix
is a well-organized complex collection of different proteins,
including collagen, elastin, proteoglycan, and glycosamino-
glycan [2]. Proteoglycans, which consist of one or more sul-
fated glycosaminoglycan chains and core proteins, include
large proteoglycans and small leucine-rich proteoglycans
(SLRPs) [3, 4]. SLRPs can be divided into five distinct classes
based on their number of LRRs, amino acid residues at the
N-terminus, and their chromosomal organization. Decorin
belongs to the first class of SLRPs. In humans, the core pro-
tein of decorin is made up of 10-12 repeating leucine-rich
motifs, and the GAG chain covalently attaches to the amino
terminus via a serine residue [5]. The GAG side of decorin is
usually dermal sulfate (DS) or chondroitin sulfate (CS),
depending on the tissue. Skin, tendons, and intima arteriae

are mainly DS, while bone and cartilage are mainly CS [6].
Decorin has multiple functions and is not only localized to
the extracellular matrix and dense connective tissues such
as tendons and ligaments but also exists in the body fluid,
including plasma and aqueous humor [7–13]. In addition
to interacting with collagen, soluble decorin is also involved
in various biological processes, including inflammation,
autophagy, angiogenesis, cell cycle, wound healing, and
fibrosis [14–20]. Previous studies focused on its inhibitory
effect on fibrosis and tumor. As an endogenous antagonist
of transforming growth factor β (TGF-β), decorin can phys-
ically interact with TGF-β, interfere with TGF-β signaling,
and form decorin/TGF-β complexes in the extracellular
matrix, thereby significantly attenuating the profibrotic
effect of TGF-β [21]. In tumors, decorin has been shown
to inhibit metastasis, tumor cell proliferation, and angiogen-
esis and regulate autophagy and inflammation [22]. In addi-
tion to these characteristics, decorin, as one of the damage-
associated molecular patterns (DAMPs), can initiate aseptic
inflammation and induce the activation of innate immune
cells, which provides the basis for its involvement in autoim-
mune and inflammatory diseases [11, 23]. This review article
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summarizes the characteristics of decorin in immune and
inflammatory diseases and discusses the potential role of
decorin in autoimmune diseases.

1.1. The Structural Characteristics of Decorin. Decorin, also
known as PG40, is a member of the small leucine-rich pro-
teoglycan (SLRPs) family [24, 25]. Mature decorin contains
a 42 kDa protein core with a sulfated glycosaminoglycan
chain attached to its N-terminal [24]. The protein core con-
tains twelve leucine-rich repeats (LRR) flanked by a cysteine-
rich region [26, 27] (Figure 1). The decorin has a horseshoe-
shaped appearance, with fourteen β-sheets at the concave
surface and many α-helices at the convex surface [26, 28].
In physiologic conditions, decorin exists as a dimer; how-
ever, this process is reversible, which is mediated by the con-
cave surfaces of decorin, and the dimerization of decorin
prevents its core region from binding to other substrates,
implying that monomeric decorin accounts for most of the
interactions [29, 30]. Furthermore, decorin can generate com-
plex context-dependent interactions with many ligands
through GAG chains and core proteins [24]. Despite its com-
plex function, decorin knockout mice were fertile and viable.
No significant morphological abnormalities were observed,
except reduced skin and tendon mechanics, suggesting a role
of decorin in collagen fiber formation [6]. On the other hand,
the study also found that the function of decorin overlaps with
other SLRPs such as biglycan and asporin, which relieves the
symptoms after decorin knockout [31, 32].

1.2. The Source and Expression of Decorin. Decorin is mainly
expressed in fibrous connective tissue and primarily involves
collagen fiber formation in the dermis, cornea, tendons, and
cartilage. Decorin is typically synthesized and secreted by
fibroblasts, maintaining the dynamic balance of the extracel-
lular matrix. However, epithelial cells and endothelial cells
can also synthesize decorin; although, they do not constitu-
tively express it [9]. Many factors can modulate the expres-
sion of decorin. Among them, the effect of inflammation
and cytokines on the decorin expression is interesting.
Decorin is significantly induced in inflammation-related
angiogenesis in vivo but not in noninflammation-
dependent angiogenesis. However, inflammatory cytokines
failed to directly induce decorin synthesis in endothelial cells,
suggesting that decorin may act on endothelium through
paracrine processes [9, 33]. Recent studies have also shown
that decorin can be released early after ferroptosis and partic-
ipate in the proinflammatory responses [34]. Cytokines
interleukin-6 (IL-6) and IL-10 have been shown to upregu-
late the expression of decorin in smooth muscle cells and
endothelial cells, whereas tumor necrosis factor α (TNF-α)
and TGF-β inhibit the transcription of decorin [35–37].
The effect of IL-1 and IL-4 on the expression of decorin is
controversial. Both increasing and inhibiting effects on the
transcription have been reported [35, 38–40]. In addition,
several studies have reported that immune cells are able to
synthesize and secrete decorin. Lipopolysaccharide (LPS)
stimulation increased the decorin transcription and secretion
levels in peritoneal macrophages [11]. In asthmatic patients

and mouse models, both CD4+ T and CD8+ T cells showed
an upregulated expression of decorin [41].

1.3. Signaling Network Initiated by Decorin. Decorin has
been linked to several biological functions. It can directly par-
ticipate in collagen formation, act as a ligand to bind relevant
receptors to mediate downstream signal transduction, and
block specific cytokines and growth factors to inhibit down-
stream signal transduction. Decorin binds to various collagen
fibers (including I, II, III, IV, V, VI, XII, and XIV) which type 1
collagen is the most widely studied [30, 42]. It has been dem-
onstrated that the triple helix of type 1 collagen has a site in
both “D” and “E” bands that can bind to the core protein of
decorin. Such a structure can prevent abnormal fusion
between collagen molecules [26]. The core protein of decorin
binds to collagen fibrils at a uniform spacing of 65nm, and
the charged GAG chain is perpendicular to the collagen fibrils
and connects adjacent fibrils, regulating the distance between
fibrils. Furthermore, the GAG chain may attach to tenascin-
X, modulating its effects on collagen and ECM integrity, and
decorin can acts as a bridging molecule binding different col-
lagens [5]. These are important for the accurate arrangement
and localization of collagen fibrils in the ECM. So, the lack
of decorin leads to variations in the diameter of fibril, and
the spacing and biomechanics are impaired. In addition, dec-
orin can interact with other extracellular matrix components
such as matrilin-1, tenascin X, microfilament-associated pro-
tein (MFAP-2), and fibrillins, which are involved in tissue cell
adhesion and migration to maintain the mechanical strength
of connective tissue [43–45].

Decorin can also act directly on receptors on the cell sur-
face. Met, encoded by protooncogene c-Met, is a tyrosine
kinase receptor that plays an essential role in cell migration,
apoptosis, proliferation, and differentiation. Studies showed
that decorin could bind to Met on the surface of tumor cells,
leading to rapid receptor phosphorylation and degradation
in the endosomes, and could also induce mitochondrial
autophagy by activating Met [46–48]. Decorin could also
target insulin-like growth factor 1 receptor (IGF1R) on the
surface of cancer cells and inhibit its downstream signaling
or target vascular endothelial growth factor receptor 2
(VEGFR2) on the surface of endothelial cells to promote
autophagy [49, 50]. Decorin can also inhibit tumor growth
by blocking epidermal growth factor receptor (EGFR) and
ErbB4 dimerization [51]. Decorin could also serve as a reser-
voir for TGF-β, myostatin, connective tissue growth factor
(CTGF), fibroblast growth factor (FGF), platelet-derived
growth factor (PDGF), and TNF-α to maintain their homeo-
stasis, which requires complex feedback mechanisms and
strict regulatory networks [30] (Figure 2).

1.4. Decorin and Inflammation. Decorin, as endogenous
ligands, binds to TLR2 and TLR4 on the surface of macro-
phages with an affinity comparable to that of pathogen
ligands, triggering an acute inflammatory response, leading
to rapid activation of P38, ERK1/2, and NF-κB pathways
and the synthesis of proinflammatory factors TNF-α and
IL-12p70 [52]. In addition, by signaling through TLR2/4,
decorin also acts as a transcriptional inducer of the tumor
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suppressor programmed cell death 4 (PDCD4), a specific
translational suppressor of IL-10, maintaining a proinflam-
matory environment [52]. However, the core protein alone
may play a role in inhibiting inflammation in a triple-
negative orthotopic breast cancer xenograft model by com-
petitive inhibition of other DAMP molecules bound to
TLR2 and TLR4 [53]. In addition to immune cells, Toll-
like receptors were also expressed in some tissue cells, such
as annulus fibrosus cells and salivary gland epithelial cells,
which both expressed TLR4 [54, 55]. The former can pro-
duce MIP-2 in response to decorin stimulation, and the lat-
ter can increase TNF-α transcription level in response to
decorin stimulation, and both of them can be inhibited by
TAK-242 (TLR4 inhibitor). In addition, decorin also plays
a proinflammatory role in several diseases. In chronic pan-
creatitis, decorin significantly increases macrophage inflam-
matory protein-1 (MCP-1) level in peripheral blood
mononuclear cells [56]. In delayed hypersensitivity models,
decorin enhances interferon-γ (IFN-γ) signal transduction
by activating signal transduction transcriptional activator 1
(STAT-1) [14].

It is worth noting that only the intact decorin composed
of core protein and the glycosaminoglycan (GAG) chain can
trigger the proinflammatory signal. The intact decorin is
sensitive to various enzymes, including matrix metallopro-
teinases- (MMP-) 2, 3, 7, and 8 [16, 57, 58], which can digest
and destroy core proteins, destabilize the matrix, and release
cytokines (TGF-β or TNF-α) previously bound to decorin.
Furthermore, the regulation of decorin in the inflammatory
response is complicated and depends on the context of
inflammation. In ischemia-reperfusion injury, TGF-β1 is
involved in the aggravation of tissue damage after perfusion,
and decorin has a potentially protective effect by inactivating
TGF-β [59]. In addition, intraperitoneal injection of decorin
after traumatic brain injury significantly reduced caspase 3
activity, increased superoxide dismutase levels, and pro-
tected brain tissue and neurons [60].

1.5. Decorin and Autophagy. Autophagy is a self-degrading
process that degrades damaged organelles and misfolded
and aggregated proteins through the lysosomal pathway
[61]. Physiological autophagy is essential for normal cell
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Figure 1: The structure of decorin. Decorin consists of amino-terminal domains, glycosaminoglycan chains, core protein domains, and
carboxy-terminal domains. The binding site of the GAG (glycosaminoglycan) chain exists in the amino-terminal domain. The core
protein domain contains leucine repeats (LRR) and N-linked-oligosaccharides. The remainder is the carboxy-terminal domain.
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Figure 2: The biological signaling network of decorin. Decorin binds to collagen fibers (including I, II, III, IV, V, VI, XII, and XIV). In
addition, decorin can interact with other extracellular matrix components such as matrilin-1, tenascin X, MFAP-2, and fibrillins. Decorin
can bind to receptors on the surface of tumor cells (such as Met, IGF1R, EGFR, or VEGFR2). Moreover, decorin also acts as a reservoir
for cytokines (TGF-β, myostatin, CTGF, FGF, PDGF, and TNF-α).
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function, signal transduction, and proliferation, but patho-
logical autophagy is involved in various diseases, including
autoimmune diseases [62]. Decorin is the first extracellular
matrix component identified to influence cellular metabolic
processes. The role of decorin in mitochondrial autophagy
in epithelial-derived tumors and endothelial cells has been
widely reported [22]. Decorin induced the expression of
mitostatin in breast cancer, leading to mitochondrial ultra-
structural changes [63, 64]. Decorin could also trigger mito-
chondrial depolarization and cause the translocation of
Parkin from the cytoplasm to mitochondria, leading to the
ubiquitination of mitochondrial proteins [65, 66]. Decorin
stimulated polyethylene glycol 3 (PEG3) synthesis in endo-
thelial cells by interacting with VEGFR2. Decorin could also
inhibit the upregulation of mTOR after VEGFA binding to
VEGFR2, which resulted in enhanced TFEB expression
and nuclear translocation, promoting autophagosome for-
mation [50, 67, 68]. Decorin has recently been suggested to
induce autophagy in intestinal inflammatory epithelial cells
[69]. Therefore, decorin may induce autophagy in both can-
cer and inflammatory conditions, which, however, may need
further studies to confirm.

1.6. The Interaction between Decorin and Immune Cell. Dec-
orin can theoretically interact with multiple immune cell
types because TLR is expressed on many immune cells.
However, the current research in this area is still lacking,
with most of them focusing on macrophages. Autocrine-
and paracrine-released decorin stimulated TLR2 and TLR4
receptors on macrophage surface, activated inflammatory
pathways of P38, MAPK, and NF-κB, and enhanced the pro-
duction of proinflammatory factors (IL-12p70 and TNF-α)

[11, 23, 70]. However, decorin can activate other receptors
as well. Recent studies showed that extracellular decorin
bound to advanced glycosylation end product-specific
receptor (AGER) on macrophages triggers proinflamma-
tory cytokine production in an NF-κB dependent manner
[34] (Figure 3). Decorin also indirectly affected the foxp3
gene expression through the TGF-β signaling pathway
[71]. In DCN-/- mice, the biological activity of TGF-β,
CD4+CD25+Foxp3+ T lymphocytes, and IL-10 levels were
increased, which inhibited the Th2 cell immune response
in allergic asthmatic mice [71].

2. Decorin in Autoimmune and
Inflammatory Diseases

Decorin is a multifunctional protein that plays a vital role
in various biological processes. Decorin may be involved
in immune-related diseases for several important reasons.
First, as one of the DAMPs, it can activate pattern recogni-
tion receptors such as TLR on innate immune cells. Sec-
ondly, as an endogenous TGF-β blocker, it reduces the
level of anti-inflammatory factor IL-10 and maintains the
persistence of inflammation. Finally, it can induce autoanti-
bodies against decorin; although, its significance has not
been elucidated [70]. Previous studies on autoimmune
and inflammatory diseases have focused on the interactions
between immune cells and immune cells and between
immune cells and parenchymal tissue cells. Still, there has
been limited research on the interaction between immune
cells and extracellular matrix. The extracellular matrix is
one of the most abundant tissue components in the body.
Although its role in disease has not been fully elucidated,
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Figure 3: The role of decorin on macrophages. Soluble and intact decorin can act on TLR receptors (TLR2 and TLR4) on the surface of
macrophages, activating downstream MAPK and NF-κB pathways, resulting in increased cytokines (TNF-α, IL-12P70, and IL-10).
Furthermore, decorin antagonizes the effects of TGF-β, leading to a decrease in IL-10, which maintains the proinflammatory function.
On the other hand, decorin released by ferroptosis can also act on AGER receptors on macrophages, leading to downstream NF-κB
pathway activation and increased TNF and IL-6.
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it has significant therapeutic potential. This review summa-
rizes the role of decorin in diseases including IBD, SS,
COPD, IgA nephropathy, MS, IIM, RA, and osteoarthritis
(Table 1).

2.1. IBD. Inflammatory bowel disease (IBD) is a nonspecific
chronic inflammatory disease, including Crohn’s disease
(Th1 dominant immune response) and ulcerative colitis
(Th2 dominant immune response) [72]. The role of decorin
in IBD has been explored only in mouse models and in vitro
cell lines. The study found increased levels of decorin and
autophagy-related proteins Beclin1 and LC3b in the intesti-
nal wall of IBD mice. The overexpression of decorin in
human colon epithelial cells resulted in increased auto-
phagosomes and decreased apoptosis, suggesting that dec-
orin may play a protective role in inflammatory bowel
disease by increasing the autophagy of epithelial cells and
decreasing apoptosis [69]. However, further research is
needed to clarify the relationship between decorin and
inflammation disease, for example, whether there is a clear
interaction between decorin and the immune cells or is there
a long-term effect of epithelial autophagy and whether this
could lead to dysfunction of epithelial cells.

2.2. SS. Sjögren’s syndrome (SS) is a common autoimmune
disease involving exocrine glands (salivary and lacrimal).
About 40% of patients develop exocrine symptoms, includ-
ing muscle arthralgia, interstitial lung disease, and central
nervous system involvement, and about 5% develop lym-
phoma [73]. The roles of epithelial cells and immune cells
in Sjögren’s syndrome have been extensively studied. How-
ever, the treatment selection of Sjögren’s syndrome is still
limited [74–76]. The evidence of the involvement of decorin
in SS is growing. An earlier study found an increased MMP
activity and an enhanced decorin degradation in the exo-
crine glands of NOD mice. However, given the limited activ-
ities of cleaved decorin, the role of decorin in SS is not
precisely clarified [77]. In a primary Sjögren’s syndrome
mouse model (NOD.B10), decorin was found to induce
TNF-α production and reduce MIP-1α and MCP-1 in the
spleen via TLR4 rather than TLR2 [78]. This indicates that
decorin may have a different effect on different cytokines/
chemokines and immune cells in SS. Further studies showed
that although circulating levels of decorin were not different
between NOD.B10 mice and control mice, autoantibodies
against decorin were significantly elevated in pSS mice, and
decorin was highly expressed in the salivary gland, lung,

Table 1: The role of decorin in autoimmune and inflammatory diseases.

Disease The role of decorin in disease pathogenesis References

IBD
The levels of decorin, Beclin1, and LC3b in the intestinal wall of IBD mice were increased; the overexpression of

decorin in human colon epithelial cells resulted in increased autophagosomes and decreased apoptosis.
[69]

SS

Degradation products of decorin in the exocrine gland of NOD mice were increased; in a pSS model (NOD.B10),
decorin was found to induce TNF-α production in spleen tissues via TLR4 and reduce MIP-1α and MCP-1 levels in
spleen cells; in a pSS model (NOD.B10), autoantibodies against decorin were significantly elevated, and decorin was
strongly expressed in salivary gland tissues, lung, and kidney tissues. Decorin was significantly elevated in the salivary
glands both in the experimental Sjögren’s syndrome model and pSS patients. Decorin induced the apoptosis of A253

cells and polarization of macrophages towards the M1 phenotype.

[54,
77–79]

COPD

The level of decorin secreted by fibroblasts from patients with severe COPD was decreased; using extracellular matrix
components and cytokines stimulated PBMC in COPD patients, more antidecorin IgG was produced; immunizing
mice with extracellular matrix components induced a specific immune response to decorin; decorin could act as a

predictor of acute disease exacerbation in patients with COPD.

[85–88]

IgAN
The transcriptional level of decorin was increased and was mainly located in sclerotic glomeruli and fibrotic sites in
IgA nephropathy. Decorin could promote podocyte autophagy and maintain cell homeostasis; podocytes may be a

source of decorin.
[91, 92]

RA
The frequency of IgM antibodies against decorin was the highest among all matrix molecules in RA; these antibodies

may interfere with the binding of decorin to C1q complement to regulate inflammatory processes.
[96]

SpA Autoantibodies against decorin were significantly higher in SpA synovial fluid than in OA patients. [96]

OA
Serum decorin levels were elevated in patients with OA and could be a risk factor for OA; Li et al. found that decorin
had a protective effect on cartilage regeneration in posttraumatic osteoarthritis by regulating the fibrogenesis of the
cartilage surface; the articular cartilage matrix showed higher stiffness and resistance to OA after decorin deletion.

[99–101]

MS
In perivascular fibrotic tissues of MS, Mohan et al. found the upregulation of decorin, which interacted with fibrillar
collagens. Decorin was involved in perivascular fibrosis, which had positive implications for limiting inflammatory

cell infiltration and lesion progression.
[104, 105]

IIM
Decorin could bind and inhibit myostatin from promoting the proliferation and differentiation of myogenic cells.
Decorin could also attach to TGF-β2 and positively affect skeletal muscle production; the injection of decorin into the

injured muscle could induce muscle regeneration.
[107–109]

SSc Decorin was significantly increased at both transcriptional and protein levels in SSc. [112]

Abbreviation: IBD: inflammatory bowel disease; SS: Sjögren’s syndrome; COPD: chronic obstructive pulmonary disease; IgAN: IgA nephropathy; RA:
rheumatoid arthritis; SpA: spondyloarthritis; OA: osteoarthritis; MS: multiple sclerosis; IIM: idiopathic inflammatory myopathy; SSc: systemic sclerosis;
pSS: primary Sjögren’s syndrome; TNF-α: tumor necrosis factor α; TLR4: Toll-like receptor 4; MIP-1α: macrophage inflammatory protein-1 α; MCP-1:
monocyte chemoattractant protein 1; PBMC: peripheral blood mononuclear cell; TGF-β2: transforming growth factor β2.

5Journal of Immunology Research



and kidney tissues of pSS mice [79]. Our study also found
that decorin was significantly elevated in the salivary glands
in the experimental Sjögren’s syndrome model and pSS
patients, and decorin induced the apoptosis of A253 cells
and polarization of macrophages towards the M1 phenotype
[54]. Current evidence supports the ECM degradation prod-
ucts as a new source of B cell activation in SS. However,
more evidence is needed to clarify whether decorin can be
used as an early therapeutic target in SS.

2.3. COPD. Chronic obstructive pulmonary disease (COPD)
is a chronic airway disease with restricted airflow. There is
increasing evidence that COPD is associated with immune
abnormalities, and some patients present with autoimmune
reactions [80]. These abnormalities are characterized by
the formation of B cell lymphoid follicles in the lung tissue
and the presence of anti-HEP-2 epithelial cells and antielas-
tin and antidecorin autoantibodies in the serum of patients
with COPD [81–85]. The level of decorin secreted by fibro-
blasts from patients with severe COPD was decreased, and
the expression of decorin was also reduced in pulmonary
mesenchymal stem cells (LMSCs) from COPD patients
[86]. More antidecorin IgG was produced when PBMCs
from COPD patients were stimulated by a combination of
extracellular matrix components and cytokines [85]. How-
ever, when the mice were immunized with extracellular
matrix and exposed to cigarette smoke, an immune response
specific to decorin was induced; although, it did not enhance
smoke-induced inflammation. However, it cannot be ruled
out that autoantibodies against decorin may cause tissue
damage over a longer time [87]. In addition, decorin in the
peripheral blood of patients with COPD has recently been
reported as a predictor of acute disease exacerbation [88].
The current evidence supports that decorin has some immu-
nogenicity. However, more evidence is needed to support
the involvement of decorin in COPD.

2.4. IgA Nephropathy. IgA nephropathy is a common pri-
mary glomerular disease caused by the deposition of
immune complexes in the mesangial region, resulting in
mesangial cell proliferation [89]. Decorin is mainly secreted
by renal fibroblasts in the normal kidneys and located in the
renal tubule interstitium [90]. In IgA nephropathy, the tran-
scriptional level of decorin was increased and was mainly
located in sclerotic glomeruli and fibrotic sites. These results
suggest that decorin is involved in the pathogenesis of IgA
nephropathy [91]. A recent study investigated the effects of
TGF-β1 and decorin on podocyte autophagy. The results
showed that TGF-β1 could activate the mammalian target
of rapamycin complex 1 (mTORC1) to inhibit podocyte
autophagy and participate in podocyte apoptosis [92]. In
addition, this study also found that podocytes may be a
source of decorin [92]. However, it is exciting and necessary
further to investigate the mechanism of decorin in IgA
nephropathy.

2.5. RA, SpA, and Osteoarthritis. Rheumatoid arthritis (RA)
is characterized by synovial hyperplasia, pannus formation,
and bone/cartilage damage [93]. Lymphoid follicles and

ectopic germinal centers were found in the synovial tissues,
suggesting that the cartilage matrix may be a potential com-
ponent of autoantigens in RA [94]. It was reported that the
frequency of IgM antibodies against decorin was the highest
among all matrix molecules. Decorin binds C1q to inhibit
the classical pathway of complement under normal condi-
tions, while autoantibodies bind decorin and activate the
classical pathway of complement, which has a potential pro-
inflammatory effect [95]. In addition, decorin normally
inhibits TGFβ, and autoantibodies may affect this process,
but the effect on the disease phenotype is complex and
unknown [96]. Seronegative spondyloarthropathies (SpA)
are chronic inflammatory diseases involving the spine,
peripheral joints, ligaments, and tendons [97]. Autoanti-
bodies against decorin were significantly higher in SpA
synovial fluid than in OA patients, suggesting that matrix
proteins are involved in the chronic inflammatory environ-
ment of local joints [96]. Osteoarthritis is a chronic degener-
ative cartilage disease characterized by joint pain and
stiffness [98]. The role of decorin in osteoarthritis is com-
plex. It was reported that serum decorin levels were elevated
in OA and could be a risk factor for OA [99]. However, stud-
ies in mouse models showed different results. Li et al. found
that decorin had a protective effect on cartilage regeneration
in posttraumatic osteoarthritis by regulating the fibrogenesis
of the cartilage surface [100]. Another study found that the
articular cartilage matrix showed higher stiffness and resis-
tance to OA after decorin deletion [101]. These also indi-
rectly illustrate the complexity of decorin in disease, and
more studies are still needed.

2.6. MS. Multiple sclerosis (MS) is a chronic inflammatory
demyelinating disease related to immune dysfunction, often
accompanied by sensory, motor, and visual impairment
[102]. Decorin in MS is rarely studied, and its function is
complex, but it is believed that it has some protection func-
tion. In part because it inhibits TGF-β, and in the EAE
model, inhibition of TGF-β signaling may have benefits in
the treatment of the acute phase [103]. On the other hand,
it is involved in the formation of perivascular fibrosis, which
is a typical feature of chronic lesions and can limit the
recruitment of immune cells and the expansion of MS
lesions [104, 105]. However, more evidence is needed to sup-
port whether it can be used as a therapeutic target.

2.7. Other Diseases. Idiopathic inflammatory myopathies
(IIM) are a heterogeneous group of autoimmune diseases
characterized by muscle weakness, inflammatory cell infil-
tration, and overexpression of MHC1 molecules in muscle
fibers [106]. Polymyositis (PM) is mainly infiltrated by
CD8+ T cells in the endomysium, while dermatomyositis
(DM) is primarily infiltrated by CD4+ T cells in the epimy-
sium. It was reported that decorin could bind and inhibit
myostatin from promoting the proliferation and differentia-
tion of myogenic cells [107]. Decorin could also attach to
TGF-β2 and promote skeletal muscle production [108].
Moreover, the injection of decorin into the injured muscle
could induce muscle regeneration [109]. Therefore, decorin
can be a potential target in IIM [110].
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Systemic sclerosis (SSc) is an autoimmune disease with
localized or diffuse skin thickening and fibrosis [111]. Stud-
ies have shown that proteoglycan secretion in fibroblasts of
SSc patients was significantly increased. Among them, dec-
orin was significantly increased at both transcriptional and
protein levels. It is speculated that these changes may affect
the composition of the stroma and the course of the dis-
ease [112].

3. Discussion

Decorin is a versatile protein that interacts with various
receptors, enzymes, and cytokines. Decorin is involved in
autophagy, cell cycle, inflammation, angiogenesis, and other
biological processes. The role of decorin in autoimmune and
inflammatory diseases is based on several essential parts.
Firstly, decorin, as one of the DAMPs, can participate in
the activation of innate immune cells through interacting
with TLRs or ARGE receptors. Secondly, the immune sys-
tem can produce autoantibodies against decorin, which
may interfere with the normal function of soluble decorin.
Thirdly, decorin is thought to mediate autophagy in endo-
thelial cells or epithelial cells. Finally, decorin can suppress
the effects of TGF-β, especially in fibrosis. These results sug-
gest that decorin plays a role in developing and progressing
autoimmune and inflammatory diseases. Therefore, it is cru-
cial to elucidate the role of decorin in the dynamics of dis-
ease development to guide treatment more precisely.

4. Conclusion

Decorin has been extensively studied in the process of anti-
fibrosis and antitumor. However, its role in autoimmune
and inflammatory diseases is not fully understood. Although
several studies have indicated an involvement of decorin in
autoimmune and inflammatory disease, the underlying
mechanisms remain to be elucidated due to the complexity
of decorin in these conditions.
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