
Aging Medicine. 2021;4:337–344.	﻿�   | 337wileyonlinelibrary.com/journal/agm2

1  |  INTRODUC TION

Nicotinamide adenine dinucleotide (NAD) precursors and sirtuin-
activating compounds (STACs) are becoming popular among 
longevity-minded individuals. The misguided conception that 
raising NAD or sirtuin activity can only have positive effects on 
human physiology should be considered erroneous and even del-
eterious. Hype exists around molecules that appear to extend life 
or slow down the aging process; however, little regard is given to 
the aberrant side effects or diseases that the upregulation of some 
molecules or overexpression of some proteins can cause, such as 
cancer.

Cancer can be caused by various mechanisms, such as DNA dam-
age from environmental factors or the activation of proto-oncogenes 
such as loss of tumor suppressor genes or even translocations of the 

c-MYC proto-oncogene.1–3 Point mutations also deliver a wide va-
riety of possible cancer causes as shown by Koeffler et al.3 Genes 
coding for guanosine triphosphate-binding proteins such as H-, 
K-, N-ras, or G proteins may be oncogenic and have already been 
identified in a sizable assortment of neoplasms. Many drivers of tu-
morigenesis exist; therefore, interference with cellular or genetic 
machinery with novel compounds such as NAD precursors or STACs 
should be approached cautiously.

Extensive energy is required for the rapid proliferation of cancer 
cells and NAD has been associated in increasing cellular energy pro-
duction.4 Alternatively, NAD has also been implicated in the deoxy-
ribose nucleic acid (DNA) repair pathway.5,6 This paradox is explored 
using a methodology of examining the multitude of NAD pathways 
in the reduced or oxidized form and how the interplay from these 
pathways may influence tumorigenesis.
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Abstract
This scoping review aims to perform a brief but comprehensive assessment of existing 
peer-reviewed literature and determine whether raising nicotinamide adenine dinu-
cleotide can prevent or promote tumorigenesis. The examination of extensive peer-
reviewed data regarding the synthesis of nicotinamide adenine dinucleotide has been 
performed with a focus on nuclear dynamics and the deoxyribose nucleic acid repair 
pathway. Various enzymatic protective functions have been identified from nicoti-
namide adenine dinucleotide levels, as well as the threat role that is also explored. 
Nicotinamide adenine dinucleotide precursors and sirtuin-activating compounds are 
becoming ubiquitous in the commercial market. Further research into whether elevat-
ing levels of nicotinamide adenine dinucleotide or overexpression of sirtuins can in-
crease the potential for neoplasm or other age-related pathophysiology is warranted 
due to the high energy requirements of certain diseases such as cancer.
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Nicotinamide adenine dinucleotide synthesis may be performed 
via numerous pathways such as the salvage pathway, Preiss-Handler 
pathway, de novo biosynthesis pathway, or the kynurenine path-
way7–9; however, the primary pathway for cellular NAD synthesis is 
the salvage pathway, according to Verdin (2015).7 Several methods 
have been proposed to raise and/or maintain NAD levels, such as 
inhibiting pathways that consume NAD such as cluster of differ-
entiation 38 (CD38), α-amino-β-carboxymuconate-ε-semialdehyde 
decarboxylase (ACMSD), sterile α, TIR motif–containing protein 1 
(SARM1), and poly(adenosine diphosphate-ribose)-1 (PARP1). In par-
ticular, CD38 is a glycohydrolase that is a major guzzler of NAD+. The 
flavonoid apigenin is a well-established CD38 inhibitor,10 and when 
apigenin was given to mice, the mice were shown to have approxi-
mately 50% higher NAD+ levels. Inhibiting enzymes that consume 
the NAD pool appears to make great therapeutic targets in main-
taining NAD levels across cellular compartments, but does interfer-
ing with cellular machinery such as CD38 hinder the cell's ability to 
mitigate cancer?

Upregulation of NAD with well-known precursors is only half the 
battle; however, preventing pools of NAD from waning in the first 
place is also becoming a prime target. Impeding genes, enzymes, and 
proteins from being able to use NAD may induce unwanted effects 
many years downstream.

At 32  months, wild-type mice have approximately half the 
NAD levels of their more youthful counterparts, but when CD38 is 
knocked out, the mice maintain their NAD levels and are more re-
sistant to age-related decline, including resistance to high fat diets 
(HFD), liver steatosis, and glucose intolerance.11 The opposite was 
true when mice were overexpressing CD38, the mice had lower 
pools of NAD, dysfunctional mitochondria, decreased oxygen con-
sumption, and an increase in lactate production was found.10–12 If 
this was carried over to the human population, then it may appear 
that CD38 can be reduced to increase NAD levels. However, the 
CD38 story is much more complex, as CD38 may intentionally re-
duce NAD to prevent the more frequent incidence of cancer pro-
gression found in older people.13

CD38 (a glycoprotein located on numerous white blood cells 
and serves in cell adhesion, calcium signalling, and signal trans-
duction) catalyses cyclic ADP-ribose from NAD+ to ADP-ribose 
as well as converting nicotinamide adenine dinucleotide phos-
phate (NADP+) to nicotinic acid-adenine dinucleotide phos-
phate.12 These reactions, whilst paramount for the control of 
intracellular calcium ions (Ca2+),14–16 feed on the existing NAD re-
serves residing in the cell. Losing control of Ca2+ holds cytotoxic 
potential across proliferation, metabolism, and gene transcrip-
tion.17 Furthermore, dysregulation of Ca2+ causes the handling 
and transport of proteins along extracellular, endoplasmic reticu-
lum, cytosolic, and mitochondrial environments to become erro-
neous, which impacts Ca2+ signalling corridors that may lead to 
increased cancer proliferation and invasion.18 Therefore, CD38 
interference may lead to higher NAD levels that enhance existing 
cancer progression but may also lead to new early-stage cancer 
hallmarks.

Another NAD-depleting protein is poly(adenosine diphosphate-
ribose)-1 or poly(ADP-ribose)1, which is known across the literature 
as PARP1, a nuclear enzyme that is now well established as a DNA 
damage sensor that can quickly recognize when damage has taken 
place and assists in the organization and structure of chromatin, in-
cluding the DNA repair pathways.6 PARP1 also requires NAD+ to 
form (ADP-ribose) polymers on specific target proteins, and when 
there is widespread PARP1 initiation, PARP1 can reduce nuclear 
NAD levels considerably, leaving the nuclear machinery open to in-
stability.19 In this instance, NAD clearly has anti-cancer properties 
and is a primary reason why NAD levels should be maintained at 
healthy levels.

A transcription factor known as nuclear factor kappa-light-chain-
enhancer of activated B-cells (NF-kB) is established as being able 
to deliver pro-inflammatory and specialist survival reactions in cells. 
NF-kB activity is partly controlled by acetylation of its p65  sub-
unit.19 Kauppinen et al. (2013) also demonstrated that PARP1 was 
able to influence NF-kB transcriptional processes through influ-
ences on p65 acetylation via induced NAD+ changes.19 These data 
clearly demonstrate that low NAD levels can inhibit genomic re-
pair pathways that may lead to cancer or additional proteomic or 
transcriptomic pathophysiologies derived from DNA coding errors. 
Furthermore, this information also demonstrates that ensuring NAD 
levels are maintained throughout age could offer a heightened abil-
ity to fend off cancers via the PARP1 repair machinery before cancer 
cell proliferation ensues. NAD is also highly active in preventing DNA 
damage from accumulating as we age. A surprising result found in a 
recent study is that the oxidized form of NAD appears to be a control 
mechanism in some of the effects in aging and disease susceptibility. 
Li et al.20 discuss the protein DBC1 that uses a domain to bind with 
NAD+, which impedes the interaction of DBC1 with PARP1, allowing 
PARP1 to continue its DNA repair work unhindered. This evidence 
may indicate why NAD+ has been suggested as a molecule with re-
juvenation properties.

Other pathways such as raising nicotinamide phosphoribosyl-
transferase (NAMPT) are also contenders in the NAD precursor 
realm.21 However, unexplored territory in humans is reached if we 
are to raise the level of enzymes such as NAMPT with the view to 
raise another coenzyme such as NAD. NAD and NAMPT have al-
ready been implicated in various cancers, as cancer requires vast 
energy to proliferate. Refractory diseases frequently depend on the 
enzymatic machinery located inside the NAD pathway.22 The same 
study by Lucena-Cacace et al. shows that high levels of NAD bestow 
therapy resistance to cancers. This directly infers those higher levels 
of NAD may cause tumors to be more potent. In this event, starv-
ing cancer of NAD and from the enzymes found in the myriad of 
NAD pathways may also hold merit in the fight against slowing fur-
ther cancer progression. The inhibition of NAMPT was also shown 
to reduce oxidative stress, inflammation, DNA damage to keratino-
cytes, and hyperproliferation in zebrafish models with chronic skin 
inflammation.23

A prominent pathway in NAD production is a de novo process; 
as a result, numerous steps are required along the NAD production 
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pathways by numerous precursor molecules for biosynthesis. 
Nicotinamide being an amide of nicotinic acid must undergo multiple 
reactions along this pathway in order for the NAD molecule to be 
synthesized,24 which opens up numerous possibilities and discus-
sions for the deactivation of NAD synthesis when cancer is present. 
Of note, the existence of several pathways leading to NAD produc-
tion raises questions on the relative importance of each pathway 
and which of them has the highest potential to increase NAD levels 
among tumors. NAD levels wane as humans age, and the importance 
on genomic integrity must also be considered.

It is noted that there is clearly overlap across the NAD litera-
ture that indicates benign, beneficial, and harmful effects from NAD 
and the enzymes found in the various NAD synthesis pathways. 
This gap in the research certainly gives rise for the need for further 
discussion.

2  |  NAD PRECURSORS

The main precursor for NAD biosynthesis is nicotinamide (NAM),25 
and this occurs through the salvage pathway.26 On human erythro-
cytes NAM doubles the rate of NAD synthesis as opposed to nicotinic 
acid and is more efficient as a NAD precursor under physiological 
conditions.27 Nicotinamide appears to protect neurons from injury, 
stroke, and also ischemia.28 This latter study also discusses when 
low concentrations of NAM are present that neurological deficits 
such as Alzheimer's, Parkinson's, and Huntington's disease may take 
hold. NAM is responsible for the maintenance of NAD coenzymes 
in lipid catabolism and oxidative deamination. NAM is a version of 
vitamin B3 and is a primary facet of the pathway that synthesizes 
NAD.28 Mouse models show that oral delivery of NAM attenuated 
both retinal ganglion cell soma loss and thinning of the fiber layer 
inside the retinal nerve. NAM is also paramount for the develop-
ment and maintenance of the central nervous system by expediting 
the conversion of embryonic stem cells into neural progenitors and 
neuronal differentiation, which points to a key role in neural devel-
opment.28 Evidence suggests that NAM can also cross the blood–
brain barrier both ways,29 which makes NAM a great candidate for 
neuronal NAD synthesis and health. NAM can bolster DNA security 
and assists with membrane integrity, arrest cellular injury, phago-
cytosis, apoptosis, and clot formation within the vascular system.30 
These data clearly indicate the importance of NAM to prevent the 
onset of multimorbidity.

Nicotinic acid (NA) (also known as niacin or vitamin B3) is ex-
tremely important for neuronal defence and neuronal death,28 
demonstrating the importance of NA in healthy central nervous 
system function and neural and neuronal developmental pathways. 
Interestingly, NA was able to elevate tissue NAD levels more than 
NAM could and also was able to raise cellular NAD levels above 
what NAM could achieve. Hara et al. (2007)31 demonstrated that 
the enzyme NA phosphoribosyltransferase (NAPRT) was closely 
linked to cellular NAD levels in humans. NAPRT was found to be 
highly expressed in murine organs such as the small intestine, liver, 

and kidneys. NAPRT was also found to assist NA in the synthesis 
of NAD in human cells. The same study showed that when cells 
expressed endogenous NAPRT, NA had the ability to synthesize 
almost twice the amount of NAD over what NAM could achieve. 
Worth noting that cytotoxicity of H202 was decreased through the 
NAPRT/NA pathway, making NA a promising candidate as an NAD 
precursor. Moreover, when NAPRT was knocked down, the opposite 
was found, leading the researchers to conclude that the enzymatic 
NAPRT/NA reaction for NAD synthesis is also a paramount pathway 
in the prevention of oxidative stress on cells.

According to Pieper (2003), NA may cause unwanted side effects 
such as hepatoxicity and cutaneous flushing32; NA is available by en-
dogenous and exogenous sources, and only 2% of tryptophan (TRP) 
obtained through diet is converted into NA, with the conversion 
happening primarily in the liver.5 Furthermore, NA holds prominent 
antiinflammatory, antioxidant, and antiapoptotic properties across a 
myriad of cell lines and tissues,5,33,34 which also leads into positive 
health outcomes for conditions such as diabetes,35 atherosclerosis,36 
and kidney and lung trauma.37–39 In this scenario, TRP may also be 
considered as a NAD precursor via the TRP metabolism found in the 
kidneys and liver. NA obtained from dietary intake promotes NAD 
levels.28 TRP is metabolized into nicotinic acid mononucleotide that 
is then converted into NAD; however, Fricker et al. (2018) shows that 
60 mg of TRP would be required whereas only 1 mg of NA would be 
required to garnish the same effect.28 The higher rate of TRP that is 
required for NAD synthesis puts TRP at a disadvantage when com-
pared to other NAD precursors. In this regard, many studies refer to 
either murine models or human studies; murine species are able to 
live on TRP only and thus retain their NAD supply, whereas humans 
do not share this same ability. This presents a required appreciation 
in interpreting the data sets from different research models; thus, 
conclusions between murine and human models cannot be taken 
as literal, but only as anecdotal indications as to the effects various 
NAD precursors may have on health and cancer.

Additionally, understanding how different NAD precursor mol-
ecules, their unique independent pathways, including their waste 
metabolites, is paramount in understanding the complex nature of 
disease progression, as a decline in NAD+ levels is clearly implicated 
in various metabolic and neurological diseases.40

Other popular precursors are nicotinamide riboside (NR) and 
nicotinamide mononucleotide (NMN), including the reduced 
forms of these as dihydronicotinamide riboside (DNR) and re-
duced nicotinamide mononucleotide (NMNH) appear to be even 
more potent.41–45 As shown by these studies, the reduced forms 
DNR and NMNH presently deliver the highest NAD levels of all 
the known precursors, though the seemingly simple difference of 
being in reduced form has also shown that these molecules ad-
here to completely different pathways, and in the case of DNR, 
the NAD synthesis was achieved through the NRK-1-independant 
pathway.46 DNR did appear to show metabolic dysregulation that 
altered mitochondrial respiration.47 NMNH also demonstrated 
differences over its oxidized form, including raising NAD levels 
more rapidly and doubling the levels of NAD available.48 Although 
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heightened levels of NMNH did appear to deliver many health 
benefits such as renal tubular epithelial healing in mice. What the 
effect is of such high NAD levels in causing overexpression of 
other cellular machinery such as the deacetylases known as sirtu-
ins is unknown and further investigation is justified.

3  |  NAD AND SIRTUINS

Popular belief exists that raising NAD can also raise the activity of 
the sirtuin proteins.49 Sirtuin proteins are a rigorous focus in longev-
ity research and there is an abundance of scientific literature that 
supports the concept that NAD is essential in some, possibly all sir-
tuin upregulation.21,50–53 Seven sirtuins are shown to exist in mam-
mals and use compartmentalized forms of NAD (2). Sirtuins (SIRT) 1, 
6, and 7 use nuclear NAD, SIRT2 uses cytoplasmic NAD, and SIRT3, 
4, and 5 all use mitochondrial NAD.7

The function of each sirtuin gene is vast and existing data does 
appear to implicate these genes across longevity. SIRT1 being 
found inside the nucleus and cytosol is responsible for histone 
deacetylation and the modulation of multiple transcription factors 
such as p53, nuclear factor k-light-chain-enhancer of activated B 
cells (NFκB), forkhead box (FOXO’s), and peroxisome proliferator-
activated receptor γ coactivator 1-α (PGC1α). SIRT2 is also cytosolic 
and performs multiple functions across conditions such as induc-
ing checkpoint kinase BubR1 that is known to increase lifespan.54 
SIRT3, 4, and 5 reside inside the mitochondria and function to regu-
late factors such as oxidative stress and lipid metabolism. SIRT6 and 
7 are nuclear and control genetic machinery such gene expression 
and DNA repair.21,49

However, evidence also exists that sirtuin activity may be impli-
cated in tumorigenesis. SIRT2 and SIRT6 appear to function as tu-
mour suppressors, whereas SIRT1 may be bidirectional and operate 
as a tumor suppressor and oncogenic factor.55 Moreover, SIRT1 is 
associated with facultative and constitutive heterochromatin status, 
and overexpression may induce unwanted replication by maintaining 
a prolonged euchromatin state. Alternatively, SIRT1 does contrib-
ute to telomeric preservation and enhances homologous recombi-
nation.56 This contradictory data points to further research being 
required on finding the most protective and effective level for SIRT1 
expression. SIRT1 is also implicated in deacetylating other proteins 
including FOXO3a, E2F1, KU70, RB1 that enables cell growth.57–60 
Furthermore, SIRT1 promotes tumorigenesis via exhibiting antia-
poptotic properties that may directly drive cancer proliferation.61

Other sirtuin genes may also deliver procancer activity. 
Downregulating levels of SIRT2 have been shown to impede hepa-
tocellular carcinoma by reducing the energy metabolism that neo-
plasm demands.62 SIRT2 is also involved in the migration of gastric 
cancer.63

SIRT5 enriches glutaminolysis that is shown to raise the poten-
tial for colorectal carcinogenesis, which is then compounded by high 
levels of SIRT1 that are also associated with poor colorectal carci-
noma outcomes.64,65

4  |  SIRTUINS IN VITRO AND IN VIVO 
FUNC TIONS

Recent research has indicated that modifications in sirtuin proteins 
points to uncertain and unforeseeable behaviour in many tumor 
varieties. However, Costa-Machado & Fernandez-Marcos66 also 
found that sirtuin activation can possess strong cancer suppressive 
properties. The same study not only investigated in vitro evidence 
but drew on existing research to evidence that specific dangers of 
elevated sirtuin activity were synonymous with human disease. 
SIRT1 was found to be higher in breast, gastric, colon, acute myeloid 
leukemia, thyroid, lung, and prostate tumours. Elevated SIRT2 was 
found to increase c-MYC stability, deacetylated and repressed KRas 
in lung and pancreatic cancer, inhibited JMJD2A in lung cancer and 
deacetylated K305 resulting in reduced breast tumour development. 
SIRT3 caused disruption to c-MYC and p53  stability, though con-
trarily restricted expression of TWIST in ovarian carcinoma along 
with the Wnt/β-catenin corridor in prostate tumours. SIRT3 was 
also found to disrupt HIF1a and reduce breast tumor progression, 
along with activation of superoxide dismutase 2 and isocitrate de-
hydrogenase 2 that reduced B-cell malignancies. Moreover, SIRT3 
inhibited Notch1 expression that showed a decrease in gastric 
cancer. Furthermore, SIRT3 was implicated in poorer outcomes of 
diffuse large B-cell lymphoma, promoted colorectal carcinogen-
esis, though suppressed mammalian target of rapamycin complex 1 
(mTORC1) when overexpressed which reduced tumor development. 
SIRT4 was able to exhibit suppression of glutamate dehydrogenase 
resulting in prevention of liver, lung, and Burkitt B-cell lymphoma 
along with decreased expression of mammalian target of rapamycin 
(mTOR) signalling with decreased liver tumour progression. SIRT5 
was implicated in breast tumour growth, decreased lung tumour 
growth, promotion of colorectal tumours, and serine hydroxymeth-
yltransferase-2 desuccinylation driving cancer proliferation. SIRT6 
was shown to suppress pancreatic cancer, controlled c-MYC tran-
scription in colon cancer, inhibited TWIST1 expression resulting in 
suppressed proliferation in non-small cell lung cancer, suppressed 
oncogenic functions, resulted in increased pancreatic tumours when 
downregulated, though inhibited ovarian cancer progression and 
oral squamous cell carcinomas. SIRT7 showed inhibition of p53, is 
shown to be downregulated in breast lung metastases in both hu-
mans and mice, stimulated epithelial-to-mesenchymal transition in 
prostate cancer cells, and restricted expression of miR34a advancing 
stomach tumor development.

5  |  INDIREC T NAD MANIPUL ATION

Other novel methods to increase NAD levels exist, such as inhibit-
ing the enzyme aminocarboxymuconate-semialdehyde decarboxy-
lase (ACMSD). Attenuation of ACMSD has been shown to promote 
NAD+ synthesis (via de novo) and also increase SIRT1 function.67 Of 
note, ACMSD is involved in several other biological processes; thus, 
suppressing ACMSD for increased NAD synthesis may appear as an 
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interesting target to raise NAD. However, low levels of ACMSD may 
hold detrimental effects, such as Parkinson's Disease (PD) develop-
ment, as ACMSD is well depicted inside the kynurenine pathway 
where it works to regulate and limit the creation of quinolinic acid 
(QA).68 QA is an N-Methyl-D-aspartic acid (NMDA) receptor agonist, 
presenting excitotoxicity properties that can damage nerve cells. It 
is noted that ACMSD is not the only driver or possible cause for PD 
and maintaining ACMSD may not treat or manage PD.

The type of precursors used for NAD synthesis make up only a 
small part of the science of increasing NAD levels. As shown earlier 
in this discussion many pathways exist such as de novo NAD syn-
thesis from dietary intake of tryptophan or via the salvage pathways 
from NAM, NR, NMN, DNR and NMNH, and NA,69 and different bi-
ological systems use different NAD pathways such as the heart that 
gets >99% of NAD via the salvage pathway.21 Combining these data 
with the variants from each NAD precursor such as NMN, which may 
improve cardiac function, opposed to NR, which may improve mito-
chondrial function in muscle, liver, and brown adipose tissue,11,70 it 
becomes evident that different precursors and their pathways may 
lean toward different benefits and health risks.

If it becomes common for users of NAD supplementation to use 
a combination of NAD precursors, then this may complicate the 
mechanisms at play, the benefits and risks. However, these data 
must be weighed against the fact that the literature used for this 
discussion used mono-analytical pathways and not diverse mixed 
methods; therefore, the results of every paper can be questioned 
as to how a precursor may perform under different conditions or 
how the sample processing influenced the outcome. The majority of 
published literature clearly leans toward increasing NAD levels for 
overall health and cellular metabolism; however, we note that there 
is also research that shows contradictory evidence with heightened 
NAD levels. Of note, nicotinamide supplementation induces meta-
bolic effects that were detrimental to rats.71,72 However, this effect 
has not been replicated in humans and demonstrates that not all 
animal models relate to human physiology. NA in high consumption 
can expand methyl group consumption and hydrogen peroxide lev-
els. This methyl depletion can increase ROS and insulin resistance.71 
Though we note that this study was again in rats and was performed 
at levels of consumption that are rarely if ever recommended or 
used by humans. Consumption was at levels of 0.5, 2, and 4 g/kg 
of weight. Therefore, these studies in Sprague Dawley wild-type 
rats may not likely translate to cause for concern in humans. Even 
though we found numerous papers showing that NAD levels were 
easily raised with NR, NMN, NA, and NAM, we also found a trend 
that NR could hold mild detrimental effects in animal models such 
as substandard exercise ability that may or may not translate over 
to humans.73 However, this is not to suggest that NR has a different 
effect on biology, but that different research methods and model 
organisms combined with contrasting sample processing techniques 
throughout the literature may suggest that the different effects seen 
from NR may simply be attributable to the lack of diverse scientific 
techniques used to synthesize and observe NAD. Attempts of in-
creasing NAD by using precursors mixed with other compounds also 

form part of the current research in this field. One such combination 
is NR combined with pterostilbene. It has been demonstrated during 
a randomized double-blind placebo-controlled study that when sub-
jects took a combination of NR and pterostilbene their NAD levels 
increase.74 Pterostilbene is a polyphenol found in blueberries and it 
is not shown how this polyphenol actually induced NAD synthesis.74 
From the literature it is more probable that the rise in NAD levels 
among subjects was solely the result of the effects of NR. However, 
the same paper does discuss that pterostilbene is an analogue of 
resveratrol, which is known to be a strong SIRT1 activator,53 and 
with evidence mounting that sirtuin overexpression could be harm-
ful, these type of combinations may hold further risk.

6  |  SUMMARY

Clearly NAD is used in all cells, including cancer cells to produce 
energy. The findings of this paper suggest that NAD supplementa-
tion should be discussed with a healthcare practitioner if you have a 
strong family history of cancer, have cancer, or have had cancer. Any 
given subject should first speak to their healthcare provider when 
considering NAD and possibly perform screening tests. However, 
NAD may fend off many other age-related diseases and prevent 
cancer from developing, so developing strategies to purge senes-
cent cells from the body prior to NAD supplementation should also 
be considered.

The pursuit to blindly raise sirtuin activity in the quest for lon-
gevity may also produce counterproductive results and may be 
misguided. However, cancer cells like normal cells require the same 
cellular machinery to function, and this review does not find that 
NAD nor sirtuins cause cancer but may simply assist fuelling can-
cer where present. Where it is shown that sirtuin or NAD inhibition 
shows beneficial effects against cancer progression, it does not infer 
those elevated levels of sirtuins or NAD assist in cancer progression 
but are simply part of the cancer progression. Raising sirtuin or NAD 
activity may increase disease penetrance, and further research is re-
quired to understand the complex mechanisms at play.

As shown with the risks of interfering with machinery such as 
ACMSD, NAD precursor products that are vague in their method-
ology or ingredients should be avoided, as products currently ap-
pearing on the market that interfere with NAD-consuming enzymes 
may come with increased disease risk. This may demonstrate some 
precursors hold higher risk than others, indicating that not all pre-
cursors are equal at upregulating cellular or nuclear machinery in 
the quest for healthy NAD levels. Unique approaches should be de-
veloped to ensure that not only NAD is maximized throughout the 
entire range of organelles, but that stringent confines exist for as-
sociated biological machinery so that overexpression and other risk 
factors are mitigated. How that can be achieved should become a 
major focus for NAD research.
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