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Abstract: Receptors form the crux for any biochemical signaling. Receptor-like kinases (RLKs) are
conserved protein kinases in eukaryotes that establish signaling circuits to transduce information
from outer plant cell membrane to the nucleus of plant cells, eventually activating processes directing
growth, development, stress responses, and disease resistance. Plant RLKs share considerable
homology with the receptor tyrosine kinases (RTKs) of the animal system, differing at the site
of phosphorylation. Typically, RLKs have a membrane-localization signal in the amino-terminal,
followed by an extracellular ligand-binding domain, a solitary membrane-spanning domain, and
a cytoplasmic kinase domain. The functional characterization of ligand-binding domains of the
various RLKs has demonstrated their essential role in the perception of extracellular stimuli, while
its cytosolic kinase domain is usually confined to the phosphorylation of their substrates to control
downstream regulatory machinery. Identification of the several ligands of RLKs, as well as a few of its
immediate substrates have predominantly contributed to a better understanding of the fundamental
signaling mechanisms. In the model plant Arabidopsis, several studies have indicated that multiple
RLKs are involved in modulating various types of physiological roles via diverse signaling routes.
Here, we summarize recent advances and provide an updated overview of transmembrane RLKs
in Arabidopsis.
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1. Introduction

Responsiveness to extracellular or intracellular changes is the nub for the survival of any organism,
and receptors act as trump cards. Receptors predominantly tweak their downstream gene expression,
in accordance with the stimuli perceived and yield a suitable response that enables survival of the
organism. Eukaryotic protein kinases (ePKs) are a superfamily of proteins that facilitate this signal
transduction by catalyzing the transfer of γ-phosphate from ATP to the free hydroxyl groups of
serine/threonine/tyrosine residues of the substrate protein. This post-translational modification or
phosphorylation of the substrate alters its reactivity, which results in the activation or inactivation of the
signaling circuit [1]. The ePKs are represented by several families of kinases like receptor-like kinases
(RLKs), mitogen-activated protein kinases (MAPKs), calcium-dependent protein kinases (CDPKs),
NIMA-related kinases (NEKs), glycogen synthase kinases (GSKs) etc., each with their unique structural
and functional attributes [2].

Receptor-like kinases (RLKs), a multi-gene family, is the largest class of ePKs that is crucial for
mediating growth, development and stress-responsive signals in plants. Their domain organization
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resembles the receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSKs) of the
animal system, and their closest animal homologs are the Drosophila Pelle kinase family and human
interleukin-1 receptor-associated kinases (IRAKs) [3,4]. RLKs include transmembrane receptor kinases
as well as non-receptor or cytoplasmic kinases. The former consists of a signal peptide, an extracellular
ectodomain, single membrane-spanning domain, intracellular juxta membrane domain, and the
cytoplasmic kinase domain; while the latter has only the cytoplasmic kinase domain, and are, therefore,
called receptor-like cytoplasmic kinases (RLCKs) [5]. In addition, another group of proteins called
receptor-like proteins (RLPs) are similar to the RLKs, except that they do not possess the kinase
domain [6]. RLKs and RLPs are the major cell-surface receptors observed in plants [7]. Throughout
this review, ‘RLKs’ refer only to the transmembrane receptor kinases.

RLKs are known to exist in animals as well as plants, but are not yet reported in fungi, despite
the presence of other soluble protein kinases in them [8,9]. Unlike plants, RLKs are represented
by smaller gene numbers in the animal system. Except for transforming growth factor-β (TGF-β)
receptors, all animal receptor kinases are tyrosine kinases, whereas the majority of plant RLKs
possess serine/threonine kinase domain [10]. Some of the plant RLKs (nod factor receptor 1 (NFR1),
brassinosteroid insensitive 1 (BRI1), BRI1-associated kinase 1 (BAK1), pollen-expressed receptor kinase
1 (PRK1), somatic embryogenesis receptor kinase 1 (SERK1), BAK1-like kinase 1 (HAESA)) have been
found to behave as dual-specificity kinases, possessing conserved motifs of both types of kinases and,
thus, efficiently phosphorylating at serine/threonine as well as tyrosine residues [11,12]. The structural
configuration of animal receptor kinases is similar to plant RLKs. The three conserved motifs in their
cytoplasmic domains, such as Valine–Alanine–Isoleucine–Lysine (VAIK), Histidine–Arginine–Aspartate
(HRD), and Aspartate–Phenylalanine–Glycine (DFG), assign them to the kinase family, while a few
(human epidermal growth factor receptor 3 (HER-3), serine threonine tyrosine kinase 1 (STYK1)) that
have a variant residue in at least one of these motifs are called pseudokinases [13]. Intriguingly, both
plant and animal RLKs have similar downstream targets like MAPKs and reactive oxygen species
(ROS) and also undergo similar desensitization pathways, such as ubiquitination and endocytosis [14].

Despite the similarity of plant RLKs to their animal counterparts, it can be noted that these families
belong to distinct monophyletic groups within the protein kinases, implying the independent evolution
of these classes among plant and animal systems, whereas, the analogy in their biochemical events
indicates convergent evolution [3,10]. The enormous representative members in RLKs are confined to
the angiosperms only, whereas the numbers are fewer in the lower plant groups. Though the kinase
domains (KD) and the conserved motifs of the ectodomain (ED) are encountered as discrete entities in
algae, the receptor conformation, which is characterized by the presence of both ED and KD, has not
yet been reported, except in the charophytes (Nitella axillaris and Closterium ehrenbergii), suggesting
that the receptor conformation had been established just before the divergence of land plants from the
charophytes [3,15]. Furthermore, exploration of the sequenced genomes of different groups of plants
revealed that the RLKs in angiosperms range from 0.67%–1.39% of their protein-encoding genes, while
that of bryophytes (Physcomitrella patens) and pteridophytes (Selaginella moellendorffii) account for only
0.36% and 0.30% respectively. These indicate greater expansion of this family in the flowering plant
lineage within Viridiplantae, which might probably account for the acquisition of new roles that are
essential for their survival. Arabidopsis, rice, and poplar possess 1.9, 3.3 and 3.6 times the number of
RLKs detected in moss, validating that this expansion is not concomitant with an increase in genome
size but with genome complexity [15,16]. Within the RLK family, the expansion is not uniform in the
different taxa. Those subfamilies, which have a critical role in plant growth and development, tend to
remain more conserved within the taxa, while those specific to plant defense tend to expand more,
in order to co-evolve with their biotic counterparts [15].

This review focusses on RLKs in the model plant Arabidopsis thaliana providing insights into its
domain organization, classification, signaling mechanism, their roles in plant growth and development,
and in conferring resistance to biotic and abiotic stresses.
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2. Classification of Arabidopsis RLKs

In Arabidopsis, RLKs represent the largest protein family with more than 600 members, constituting
about 2.5% of its euchromatin; thus, eliciting the significance of this class of plant receptors. It is
noteworthy that the phylogenetic analysis of RLKs with other protein kinases of Arabidopsis validates
the monophyletic origin of RLKs. Out of the 610 genes encoding for RLKs, 417 encode for receptor
kinases while the other 193 lack the signature signal sequence and/or transmembrane sequence
indicating that these might be cytoplasmic kinases (RLCKs) [10]. Based on the signature motifs in the
ectodomains of receptor kinases, Arabidopsis transmembrane RLKs can be classified into 14 types,
viz., leucine-rich repeat (LRR), lectin (C-Lectin and L-Lectin), wall-associated kinase (WAK), extensin
like, proline-rich extensin like (PERK), Catharanthus roseus like (CrRLK), self-incompatibility domain
(S-domain), CRINKLY-like (CR-like), the domain of unknown function 26 (DUF26), lysin motif (LysM),
thaumatin, leaf rust kinase-like (LRK), receptor-like kinase in flowers (RKF), unknown receptor kinase
(URK), of which the biological role of only a few have been studied in detail [17–35] (Table 1). Some of
these RLK types are placed under different subfamilies due to the phylogenetic distinctness of their
kinase domains [5]. This suggests probable functional diversification such that single isoforms may
comply with different specificities. The structural features of different types of RLKs are explained
here (Figure 1).

Table 1. List of few representative members of each receptor-like kinase (RLK) type.

S. No. RLK Type Gene (s) Function Ref

1 LRR

CLAVATA1 Meristem and organ development [17]

SERK Microsporogenesis, embryogenesis, and
embryonic competence in tissue culture [18]

HAESA Floral organ abscission [19]

FLS2 Senses bacterial flagellin [20]

2 LecRLK LecRK1 Oligosaccharide-mediated signal transduction [33]

3 WAK-RLK WAK1 Cell wall integrity, pathogen response [21]

4 Extensin LRX1 Root hair morphogenesis [22]

5 PERK PERK4 Cell wall integrity and drought response [23]

6 CrRLK
HERK1 Determinants of pollen tube [35]

FER Polar growth of root hair and pollen tube [24,25]

7 S-domain
AtS1 Self-incompatibility [34]

ARK2, ARK3 Organ maturation [34]

8 CR-like ACR4

Epidermal patterning, integument
development in ovules [26]

Plant defense [27]

9 DUF26
CRK13 Biotic stress response [28]

CRK6, CRK7 Oxidative stress response [29]

10 LysM-RLK AtCERK1 Perception of MAMPs [30]

11 Thaumatin PR5K Response to pathogenic signals [31]

12 LRK 10-like LRK10L1.2 Drought resistance [32]

The functional significance of unknown receptor kinase (URK) and receptor-like kinase in flowers (RKF) in
Arabidopsis has not yet been reported and is thus, not mentioned in this table.
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efficient survival of plants in the constantly changing environment. Ligands like plant growth 
regulators (brassinolide and phytosulfokine), peptides (PSY1-sulphated peptide, TPD1-cysteine-rich 
peptide, and CLV3-proline-rich peptide), and MAMPs (microbe-associated molecular patterns: Nod 
factors or other GlcNAc) stimulate plant developmental signaling, while PAMPs (pathogen-
associated molecular patterns: chitin, lipopolysaccharides, ergosterol, transglutaminase, etc.) and 
DAMPs (damage-associated molecular patterns: cutin monomers, oligogalacturonic acid, cello 
oligomers, etc.) induce immune response via diverse signaling cascades and enable combat against 
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Few RLKs require co-receptors (like BAK1) or scaffold proteins (like FERONIA) for the 
establishment of receptor complex [59,60]. Before ligand perception, the cytosolic kinase domains of 
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Figure 1. Domain architecture of Arabidopsis RLKs. A. SERK (LRR), B. LecRK1 (Lectin), C. WAK1
(WAK), D. LRX1 (Extensin + LRR), E. PERK4 (PERK), F. FER (CrRLK), G. AtS1 (S-domain), H. ACR4
(CR-like), I. CRK (DUF26), J. AtCERK1 (LysM), K. PR5K (Thaumatin), L. LRK10L1.2 (LRK). RCC,
regulator of chromosome condensation.

Leucine-rich repeats (LRRs) are the largest represented class of RLKs, encoded by 239 genes
and comprising 15 subfamilies in Arabidopsis [5]. LRRs are tandem repeats of about 24 amino
acid residues, having conserved leucine residues and are homologous to the ectodomains of the
toll-like receptor of the animal system [36,37]. The exact number, arrangement of residues, and the
sequences interspersed between the leucine repeats determine the perception of diverse ligands by
their ectodomain, which ultimately initiate various signaling events to modulate growth as well as
stress responses [38,39]. Similarly, Lectin receptor-like kinases (LecRLKs), which are the second-largest
group of RLKs, are known for their role in plant stress and developmental pathways. These Lectin
RLKs are encoded by 47 genes belonging to two subfamilies in Arabidopsis [5]. They can bind to
various homo and hetero-disaccharides, such as chitobiose, glucose-mannose, and galactose-GlcNAc,
through the sugar-binding motifs in their ectodomains [33,40]. Broadly, LecRLKs are of three types:
C, L, and G, while only C and L type have been known to exist in Arabidopsis. C-type lectin is
encoded by a single gene in Arabidopsis and can be considered homologous to calcium-binding
lectin motifs of the mammalian system [5]. The carbohydrate-binding domains of C-type lectin are
calcium-dependent for ligand binding and maintenance of domain integrity [41]. The L-type lectins
have carbohydrate-binding domains similar to the leguminous plant lectins and extracellular ATP is
one of their chief ligands [42,43]. The lectin domain of L-type lectins is closely related to other RLKs
like wall-associated kinase (WAK) and proline-rich extensin like kinase (PERK) [44].

Maintenance of cell wall integrity is crucial to cater efficient mechanical support during growth,
development, injury, and exposure to abiotic/biotic stress. RLKs like lectin RLKs, wall-associated
kinases (WAKs), extensin-like kinases, proline-rich extensin like kinases (PERKs), and Catharanthus
roseus like kinases (CrRLKs), are the aides, which ensure it. WAKs are coupled with pectin to tether
the cell wall to cytoplasm for providing structural integrity. Arabidopsis has 26 WAKs, all of which
belong to the same subfamily. The ectodomain of WAKs possesses a cysteine-containing EGF motif,
which is the only motif that is common in both plant and animal ectodomains. The kinase domains of
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WAKs are known to facilitate protein-protein interactions and also respond to changes in cellulose
biosynthesis during pathogen attacks [21]. On the other hand, extensin is a cell wall structural
protein which consists of a repeating Ser-(Hyp)4 motif and extensin-like kinases possess glycosylated
Ser-(Hyp)3–5 motifs to maintain the dynamicity of the cell wall [45–47]. The LRX1 of Arabidopsis is a
chimeric RLK, possessing LRR, as well as extensin domains [22]. The ectodomains of PERKs share
sequence similarity with extensins and are rich in proline. This type of RLKs perhaps interact with the
positively charged pectin network and generate a repair response upon wall damage or injury, thus,
maintaining wall integrity [48]. Catharanthus roseus like RLK possess a putative carbohydrate-binding
malectin-like domain, essential for the supervision of cell wall tenacity [49]. This malectin-like domain
is globular, membrane-anchored, and known to bind Glc2-N-glycans [50]. FERONIA (FER), ANXUR1
(ANX1), ANX2, THESEUS1 (THE1), HERCULES1 (HERK1) are important members of CrRLK1L family.
Although FER, ANX1, and HERK1 have similar downstream targets, they are activated by diverse
ligand interactions [35].

Accumulating evidence indicates that a few groups of RLKs participate in plant responses
to a variety of biotic stresses, as well as during plant development, viz., S-RLK, CRINKLY-like
RLK and domain of unknown function 26 (DUF26). The S-domain of S-RLK is homologous to the
self-incompatibility-locus glycoproteins in wild cabbage [51]. In Arabidopsis, there are 40 different
S-domain bearing RLKs, which belong to three different subfamilies. The S-domain has the signature
WQSFDXPTDTFL, called the PTDT-box, where X and F represent any non-conserved and aliphatic
amino acid residues, respectively. This S-domain also contains 12 conserved cysteine residues as
well as agglutinin, EGF and PAN (plasminogen/apple/nematode) motifs [5,34]. On the other hand,
Arabidopsis CRINKLY-like RLKs (ACR4) have tumor necrosis factor receptor (TNFR)-like repeats in
their ligand-binding domain, i.e., seven tandem repeats of about 39 amino acid residues, followed
by three cysteine-rich regions [26,27]. Another cysteine-rich domain-containing receptor-like kinase
(CRK) is the domain of unknown function 26 (DUF26), which contains C-8X-C-2X-C motif in its
ectodomain [52,53].

Few RLK types are known to play essential roles predominantly in plant defense and one of
the major groups is LysM-RLK, which shows a critical role in chitin signaling and fungal resistance
in Arabidopsis. For instance, chitin elicitor receptor kinase 1 (CERK1) is essential for perception
of the fungal cell wall component, chitin and confers resistance against fungal pathogens. The
ectodomain of LysM-RLK is comprised of three lysin motifs and each motif is a stretch of about
40 amino acid residues, discovered in most organisms, except Archaea [54–56]. This motif can interact
with N-acetylglucosamine (GlcNAc) containing polymers; thus, mediating microbial interactions [55].
The other groups of kinases exhibiting anti-fungal and chitinase activity are the thaumatin and leaf
rust kinase 10-like (LRK 10-like) RLK. The thaumatin group, also known as pathogenesis-related group
5 receptor kinase (PR5K), is encoded by three genes in Arabidopsis and their ectodomains possess 16
conserved cysteine residues [5,31]. The ectodomains of leaf rust kinase 10-like (LRK 10-like) RLKs
are homologous to the LR10 protein, which belongs to the family of wheat leaf rust kinases (WLRKs).
The 14 conserved cysteine residues are arranged in a specific manner in the ectodomain of these
RLKs [32,57]. This diversity in the ectodomain architecture of RLKs facilitate the perception of distinct
ligands and thus account for the diverse roles of RLKs throughout a plant’s life.

3. Signaling Mechanism of RLKs

Ligand binding at ectodomain is essential for oligomerization and activation of the RLKs. The
diverse ectodomains of RLKs help in the perception of lucrative and noxious stimuli; thus, enabling
efficient survival of plants in the constantly changing environment. Ligands like plant growth
regulators (brassinolide and phytosulfokine), peptides (PSY1-sulphated peptide, TPD1-cysteine-rich
peptide, and CLV3-proline-rich peptide), and MAMPs (microbe-associated molecular patterns: Nod
factors or other GlcNAc) stimulate plant developmental signaling, while PAMPs (pathogen-associated
molecular patterns: chitin, lipopolysaccharides, ergosterol, transglutaminase, etc.) and DAMPs
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(damage-associated molecular patterns: cutin monomers, oligogalacturonic acid, cello oligomers, etc.)
induce immune response via diverse signaling cascades and enable combat against the pathogen/injury
for conferring tolerance or resistance to the plant cell [32,58]. An outline of the signal transduction
mechanism, depicting only the conserved members involved in most of the signaling cascades, is
illustrated in Figure 2.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 7 of 29 
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Figure 2. Schematic outline of signaling mechanism of Arabidopsis RLKs. Complex formation
and interaction with receptor-like cytoplasmic kinases (RLCKs) with RLKs are prevented by
kinase-associated protein phosphatases (KAPP) and E3 ubiquitin ligases. Upon perception of ligand
(L), they dissociate to allow the stimulation of RLCK via phosphorylation. Activated RLCK has
many possible routes of activation. The RLKs might also activate guanosine exchange factors (GEF)
directly. RLCKs and G-proteins elicit gene expression via several intermediates like reactive oxygen
species (ROS), calcium channels, calcium-dependent protein kinases, (CDPK), mitogen-activated
protein (MAP) kinases (MAPKKK, MAPKK, MAPK), and transcription factors (TF). AP, apoplast; PM,
plasma membrane; CS, cytosol; AQP, aquaporin; CC, calcium channel; N, nucleus; NP, nuclear pore;
R, ribosome; P, protein.

Few RLKs require co-receptors (like BAK1) or scaffold proteins (like FERONIA) for the
establishment of receptor complex [59,60]. Before ligand perception, the cytosolic kinase domains of
RLKs are maintained inactive by intramolecular interactions or by phosphatases and other regulatory
proteins like E3 ligases, calcium-dependent kinases, G-proteins etc. Binding to their cognate ligand
causes a conformational change in the receptor, leading to the formation of homo or heterodimers.
Homodimerization is observed in Arabidopsis CERK1, in which the two inactive LysM-RLK monomers
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interact and dimerize to activate immune signaling, in response to chitin oligomers [61,62]. On the
other hand, an LRR-RLK, Flagellin sensitive 2 or FLS2 forms a complex with another LRR-RLK, BAK1
(co-receptor), upon the perception of bacterial flagellin, to form a heterodimer [63]. Heterodimerization
is known to occur either between a pseudokinase (FLS2) and an RD (arginine-aspartate) kinase (BAK1)
or between two RD kinases, like BRI1 and its co-receptor BAK1 [62,64]. Besides, RLKs are also known
to form complexes with RLPs for establishing the signal response. For instance, CLAVATA1 (RLK)
dimerizes with CLAVATA2 (RLP) upon the perception of a peptide ligand, CLV3 [6,65]. In all the above
scenarios, complex formation negates the auto-inhibition effect on the kinase domains of the RLKs and
makes it amenable for phosphorylation. The proximity of the kinase domains of the dimers induces
auto and/or transphosphorylation, facilitating mutual activation [66].

Most often, the immediate substrates of the activated complex are the diverse families of RLCKs.
On the other hand, guanine nucleotide exchange factors like GTPases and G-proteins have also been
reported to be the immediate substrates of the activated complex [67]. Occasionally, RLKs are associated
with their RLCKs in prior, in which the RLCKs are tethered to the membrane via palmitoylation or
myristoylation, and their activation is prohibited by negative regulators. However, ligand binding
induces dissociation of the regulators and thus, enable the stimulation of the RLCKs [62,68]. The
specificity of different families of RLCKs, as well as their downstream targets, is regulated by the
RLK complex and its configuration [69]. At times, the same RLCK interacts with different classes of
RLKs and generates different responses as a result of differential phosphorylation of the RLCK [70,71]).
For instance, BIK1 (RLCK) interacts with FLS2 (RLK) to positively regulate immune signaling, while it
interacts with BRI1 (RLK) to negatively regulate brassinolide-mediated growth [70,72]. Eventually,
RLCKs transduce the message from the apoplast to the interior of the cell via a phosphorelay [68].

One of the substrates of these RLCKs is the respiratory burst oxidase homologs (RBOHs),
which are membrane-bound NADPH oxidases that cause accumulation of ROS in the apoplast [73].
RLCK-mediated phosphorylation of RBOHs is sensed by calcium channels, followed by an influx of
calcium ions, which in turn, activates the RBOHs by feedback regulation. Calcium ions also activate
calcium-dependent protein kinases (CDPKs), which are also essential for RBOH triggering [68,74].
Moreover, RBOH stimulation is also achieved via the Rac/Rho like guanine nucleotide exchange factors
(Rac/ROP GEFs), which are GTPases, and also by G-proteins like XLG2 (extra-large G-protein 2) [75,76].
The subsequent accumulation of ROS in the apoplast stimulates the ROS-dependent signaling cascade
via post-translational modification of its target proteins [77]. Although ROS outbursts can also occur in
chloroplast, mitochondria, and peroxisomes, apoplastic burst has a rapid transduction rate [78]. Thus,
ROS, calcium ions and Rac/ROP GEFs act as secondary messengers for the amplification of the signal.

Another class of targets for the RLCKs is the MAPKs, which are activated via phosphorylation of
their regulatory domains. MAP kinases have known to be the core constituent of signal transduction
cascade during the response to many extracellular stimuli [79]. It constitutes three members viz.,
MAP kinase kinase kinase (MAPKKK), MAP kinase kinase (MAPKK) and MAP kinase (MAPK). The
MAPKKK acts on its substrate MAPKK, which in turn, activates MAPK by phosphorylation. MAPK
subsequently, activates respective transcription factors to elicit a relevant response from the nucleus [80].
The MAPK activation by RLCKs might be ROS-dependent or independent [77,81]. Ultimately, these
aid in the activation of respective transcription factors, which tweak the expression of their respective
genes, culminating with appropriate cellular responses like growth, development, immunity, symbiosis
and stress tolerance or resistance.

4. Functions of RLKs in the Regulation of Plant Growth and Development

Arabidopsis RLKs modulate growth and developmental responses by governing stem-cell
maintenance, cell fate determination and patterning, male and female gametophyte development,
pollen-pistil interactions, embryogenesis, hormone signaling, vascular patterning, organ development,
and abscission. Some of these essential responses are discussed here.
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4.1. Regulation in Anther and Ovule Development

The anther generally has four lobes and each lobe contains reproductive microsporocyte
surrounded by various layers of somatic cells viz., tapetum, middle layer, endothecium, and epidermis.
In Arabidopsis, multiple LRR-RLKs like excess microsporocytes1 (EMS1)/extra sporogenous cell (EXS),
somatic embryogenesis receptor-like kinase 1/2 (SERK1/2), receptor-like protein kinase 2 (RPK2),
barely any meristem 1/2 (BAM1/2), CLAVATA3 insensitive receptor kinase (CIK1/2/3/4), ERECTA
(ER), and ERECTA-like 1/2 (ERL1/2) regulate anther development, especially, the differentiation and
patterning of the somatic cell layers. EMS1/EXS was the first LRR-RLK to be identified that plays a
crucial role in anther cell differentiation [82,83]. The anthers of ems1/exs mutants lack tapetum but
produce large numbers of microsporocytes than the wild type. In addition, delayed expression of
EMS1 in the ems1 mutant tapetal initials has been shown to aid in the generation of a functional
tapetum and the diminution of microsporocyte numbers [84]. These results suggest that EMS1/EXS
determines the fate of tapetal cells during early anther development. Tapetum determinant 1 (TPD1),
a small secreted protein, is known to induce the phosphorylation of EMS1/EXS, thus, behaving as
their ligand; and the signal is transduced downstream via phosphorylation of β-carbonic anhydrases
(βCAs) [85,86]. Similarly, SERK1/2 has also been known to determine tapetal cell fate, as the anthers
of serk1serk2 double mutants are phenotypically similar to that of ems1/exs mutant [18,87]. Moreover,
SERK1 interacts with and transphosphorylates EMS1 to enhance its activity for guiding a co-regulatory
network (Figure 3A) [88]. Corroborated by the phenotype of rpk2 mutants, it can be deduced that
RPK2 is responsible for the differentiation of middle layers and tapetum during anther development.
It essentially controls tapetal cell fate by triggering their degradation via modulation of the enzymes
involved in cell wall metabolism and lignin biosynthesis [89] (Figure 3A). Both BAM1 and BAM2 are
responsible for regulating early stages of anther differentiation, as confirmed by the lack of somatic
cell layers, including endothecium, middle layer, and tapetum in bam1bam2 double mutants [90].
CLAVATA3 insensitive receptor kinases (CIK1/2/3/4) are co-receptors of BAM1/2 and RPK2, which
regulate the determination of parietal cell fate and archesporial cell division [91] (Figure 3A). ERECTA
(ER), ERECTA-Like 1 (ERL1), and ERL2 are also known to play essential roles in healthy anther lobe
formation and anther cell differentiation via mitogen-activated protein kinases like MPK3/MPK6
(Figure 3A). The sterility of er-105 erl1-2 erl2-1 triple mutant and the phenotypic similarity of the anther
lobes in single mutants of er-105 or erl1-2 or erl2-1 with that of mpk3 or mpk6 mutants suggests the
correlation of these genes in the regulation of anther cell division and differentiation [92]. Further, a
Lectin RLK, small, glued together, collapsed (SGC) has also been validated as a regulator of pollen
development as its knockout had led to the development of small, glued-together and collapsed pollen
and resulted in male sterility [93] (Figure 3A).

Knowledge about the role of RLKs in ovule development is very scarce. In Arabidopsis ovules,
EMS1 is expressed in nucellar epidermis and chalaza, while TPD1 is weakly restricted to the distal
end of integuments. Altered expression of cell-cycle genes and auxin signaling genes during ovule
development, concomitant with the ectopic expression of TPD1, indicates the regulation of ovule
development by TPD1-EMS1 [94] (Figure 3A).
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4.2. Pollen-Pistil Interactions

Reproduction in angiosperms involves the release of an immobile male gamete from the pollen
tube onto the compatible pistil. A fruitful pollen-pistil interaction is a pre-requisite for successful
fertilization and this requires an accurate perception of ovule-emitted guidance cues by the receptors
in pollen tubes. LURE1, an ovule-secreted peptide is perceived by RLKs like pollen receptor kinase
1 (PRK1), PRK3, PRK6, PRK8 in the pollen tube [95]. Recent studies ascertain the presence of other
LURE receptors like Male Discoverer 1 (MDIS1), MDIS1-interacting receptor-like kinase1 (MIK1), and
MIK2 [96,97]. Once the pollen tube reaches the micropyle, its growth is ceased and the sperm cells are
released by its rupture. These processes are regulated by the RLK FERONIA (FER), which is expressed
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in the synergids of female gametophyte [98] (Figure 3B). The phenotypic study of fer mutants exhibited
overgrowth of pollen tube and loss of its rupturing ability [24]. ANXUR1 and ANXUR2 (ANX1, ANX2)
are homologs of FER-RLK, expressed at the tip of the pollen tube. The anx1anx2 double mutants have
been found to arrest the growth of pollen tubes and promote bursting immediately after germination.
These validate the clue that both FER-mediated and ANX-dependent signaling cascades act as a switch
for accurate pollen tube growth and subsequent release of sperm cells for fertilization [99] (Figure 3B).

4.3. Role in Embryo Development

After successful fertilization, the zygote develops into embryo via repeated cell division and
differentiation. Several genetic evidences suggest that multiple signaling cascades are essential for
embryogenesis in Arabidopsis, and RLK is one amongst them. Predominantly, embryo development
initiates from the asymmetric division of the zygote. Intriguingly, the transcript of ZYGOTIC ARREST
1 (ZAR1), a LRR-RLK, has been detected in the embryo sac before and after fertilization. It has been
noticed in an eight-nucleate stage of embryo sac to different cells of mature embryo sac including
the central cell, egg cell, and synergids. Even after fertilization, it was observed in the endosperm.
Phenotypic analysis of zar1 mutants revealed the role of ZAR1 in the regulation of asymmetric
division of zygote and determination of the cell fate of its daughter cells via the activation of calcium
and G-protein signaling cascades [100] (Figure 3C). Besides ZAR1, receptor-like protein kinase 1
(RPK1) and Toadstool 2 (TOAD2) are considered indispensable for normal protoderm development,
while GASSHO 1 (GSO1) and GSO2 are crucial for the formation of the proper epidermal surface
during embryogenesis. The gso1gso2 double mutants have shown abnormal bending of embryos,
highly permeable epidermal structure, and irregular stomatal patterning [101,102] (Figure 3C). Further,
molecular analysis has detected the interaction of ALE2 (Abnormal Leaf Shape 2) and ACR4 (CRINKLY 4)
with a subtilisin-like serine protease ALE1, which is essential for the formation of primordia of
cotyledons during embryogenesis [103] (Figure 3C).

4.4. Organ Development

Coordinated cell growth, differentiationand morphogenesis are the three fundamental aspects of
development that cause an organism to procure its shape and an intricate cascade of gene regulatory
networks comprising RLKs are known to be implicated in this. In higher plants, all the aerial organs
develop from shoot apical meristem (SAM). The maintenance of undifferentiated cells of SAM and organ
formation through differentiation from the progeny cells are two processes maintained in a balance
during the common developmental process. Interestingly, different RLKs are known to suffice this role.
In Arabidopsis, CLAVATA1 or CLV1 (RLK), CLV2 (RLP) and CLV3 (secreted polypeptide) perform a
pivotal role in meristem and organ development [17,104,105]. The CLV3 polypeptide acts as a ligand
for CLV1 and CLV2 complex. This ligand-receptor binding promotes the activation of cytosolic kinase
domain of CLV1 and subsequently, it initiates a signal transduction cascade to control gene expression
and stem cell fate in the SAM by elevation of cytosolic calcium as secondary messengers [17,106,107]
(Figure 4A). Meristematic receptor-like kinase (MRLK), a LRR-RLK expressed in shoot and root apical
meristems, interacts with and phosphorylates a MADS-box transcription factor, AGL24, to regulate
floral transition [108] (Figure 4A). Another LRR-RLK, ERECTA, which is expressed in the entire shoot
apical meristem and developing organs, monitors organ shape and inflorescence architecture, upon the
perception of epidermal patterning factors (EPFs)/EPF-like proteins (EPFLs) [109] (Figure 4A). Moreover,
mutants of ERECTA-family LRR-RLKs conferred extreme dwarfism and abnormal flower development,
suggesting that ERECTA-family RLKs control cell proliferation as well as organ growth and patterning
like stomata formation, the shoot apical meristem (SAM) and flower development [110]. ERECTA can
form complexes with a range of co-receptors like SERKs and transmembrane receptor-like proteins
like Too Many Mouths (TMM) to activate the signaling pathway [111,112]. Botrytis-induced kinase 1
or BIK1, an RLCK, interacts and phosphorylates ER-family proteins to modulate leaf morphogenesis
and inflorescence architecture [113] (Figure 4A).
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Similar to aboveground organ development, several studies demonstrated the utmost importance
of multiple RLKs in root development. Arabidopsis CRINKLY 4 (ACR4) is involved in the formation of
proper lateral roots and columella stem cell differentiation in the root apical meristem [114,115]. ACR4
can regulate root meristem maintenance in response to the CLE4 peptide by forming heterodimers
with CLV1 [116] (Figure 4B). Besides, ACR4, abnormal leaf shape 1 (ALE1) (a member of subtilisin-like
serine protease family), and ALE2 (RLK) have been known to share partial overlapping roles in the
formation of leafy organs [103] (Figure 4A). Similar to ACR4, cysteine-rich receptor-like kinases (CRKs),
a member of one of the largest RLK families, is involved in root organogenesis. The crk28 mutants have
displayed longer and branched roots, while CRK28 overexpression lines have shown the contrasting
phenotype, i.e., delayed root growth and reduced lateral root formation [117] (Figure 4B).

Plasmodesmata are microchannels between two cells, through which trafficking of molecules
occur. STRUBBELIG (SUB) is a RLK involved in inter-cell layer signaling which is required for tissue
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morphogenesis. The sub mutants have shown defects in floral organ shape, integument initiation,
and outgrowth, asymmetry in leaf shape and stem morphology, as well as a reduction in plant height.
This indicates the functional role of SUB across several cells in the floral meristem, ovule, and shoot
apex [118,119]. Further genetic screening has led to the identification of a putative membrane-anchored
C2-domain protein, encoded by QUIRKY (QKY), which is known to act as a downstream component
of SUB signaling [120]. SUB and QKY interact in plasmodesmata to promote tissue morphogenesis
(Figure 4A). Apart from aerial organs, SUB or SCRAMBLED (SCM) also regulates cell-type patterning
in the root epidermis [121] (Figure 4B). The BAM1 (barely any meristem 1), a member of CLV1 class
LRR-RLKs, is expressed preferentially in the quiescent center and its surrounding stem cells at the
root tip and known to bind to the CLE peptide. BAM1 is capable of forming heteromeric complexes
with RPK2 and inhibit cell proliferation in the root meristem [122] (Figure 4B). Inflorescence and
root apices receptor kinase (IRK), a typical meristematic LRR-RLK, is known to be expressed in the
outer plasma membrane of root endodermal cells and negatively regulates cell division to maintain
tissue organization [123] (Figure 4B). Further, FERONIA (FER) receptor-like kinase functions upstream
of Rho-like small G-protein or RAC/ROP during reactive oxygen species (ROS)-mediated root hair
development. The FER activates RAC/ROP by GDP-GTP exchange to stimulate NADPH oxidase for
ROS formation [25] (Figure 4B).

4.5. Vascular Tissue Development

The development of xylem and phloem from the vascular meristem is a multifaceted process. The
RLK, phloem intercalated with xylem (PXY), maintains cell polarity during vascular development,
which is ascertained by the presence of partially interspersed xylem and phloem, and irregular vascular
development in pxy mutants [124]. The ligand for PXY receptor is tracheary element differentiation
factor (TDIF), a peptide, which is encoded by CLAVATA3/ESR 41/44 (CLE41/44) genes [125]. The
PXY-TDIF interaction activates the WUSCHEL-related homeobox 4 (WOX4) signaling pathway to
regulate cell division in the procambium. Another LRR-RLK, PXY/TDR-CORRELATED (PXC1),
acts as a positive regulator of secondary cell wall formation in xylem fibers [126] (Figure 4C). The
CLE41/PXY/WOX4 cascade is antagonistically directed by the LRR-RLK more lateral growth 1 (MOL1),
via regulating the stem cell homeostasis within the cambium. This MOL1 also attenuates ethylene and
jasmonic acid hormone signaling pathways that positively influence cambium activity [127] (Figure 4C).
The maintenance of the cell morphology organization during vascular development is accomplished
by a RLK, xylem intermixed with phloem 1 (XIP1). Genetic evidences also unveil that XIP1 prevents
ectopic lignification in phloem cells [128] (Figure 4C).

4.6. Regulation of Organ Abscission

Arabidopsis LRR–RLK HAESA (formerly named RLK5) exhibits developmentally regulated
expression in the abscission layers of floral organs. The antisense suppression of the HAESA is known
to delay the abscission of floral organs such as sepals, petals, and stamens [19]. Inflorescence deficient
in abscission (IDA) and IDA-Like (IDL) proteins are considered as the ligands of HAESA (HAE) and
HAESA-Like RLKs [129] (Figure 4D). The phenotypic analysis of ida mutant and overexpression
of IDA gene validates the role of HAE in floral organ abscission via IDA/IDL perception. A
phosphorylation-based activation mechanism of HAE leads to the stimulation of a MAP kinase-signaling
cascade and initiates cell wall hydrolysis at the base of the abscising organs. SERK1 acts as a co-receptor
of HAE and allows the binding of IDA, eventually leading to floral abscission pathway [130,131].
In contrast, an early leaf senescence phenotype observed in serk4-1 knockout mutant indicates that
SERK4 acts as a co-receptor in negatively regulating leaf senescence, as well [132] (Figure 4D).

4.7. Modulation of Phytohormone Signaling

Brassinosteroids (BRs) are essential polyhydroxylated steroidal phytohormones crucial for plant
development. The developmental defects of BR biosynthetic and signaling mutants are mostly similar,
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which include dwarfism, severely stunted and rounded leaf with a shorter petiole, delayed flowering,
photomorphogenic malfunctions as well as senescence and reduced male fertility. The first BR signaling
gene, whose mutation showed these phenotypes, has been named as brassinosteroid insensitive 1
(BRI1) [133]. BAK1 (BRI1-associated receptor kinase 1), a co-receptor of BRI1, is involved in BR
perception and signaling via heterodimerization with BRI1 [59,134]. In addition, a close homologue
of BRI1, BRI1-like receptor kinase (BRL1) is also responsible for BR perception [135] (Figure 5A).
BAK1-associating receptor-like kinase 1 (BARK1), a LRR-RLK, specifically binds to BAK1 and its
homologs. Overexpression of BARK1 enhances primary root growth and these roots are hypersensitive
to BR-induced root growth inhibition, suggesting the role of BARK1 in BR-mediated lateral root
development via auxin signaling [136] (Figure 5A). Apart from these, evidence achieved from bir1
mutants helps us to comprehend how it modulates immune response pathways and plant architecture
as an interacting partner of BAK1 [137]. A member of somatic embryogenesis receptor, SERK3 acts as a
co-receptor, which directly interacts with BRI1 [64] (Figure 5A).
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Abscisic acid (ABA) is yet another vital phytohormone involved in the regulation of plant abiotic
stress-related phenotype as well as developmental processes. Unlike BR, in Arabidopsis, RLKs are not
accountable for direct ABA perception. A LRR-RLK, receptor dead kinase 1 (RDK1) is involved in ABA
signal transduction via interaction with abscisic acid insensitive 1 (ABI1), a type 2C protein phosphatase,
in the plasma membrane. Predominantly, this interaction is enhanced by exogenous application of
ABA, underpinning the involvement of RDK1 to recruit ABI1 to the plasma membrane [138] (Figure 5B).
Most recently, a cysteine-rich receptor-like kinase, CRK28, has shown an indirect relationship with ABA.
The CRK28 overexpression lines have displayed slow root growth, reduced lateral root formation, and
also ABA hypersensitivity; thereby being an important modulator of ABA signaling [117] (Figure 5B).
PERK4 is also known to play an important role in ABA response. The perk4 mutants have shown
reduced sensitivity to ABA concerning seed germination, seedling growth, and primary root tip growth.
Moreover, perk4 mutant cells have retained lower cytosolic calcium concentration and Ca2+ channel
currents. These results suggest that PERK4 contributes to the early stage of ABA signaling and inhibits
root cell elongation via intracellular calcium signaling [139] (Figure 5B). Other RLKs like CRK5, CRK36,
LRK10L1.2, and RPK1 are also known to be involved in ABA signaling during response to drought
and oxidative stresses.

5. RLKs in the Regulation of Plant Biotic Interactions

5.1. RLKs in Pathogen Triggered Immunity

Plants sense the invasion of pathogens through the perception of pathogen and host-derived
elicitors, like MAMPs, PAMPs, DAMPs, and HAMPs (herbivore associated molecular patterns). To
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combat the attack of invading pathogens, RLK-mediated signaling boosts transcriptional activation of
multiple defense and pathogenesis-related genes to eliminate the adversity caused by the pathogens.
These kinds of RLKs are also termed as ‘pattern recognition receptors’ (PRRs) and the resulting
immune response is called pathogen-triggered immunity (PTI). Predominantly, RLK-derived signals
activate defense responses like hypersensitive response, stimulation of ion fluxes, ROS (reactive
oxygen species) production, synthesis of phytoalexins, salicylic acid (SA) accumulation, and cell
wall reinforcement [6,140,141]. Some important examples of Arabidopsis RLKs involved in defense
responses are discussed here.

The flagellin sensitive 2 (FLS2) preferentially recognizes a PAMP, the flagellin epitope of
bacteria (flg22), to trigger the recruitment of co-receptors or adaptor proteins and subsequent
phosphorylation [20]. Usually, FLS2 heterodimerizes with BAK1 or its homolog BAK1-like kinase 1
(BKK1) and undergo transphosphorylation [72,142–144]. Subsequently, botrytis-induced kinase 1 (BIK1)
(RLCK) is phosphorylated and released from the FLS2-BAK1 or FLS2-BKK1 complex. This is followed
by rapid bursts of calcium and reactive oxygen species (ROS), activation of MAPKs and/or CDPKs,
in order to regulate the PTI [145] (Figure 6). In contrast, BIR2 is an atypical LRR-RLK or pseudokinase,
which competes with FLS2 for BAK1 and negatively regulates BAK1 mediated immune signaling and
cell death responses [5,146,147] (Figure 6). The bak1 mutants display enhanced susceptibility to the
most commonly encountered necrotrophic pathogens Alternaria brassicicola or Botrytis cinerea and thus,
BAK1 and its co-receptors are considered as important regulators of plant immunity [148]. Further,
BAK1 is also involved in temporary desensitization of signaling as it promotes the ubiquitination and
proteosomal degradation of FLS2 through phosphorylation of U-Box E3-ubiquitin ligases, PUB12 and
PUB13 [149].

Another PAMP known as bacterial elongation factor Tu (EF-Tu) is perceived by an LRR-RLK,
EF-Tu receptor (EFR), which activates plant defense responses, thereby reducing the efficiency of
Agrobacterium transformation [150]. EFR physically interacts with BAK1 in a ligand-dependent manner
and establishes the PTI signaling [151] (Figure 6). Another group of LRR-RLKs, PEPR1 (perception of
the Arabidopsis danger signal peptide 1) and its close homolog PEPR2 stimulate the innate immune
responses upon the perception of wound-induced or plant-derived peptides, PEP1 (perception of
the damage-associated molecular pattern peptide 1) and PEP2 [152,153]. Unlike FLS2 and EFR, the
signaling molecules of PEPR1 and PEPR2 are DAMPs, which are produced due to wounding, PAMP
treatment, or microbial infection, at the early stage of invasion. Both PEPR1 and PEPR2 associate with
BAK1 to activate downstream signaling for enhancing plant immunity [63,154] (Figure 6). RLK902 is
also linked with plant immunity as it phosphorylates brassinosteroid-signaling kinase 1 (BSK1) and
plays an essential role in conferring resistance to the bacterial pathogen Pseudomonas syringae. Enhanced
disease resistance 4 (EDR4), a protein involved in endocytosis, regulates sub-cellular trafficking of
RLK902 for proper modulation of plant immunity [155] (Figure 6).

Chitin, a fungal cell wall derivative, is recognized as a MAMP by a receptor complex comprising
of chitin elicitor receptor kinase 1 (CERK1), LysM receptor-like kinase 1 (LYK1) and LYK5 [61,156].
CERK1 directly interacts and phosphorylates PBL27, an RLCK, to regulate chitin-induced defense gene
expression and accumulation of callose [157]. Predominantly, PBL27 phosphorylates MAPKKK5, which
activate MKK4/5 and MPK3/6 cascades for triggering defense responses (Figure 7) [158]. CERK1 is also
involved in the perception of bacterial peptidoglycans (PGNs) and thereby, activate resistance against
bacterial infections [30,159]. In addition to chitin, fungal 1,3-β-D-glucan oligosaccharides are perceived
by LYK1 [160]. LYK4 augments chitin-induced signaling by acting as co-receptor or scaffold protein of
LYK5 [161] (Figure 6). The homologues of LYKs in other angiosperms are involved in the maintenance
of symbioses with beneficial mycorrhizal fungi and nitrogen-fixing bacteria [56,162,163]. In some
instances, heterotrimeric G-protein components are known to participate immediately downstream to
the PRRs. G-protein subunits Gα, Gγ1, and Gγ2 physically interact with the defense-related RD-type
receptor-like kinases CERK1, BAK1, and BIR1 [67]. The Gβ, Gγ1, and Gγ2 are required for FLS2, EFR
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and CERK1-mediated PTI responses, because flg22, elf18 and chitin induced resistance is known to be
compromised in Gβ single mutant (agb1) and Gγ1 and Gγ2 double mutant (agg1agg2) [164] (Figure 6).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 16 of 29 
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Cell wall damage (CWD) triggers cell wall integrity (CWI) maintenance and immune signaling
systems to control stress responses. Multiple RLKs like FERONIA (FER), THESEUS 1 (THE1), Male
discoverer 1 (MDIS1)-interacting receptor-like kinase 2 (MIK2), WAK1, and WAK2 are known to be
involved in CWI maintenance [165–167]. Amongst them, FER, THE1, and MIK2 aid in conferring
resistance to the plant against Fusarium oxysporum, a fungal pathogen [168,169] (Figure 6). In
addition, BAK1, BIK1, BKK1, PEPR1, and PEPR2 modulate responses to CWD controlled by the
CWI mechanism [23]. Both PEPR1and PEPR2 perceive DAMPs, like plant elicitor peptides (AtPeps).
These AtPeps (AtPep1 and AtPep3) precursor peptides are encoded by the PROPEP (PROPEP1 and
PROPEP3) genes, which are induced by pathogen infection, wounding and CWD. Although the
application of AtPep plant elicitor peptides enhances expression of their corresponding PROPEP genes,
these peptides also inhibit CWD-induced Jasmonic acid (JA) and salicylic acid (SA) accumulation in a
concentration-dependent manner. These results suggest that both PTI signaling and CWI maintenance
mechanism contribute to biotic stress responses, coordinately [170].
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5.2. RLKs in Effector Triggered Immunity

Effectors are the compounds secreted by bacterial and fungal pathogens, which translocate into
the host cell for attenuation of the host’s defense system (PTI). Impeding the formation of PRR complex
is one of the key mechanisms of effectors to suppress immunity and in accordance with this, plants have
evolved resistance (R) proteins to recognize pathogen effector proteins to establish effector-triggered
immunity (ETI). AvrPto A and AvrPto B are the two types of effectors produced by Pseudomonas
syringae to suppress the flagellin-induced PTI in Arabidopsis, by interacting with the cytosolic domain
of BAK1 and thus, preventing FLS2-BAK1 heterodimerization [171,172]. BAK1-interacting RLK 1
(BIR1) is known to associate with BAK1 in planta. The bir1-1 mutants display extensive cell death and
activation of constitutive defense responses. Moreover, these bir1-1 mutants show enhanced resistance
to biotrophic oomycete, Hyaloperonospora arabidopsidis. These responses are similar to hypersensitive
cell death (HR) observed during ETI, suggesting that BAK1 functions together with BIR1 to negatively
regulate multiple plant resistance signaling pathways [173].

Genetic screening for suppressors of the bir1-1 has led to the identification of SOBIR1 gene,
whose mutation showed impaired cell death in the bir-1-1 mutant. However, in contrast, SOBIR1
overexpression resulted in the activation of cell death, thereby indicating the role of SOBIR1 as a
positive regulator of cell death [173]. The LRR-RLK, SOBIR1 also triggers defense responses by
forming a complex with certain LRR-RLP like immune receptors. For example, RLP23 forms a complex
with SOBIR1 and the perception of a necrosis and ethylene-inducing peptide-like 1 protein (NLP)
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initiates recruitment of BAK1 to the LRR-RLP/SOBIR1 complex, thereby activating LRR-RLP-mediated
immunity [174] (Figure 6). A recent investigation has revealed that auto or transphosphorylation
events between SOBIR1 and BAK1 are crucial for this ETI signaling [175]. Interestingly, G-protein β

subunit mutant (agb1-2) has seemed to reduce the cell death and defense responses in bir1-1 mutant as
well as transgenic plants overexpressing SOBIR1. Furthermore, agg1agg2 double mutant has shown
suppression of cell death phenotype in the bir1-1 mutant. These results exhibit the contribution of
heterotrimeric G-protein subunits (AGB1, AGG1, and AGG2) in SOBIR1-mediated ETI signaling [164].

5.3. CRKs in Defense and Hypersensitive Responses

Cysteine-rich receptor-like kinases (CRKs) are one of the largest RLK groups, which are
transcriptionally induced during pathogen attack, oxidative stress, and also by the application
of salicylic acid (SA) [176]. Recent studies have demonstrated the implications of CRKs in the
regulation of defense responses and programmed cell death by guiding both PTI and ETI [10,177,178].
For example, constitutive over-expression of CRK5 and inducible expression of CRK13 leads to enhanced
defense against Pseudomonas syringae via up-regulation of defense-related genes, like PR1 (pathogenesis
related protein 1), PR5, and ICS1 (isochorismate synthase 1). Similarly, overexpression of CRK45 results
in enhanced resistance to P. syringae, whereas crk45 mutants display more sensitivity to P. syringae
by attenuating the expression of defense-related genes [179]. In addition, the induced expression
of CRK4, CRK5, CRK19, and CRK20 triggered hypersensitive response-like cell death in transgenic
plants [28,180,181]. Recently, a physical interaction study has established that CRK36 preferentially
interacts with and phosphorylates BIK1 (RLCK) and boosts plant immunity in response to flg22
treatment by regulating stomatal defense against pathogens [182] (Figure 6).

6. RLKs in the Regulation of Plant Abiotic Stresses

Abiotic stresses, such as drought, cold, salinity, ozone, metals, and UV-B radiations, have adverse
impact on plant growth and development. Plants have various tactics to survive in continuously
changing environmental conditions and one such is the RLK-mediated signaling circuit [183–185].

Among the plant hormones, ABA is a crucial mediator of the abiotic stress response; it can regulate
the expression of drought, salt and osmotic stress response genes [186–189]. Genetic screening in
Arabidopsis has established the connection between several LRR-RLKs and ABA-mediated abiotic
stress signal. The loss-of-function mutants of Arabidopsis leaf rust 10 disease-resistance locus receptor-like
protein kinase 1.2 (LRK10L1.2) display ABA-insensitive and drought stress-sensitive phenotypes
indicating that LRK10L1.2 acts as a positive regulator in response to drought tolerance, perhaps
through ABA-mediated signaling [32] (Figure 7). The insensitivity to ABA and downregulation of
various water stress-responsive genes are also observed in RPK1 knockouts and further, overexpression
of RPK1 exhibits increased tolerance to both drought and oxidative stress as well as up-regulation of
ROS related genes. These results indicate that RPK1 regulates water and oxidative stress response via
ROS homeostasis and ABA signaling [190] (Figure 7). Another LRR-RLK, guard cell hydrogen peroxide
resistant 1 (GHR1) is an early component in ABA signaling and is negatively regulated by ABI2. The
ghr1 mutants show impaired ABA and H2O2 regulated activation of S-type anion currents in guard
cells. Predominantly, GHR1 physically interacts with and activates the slow anion channel-associated
1 (SLAC1) by phosphorylation, resulting in stomatal closure during drought stress [191] (Figure 7).
In addition, Arabidopsis receptor dead kinase 1 (RDK1) plays an essential role in drought stress
response in an ABA-dependent manner. The rdk1 mutants are hypersensitive to drought stress as a
result of down-regulation of ABA-responsive genes [138] (Figure 7).

Few CRKs are also involved in ABA-mediated drought resistance. Overexpression of CRK5
promotes stomatal closure and inhibits stomatal opening, thereby acting as a positive regulator
of drought response [192]. CRK36 physically interacts with and phosphorylates ARCK1 (RLCK)
during abiotic stress. The crk36 knockdown mutants exhibit osmotic stress response during post-seed
germinative growth, increases ABA sensitivity, and upregulates ABA-responsive genes. Thus, CRK36
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seems to function as a significant negative regulator of ABA and osmotic stress signal transduction [186].
Besides, CRK6 and CRK7 are essential for overaccumulation of ROS in the apoplast during exposure
to O3, and therefore, their mutants show increased sensitivity to O3 [29] (Figure 7).

FERONIA (FER), a member of the CrRLK1L family, plays a crucial role in ABA and salt stress
responses. FER promotes activation of ABI2, a PP2C member, and a negative regulator of ABA signaling,
to attenuate the ABA signaling and it has been noticed that the fer1 mutants show hypersensitivity to
both ABA and salt. This confirms the clue that FER regulates salt stress response via ABI2-mediated ABA
signaling [187,188] (Figure 7). Rapid alkalinization factor 22 (RALF22) peptides are considered as the
ligands of FER, which are produced during salt stress, via S1P protease-dependent pathway. In addition,
RALF22/23 physically associates with the cell-wall leucine-rich repeat extensins 3/4/5 - (LRX3/4/5),
which are critical for salt tolerance. Strikingly, the fer mutant, lrx3/4/5 triple mutant, and overexpressed
RALF23/24 lines exhibit identical phenotypes, including increased sensitivity to salt stress and retarded
growth. These results demonstrate that FER, LRXs and RALFs form a signaling network that regulate
plant growth by conferring tolerance to salt stress [193] (Figure 7).

Phloem intercalated with xylem-like 1 (PXL1), a LRR-RLK, is induced by cold and heat stress.
Moreover, Arabidopsis pxl1 mutants display hypersensitive phenotypes when exposed to cold
and heat during the germination stage, suggesting that PXL1 functions in the regulation of stress
signaling pathways during temperature fluctuations. The downstream substrates for PXL1 are the
histidine-rich dehydrin 1 (HIRD1) and light-harvesting protein complex 1 (LHCA1) [194] (Figure 7).
Calcium/calmodulin-regulated RLK or CRLK1 is cold inducible and their expression is enhanced by cold
and hydrogen peroxide treatments; thus, justifying the role of CRLK1 in cold-related oxidative stress
signal transduction pathway. According to gene knockout studies, CRLK1 acts as a positive regulator
of cold tolerance and establishes a link between calcium and cold signaling [195,196] (Figure 7).

7. Conclusions and Outlook

The cellular signaling pathway is a complex network. This review summarized how the different
groups of RLK signaling pathways regulate developmental and stress responses in Arabidopsis. RLKs
are evolutionarily conserved from algae to angiosperms and are known to monitor a wide variety
of cellular processes. The abundance and diversity of RLKs provide insight into the significance
of this receptor and its role in sustaining cellular homeostasis for the efficient survival of plants. It
explains the reason for its continued expansion on par with the increasing complexity of the higher
group of plants. As discussed above, RLKs perform a crucial role in almost every aspect in a plant
cell, throughout its life, right from the embryonal stage to senescence. The involvement of RLKs in
various developmental, as well as stress responses, can be attributed to the diversity in the architecture
of their ectodomains, which aid in the recognition of a plethora of ligands. This is executed by
recruiting transducers, which help in communicating the signal further downstream. One such
important group of transducers belong to the RLCK family, which activate several other intermediates
for establishing a successful response. Interestingly, some RLCKs are conserved between different
RLK-mediated signaling pathways. Sporadically, the same RLCK interacts with one of the RLKs to
elicit a particular response, while expressing a contrasting response upon interaction with another
RLK, by activating a different downstream target. The RLKs can directly use guanosine exchange
factors (GEFs) like G-proteins and ROP as transducers, or indirectly via RLCKs and other intermediates.
Although differential phosphorylation might be one possible mechanism responsible for activating the
transducers, the molecular insights of how this distinction is possible remain elusive.

Although a lot of research has been carried out on RLKs in the last few decades, the biochemical and
molecular mechanisms of several RLKs modulating physiological responses are not well understood
in detail. The most important challenge is to identify the range of signals for RLKs and to explain how
plants integrate these signals downstream. In mechanistic concerns, the dependency of certain fully
functional RLKs (like BRI1) upon another RLK (BAK1) for successful complex formation and activation
is yet to be discovered. Furthermore, due to the presence of a lot of crosstalk in plants, the intermediate
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targets of many of the pathways tend to remain unidentified. However, irrespective of the transducer
activated and the pathway used, the ultimate outcome is to express appropriate proteins and products
that enable the plant to endure the environmental challenges, thus, prolonging its survival. More focus
on these aspects might be beneficial for developing resistant/tolerant agronomic cultivars via plant
breeding or transgenic approaches. Thus, RLKs can be considered as an inherent elixir for plants’ life.
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