
IL = interleukin; OR = odds ratio; RFLP = restriction fragment length polymorphism; SNPs = single nucleotide polymorphisms.
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Introduction
Asthma is the most serious of the atopic diseases. It is the
most common chronic childhood disease in developed
nations [1] and carries a very substantial direct and indi-
rect economic cost worldwide [2]. Asthma has become an
epidemic, affecting more than 155 million individuals in the
developed world. The cost of treating the disease in the
USA approximates US$6 billion dollars a year [3]. The
worldwide market for asthma medication is currently worth
US$5.5 billion a year to the pharmaceutical industry [4].

Asthma is a genetically complex disease that is associated
with the familial syndrome of atopy and increased levels of
total serum IgE [5,6]. Asthma and atopy are also closely
associated with increased nonspecific responsiveness of
airways to spasmogens [7,8] and elevated blood

eosinophil counts [9,10]. These intermediate physiological
phenotypes are themselves highly heritable and are the
subject of much research into the genetics of asthma
[11,12].

The prevalence of asthma and other allergic diseases has
risen over the past two decades in developed nations
[13,14]. During the same period, the genetic etiology of
asthma has been increasingly emphasized as a method of
improving our understanding of its pathogenesis, with the
ultimate goal of improving preventive strategies, diagnos-
tic tools, and therapies [12,15]. Considerable effort and
expense are currently being expended in attempts to
detect genetic loci contributing to asthma susceptibility
[16–19]. Concomitant technical developments in molecu-
lar genetics and in the use of polymorphisms derived
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directly from DNA sequence have occurred, and extensive
catalogues of DNA sequence variants across the human
genome have begun to be constructed. This review sum-
marizes current and potential future contributions of one
type of DNA sequence variant, single nucleotide polymor-
phisms (SNPs), to our understanding of asthma patho-
physiology.

Gene discovery with SNPs: the state of the art
Two types of study have been widely employed in an
attempt to identify genetic determinants of complex dis-
eases: positional cloning and candidate gene association
studies. Positional cloning begins with the identification of
a chromosomal region that is transmitted within families
along with the disease phenotype of interest. This phe-
nomenon is described as genetic linkage. Positional
cloning has been extremely useful in the identification of
genes responsible for diseases with simple Mendelian
inheritance, such as cystic fibrosis [20]. The application of
linkage analysis to complex disorders without obvious
Mendelian inheritance such as asthma has been much
less successful so far, because complex diseases tend to
be influenced by genetic heterogeneity, environmental
phenocopies, incomplete penetrance, genotype–environ-
ment interactions, and multilocus effects [12,21].

Association studies rely on the detection of polymor-
phisms in candidate genes and on the demonstration that
particular alleles are associated with one or more pheno-
typic traits. However, analyses of specific alleles suggest-
ing a statistical association between an allele and a
phenotypic trait are due to one of three situations [22]:
first, the finding could be due to chance or artefact, such
as confounding or selection bias; second, the allele might
be in linkage disequilibrium with an allele at another locus
that directly affects the expression of the phenotype; third,
the allele itself might be functional and directly affect the
expression of the phenotype.

The biological principle underlying the association analysis
of polymorphisms not directly involved in disease patho-
genesis is that of linkage disequilibrium (the second situa-
tion above). Linkage disequilibrium arises from the
co-inheritance of alleles at loci that are in close physical
proximity on an individual chromosome. Alleles at different
loci that are in linkage disequilibrium on a particular chro-
mosome form distinct haplotypes. Haplotypes with a
greater frequency than would be expected from random
association can arise by population admixture, natural
selection, genetic drift, or new mutation combined with
population ‘bottlenecks’ [23].

Genetic polymorphism
Initial studies of polymorphism in human genetics relied on
the study of physiological and biochemical variation (eg
blood group antigens) that follow indirectly from variation

in DNA sequence. The widespread availability of human
DNA sequence data now means that DNA variants can be
detected directly and related to disease phenotype. Impor-
tantly, most polymorphism is likely not to alter gene struc-
ture or function in any way and might therefore not be
directly associated with any change in phenotype [24].
Tests of genetic association using SNPs are therefore
based largely on linkage disequilibrium. Problems arise
from the now well-described general limitations of investi-
gating genotype–phenotype associations in complex
human diseases involving multiple interacting genetic and
environmental factors [25,26].

Genetic polymorphism arises from mutation. Different
classes of polymorphism are generally named on the basis
of the type of mutation from which they result. The sim-
plest class of polymorphism derives from a single base
mutation that substitutes one nucleotide for another.
Recently, such polymorphism has been called a single
nucleotide polymorphism, or SNP. It is important to realize
that previous nomenclature was based on the method
used to detect a particular SNP. For instance, SNPs
detected via the identification of restriction enzyme sites
were called ‘restriction fragment length polymorphisms’
(RFLPs) [27].

In addition to RFLPs, other types of SNP that do not
create or destroy a restriction site are detectable by creat-
ing restriction sites via primer design in the polymerase
chain reaction, by oligonucleotide probing, or by direct
sequencing [28]. The frequency of SNPs across the
human genome is higher than for any other type of poly-
morphism (such as repeat sequences or insertion/deletion
polymorphisms) [29]. Precise estimates of SNP frequency
are difficult to determine and often vary across different
populations and genomic regions.

Although linkage analysis can in theory use SNPs, almost
all linkage analyses undertaken so far for asthma and other
complex human diseases have used variable numbers of
tandem repeat polymorphisms (‘microsatellites’) with a
large number of alleles (that is, repeat lengths). SNPs
have not yet been used more extensively in linkage analy-
ses because they contain a relatively low level of informa-
tion in comparison with microsatellite markers. In addition,
the expense of genotyping the larger number of SNPs
required to give equivalent or better genome-wide statisti-
cal power as a panel of microsatellite markers is high, and
there remain unresolved issues relating to appropriate sta-
tistical analysis.

Unfortunately, linkage analysis and the use of maps
designed for linkage analysis studies have not proved
powerful enough to detect genes influencing many
common multifactorial diseases. This is largely because
linkage analysis lacks the power to detect genes with



Respiratory Research    Vol 2 No 2 Palmer and Cookson

small to moderate effects [25,30]. One of the limitations of
linkage analysis is the difficulty of fine mapping the loca-
tion of a gene influencing a complex disorder. There are
not usually sufficient meioses within 1–2 megabases of
the disease gene to detect recombination events; more-
over, with the effects of phenocopies and genetic hetero-
geneity in complex diseases, critical recombination events
might not be identified with certainty. The growing recog-
nition of the limitations of linkage analysis in complex
human diseases has seen a shift in emphasis away from
linkage analysis and microsatellite markers towards SNP
genotyping and different analytical strategies based on
association and haplotype analysis [31–34]. Association
analyses are now recognized as being essential for localiz-
ing susceptibility loci, and they are intrinsically more pow-
erful than linkage analyses in detecting weak genetic
effects [35].

Discovery and genotyping of SNPs
The past decade has seen an increase in molecular
genetic technologies that can potentially be used to under-
stand the biological basis of asthma. The generation of
SNP maps from high-throughput sequencing projects
[28,29,36,37] might add to the process of gene discovery
in asthma research. The process of SNP discovery in the
human genome has been the subject of considerable inter-
est in recent years and is increasing exponentially
[32,33,38–41]. In addition to large government-sponsored
projects in the UK (such as http://www.sanger.ac.uk/), the
USA [42], and Japan [43], there are now several major
industrial group efforts [44,45], a large academic–industry
consortium effort [46], and a number of smaller academic
programs (such as http://pga.bwh.harvard.edu/) devoted
to large-scale SNP discovery. The current focus is thus on
SNP discovery, leading to the creation of SNP catalogues,
and on improving technologies for SNP genotyping.
However, the exact applications and ultimate utility of SNP
catalogues and technologies to complex disease genetics
remain unclear. The real efficacy of non-hypothesis-driven
trawling exercises such as these has not been estab-
lished, despite claims to the contrary [47,48].

Although the pace of technological development in SNP
analysis is rapid [48,49], using microarray and other tech-
nologies [50], there are many technical problems with
these systems that limit their utility at present, such as cost
and the inherent lack of flexibility in hardwiring markers on a
chip. The detection of Mendelian genotyping inconsisten-
cies with biallelic markers might also be an issue [51].

SNP analysis and complex human disease
There are several potential advantages to using SNPs to
investigate the genetic determinants of complex human
diseases in comparison with other types of genetic poly-
morphism [42,52]. First, SNPs are plentiful throughout the
human genome, being found in exons, introns, promotors,

enhancers, and intergenic regions, allowing them to be
used as markers in dense positional cloning investigations
with the use of both randomly distributed markers and
markers clustered within genes [52,53]. Furthermore, the
abundance of SNPs makes it likely that alleles at some of
these polymorphisms are themselves functional [54,55].
Second, groups of adjacent SNPs might exhibit patterns
of linkage disequilibrium and haplotypic diversity that
could be used to enhance gene mapping [56] and that
might highlight recombination ‘hot-spots’ [57]. Third, inter-
population differences in SNP frequencies might be used
in population-based genetic studies [58,59]. Last, there is
good evidence that SNPs are less mutable than other
types of polymorphism [60,61]. The resultant greater sta-
bility might permit more consistent estimates of linkage
disequilibrium and genotype–phenotype associations.
There is mounting evidence that biallelic SNPs are more
powerful and more accurate than microsatellite markers in
association-based analysis [62].

However, there remain several serious limitations to the
use of SNPs in investigations of complex disease genet-
ics. Some of these relate to technical issues in SNP geno-
typing referred to above. More fundamentally, the growing
focus on SNP genotyping has made it clear that concomi-
tant statistical advances in the linkage disequilibrium
mapping of complex traits will also be required [63–65].
The SNP genotyping effort has caused a broad re-exami-
nation of mapping methodologies and study designs in
complex human disease [21,23,25]. The testing of large
numbers of SNPs for association with one or more traits
raises important statistical issues about the appropriate
false positive rate of the tests and the level of statistical
significance to be adopted given the multiple testing
involved [25]. The required methodological development
in genetic statistics is non-trivial given the complexity of
common diseases such as asthma. Current areas of
methodological development include haplotyping
[66–68], distance-based mapping measures [69,70],
combined linkage and association analyses [71], tech-
niques for modelling linkage disequilibrium and population
history [66], and approaches based on Monte Carlo
Markov Chains [72].

SNPs and asthma susceptibility
There are six primary areas of potential application for
SNP technologies in improving our understanding of
asthma pathophysiology: gene discovery and mapping;
association-based candidate polymorphism testing; phar-
macogenetics; diagnostics and risk profiling; prediction of
response to non-pharmacological environmental factors;
and homogeneity testing and design of epidemiological
studies [32]. Although only a few of these areas are cur-
rently areas of active research in asthma genetics, it is
likely that some of them might become relevant to investi-
gations of the genetic susceptibility to asthma.



Gene discovery and mapping: animal models
The genetics of physiological traits associated with
asthma and atopy have been studied extensively in inbred
strains of experimental animals [73,74]. Most studies of
inbred strains and backcrosses have suggested strong
genetic control of serum IgE levels [75,76], eosinophil
levels [77,78], and the responsiveness of airways to
cholinergic agents [74,79].

Although it is uncertain to what extent these traits, and their
underlying genetic control, correspond to their human coun-
terparts, it seems likely that animal models hold consider-
able potential for understanding the genetics of asthma and
associated disease. Animal models offer controlled expo-
sure, limited and consistent genetic variation, and unlimited
size of sibships. SNPs are more informative in animal
models than in humans because biallelic markers are fully
informative in analysing crosses between inbred strains. So
far, genetic research with animal models of asthma has
focused on linkage analysis with microsatellite markers
[79,80]; only recently have SNPs begun to be genotyped
within candidate loci [81]. However, large-scale SNP dis-
covery projects in the mouse are under way [82], and it can
be expected that SNP-based projects in experimental
animal models will have a larger role in asthma genetics.

Gene discovery and mapping: whole-genome screens in
humans
After genome-wide linkage studies, positional cloning
attempts are under way in several groups to isolate sus-
ceptibility loci for asthma [83]. The involvement of com-
mercial enterprises in the cloning of such genes has put a
premium on secrecy, and it is not clear which loci are cur-
rently being sought by industry. The chromosome 13
atopy locus and a locus on chromosome 2 near the inter-
leukin (IL)-1 cluster are being physically mapped at
present by our group at the Wellcome Trust Centre for
Human Genetics. However, whole-genome screens have
yet to result in the discovery of a functional mutation
affecting asthma susceptibility and will not be considered
further in this review.

The growing density of SNP maps, together with the iden-
tification of genes associated with the Human Genome
Project [84], might make genome-wide association analy-
ses feasible in future [25,85]. However, trade-offs in
power to detect genetic effects through association rather
than linkage [25,85] are likely to be offset by the need for
very large sample sizes and a substantial penalty neces-
sary to correct for multiple comparisons. Further limita-
tions come from the cost of typing the very large number
of markers (suggested to be around 500,000 in the
general outbred population) required for a genome-wide
association analysis [85] and the uncertain properties of
linkage disequilibrium between alleles of tightly linked
SNPs across the genome [63,86].

Although SNP mapping poses multiple and serious prob-
lems if used in genome-wide strategies, these problems
become much more tractable when applied to limited
chromosomal regions, such as those already defined by
genome-wide screens for genetic linkage. It is therefore
quite possible that these new technologies will form a
bridge between genetic linkage and gene identification.

Candidate gene polymorphism testing in humans
Linkage disequilibrium mapping relies on genotype–phe-
notype associations at the level of population [87] and
requires a dense map of markers [25]. Linkage disequilib-
rium mapping can also be enhanced by haplotype analy-
sis; although haplotype analysis in practice has proved
difficult [67], it is likely to be more powerful than focusing
on a single SNP locus.

Several useful SNP databases are available on the World
Wide Web (see Table 1); these databases are constantly
updated and are growing rapidly. However, the data con-
tained in them are far from infallible and as yet there has
been no systematic review of the accuracy of the results,
an indeterminate proportion of which will be due to
sequencing errors. Limitations related to cost and the
current incomplete status of SNP databases has meant
that the association analysis of SNPs in asthma genetics
has so far been limited to polymorphisms within biologi-
cally plausible candidate loci.

The number of biologically plausible candidate genes that
might be involved in the determination of asthma and
associated traits is very large [11,12]. There is now an
extensive and growing list of candidate genes investigated
with regard to traits associated with asthma and atopy.

The most investigated candidate location for atopy and
asthma susceptibility loci has been the 5q31–33 region
[88–90], because it contains a large number of important
candidate genes [91] including the genes for the cytokines
IL-4, IL-5, IL-9, IL-13, and their receptors. Other candidate
genes in this region include those encoding granulocyte/
macrophage colony-stimulating factor (GM-CSF), fibroblast
growth factor acidic (FGFA), and β2-adrenergic receptor.
Coding variants within the β-adrenergic receptor have been
shown in vitro to be functionally important [92,93] and
associated with the responsiveness of airways, although
associations with clinical asthma are inconsistent [94–98].
SNPs within the β-adrenergic receptors are the subject of
growing interest in pharmacogenetic studies of asthma (see
‘Pharmacogenetics’ below). Several other associations have
been noted between measures of atopy and genes of the
cluster, including IL-4, IL-13, and CD14 [99–102]. The con-
gregation of cytokine genes in the region might have
evolved for their co-regulation, and claims for the impor-
tance of particular polymorphisms within the cluster should
be interpreted in the context of possible linkage disequilib-
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rium with other known or unknown genes. Polymorphism of
the IL-4 receptor (whose gene is found on chromosome 16)
has a recognized effect on both atopy and serum IgE levels
[103–106], and this might be stronger than the effects of
polymorphism in the IL-4 gene itself.

SNPs within the FcεR1-β gene on chromosome 11q13
have been related in different studies to atopy [107],
asthma [108], bronchial hyperresponsiveness [109], and
severe atopic dermatitis [110]. SNPs within this gene
have also been associated with levels of total IgE in
heavily parasitized Australian aborigines, implying a pro-
tective role for the gene in infestation with helminths
[111]. Although a few coding changes have been identi-
fied within FcεR1-β [107,112], they are conservative and
do not seem to alter gene function. The functional mecha-
nism for the influence of the gene or nearby gene(s) on
atopic disorders has yet to be described.

The human MHC on chromosome 6p, particularly HLA
[113–116] and tumour necrosis factor (TNF) locus poly-
morphism [117,118], has also been extensively investi-
gated, as has polymorphism in the 12q15–24 region
[119,120]. SNPs in other candidate genes that have been
investigated include, but are not limited to, the following:
the α region of the T-cell receptor (TCR) α/δ locus [121],
the α1-antitrypsin gene (α1-AT) [122–124], histo-blood-
group genetic systems [125], the cystic fibrosis gene
(∆F508) [126,127], Gm allotypes of IgG genes [128], the
Ig heavy chain γ 4 locus (IGHG4) [129], the Clara cell
secretory protein (CC16) locus [130,131], the chemokine
receptor loci on chromosome 3 [132,133], and the gene
encoding angiotensin-converting enzyme (ACE) [134]. A
number of these SNP association studies have not yet
been replicated in independent populations.

Pharmacogenetics
An expanding area of interest in the application of SNPs to
investigations of asthma pathophysiology is the stratifica-

tion of populations by their genetically determined
response to therapeutic drugs (‘pharmacogenetics’).
Ideally, we would be able to stratify a population into
responders, nonresponders, and those with adverse side
effects [135]. The ultimate goal of such stratification
would be to improve the efficacy of drug-based interven-
tions and to expedite targeted drug discovery and devel-
opment. Pharmacogenetic initiatives are currently an area
of very active research in complex human diseases
[136–140]. However, the frequency and penetrance of a
gene affecting responsiveness to a particular drug and
potential interactions with other genetic and environmental
factors must ultimately be assessed in multiple population-
based samples. This is particularly important for extrapola-
tion from specific clinical trials to general clinical use in the
highly admixed, heterogeneous industrialized populations
where asthma is most common [141,142].

Current research in asthma pharmacogenetics has high-
lighted associations between SNPs in the genes of β-
adrenergic receptors and modified response to regular
inhaled β-agonist treatments (such as albuterol)
[93,140,143, 144]. A variant within the gene encoding 5-
lipoxygenase has been suggested to predict the response
to the anti-leukotriene ABT-761 in asthmatic subjects
[55]. Other work has found associations between a SNP
in the histamine N-methyltransferase (HNMT) gene and
asthma, and speculated that genetically determined differ-
ences in histamine metabolism might contribute to the
response to therapy in asthma [145]. Confirmation of
these findings could mark the beginning of the clinical use
of genotyping at an individual level as an adjunct to phar-
macotherapy for asthma and many other disorders.

Statistical power
Growing experience with complex disease genetics has
made clear the need to restrict the type I error in genetic
studies [31,65,146]. Power is especially an issue for
SNP-based association studies of susceptibility loci for
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Table 1

Selected web sites

Title Web address

dbSNP Polymorphism Repository http://www.ncbi.nlm.nih.gov/SNP/

GeneSNPs http://www.genome.utah.edu/genesnps/

Genetic Annotation Initiative http://cgap.nci.nih.gov/GAI/

HGBase http://hgbase.cgr.ki.se/

HUGO Mutation Database Initiative http://ariel.ucs.unimelb.edu.au:80/~cotton/mdi.htm

Human SNP Database http://www-genome.wi.mit.edu/SNP/human/index.html

SNP Consortium Database http://snp.cshl.org/

The Sanger Centre http://www.sanger.ac.uk/



phenomena such as the response to pharmacological
therapy, which are extremely heterogeneous and are likely
to involve genes with a small individual effect.

Table 2 shows some simple estimates of required sample
sizes of cases needed to detect a true odds ratio (OR) of
1.5 with 80% power and type I error probability (α) of
either 0.05 or 0.005. Power calculations assumed that
there were two controls for each case and a SNP that
operated as though it were a simple binary factor to which
a proportion of the population was exposed in a manner
directly related to the genotypic frequency (eg for 19%
exposure, equivalent to a dominant allele at Hardy–Wein-
berg equilibrium with a prevalence of 10%).

Table 2 shows that even for the best case, a common
SNP acting in a dominant fashion, a relatively large sample
size of more than 300 cases (a total sample size of more
than 900 subjects) is required at an α of 0.05. Multiple
testing issues are likely to be an issue in many genetic
association studies of candidate loci where either multiple
SNPs in one gene, multiple SNPs in several loci, or both,
are tested [147], suggesting that an α of 0.005 is proba-
bly more realistic than an α of 0.05. Use of the more realis-
tic α of 0.005, or assuming an uncommon SNP that acts
in a recessive fashion, leads to the need for very large (in
some cases logistically improbable) sample sizes.

Finally, Table 2 assumes an effect size (OR = 1.5) that, in
the context of a common, multifactorial disease such as
asthma, might be quite large. Assuming a smaller effect
might be more realistic for many genes and would lead to
concomitantly higher required sample sizes. Simulation
studies have also suggested that genes of small effect are

not likely to be detectable by association studies in
sample sizes of less than 500 [65].

These power calculations are simple, because true power
to detect functional association and linkage disequilibrium
might depend on the prevalence of the mutant allele, the
recombination fraction between mutant allele and marker,
the size of the effect of the mutant allele on the phenotype,
the type of study population, and the penetrances of the
functional locus genotypes [23]. Furthermore, the power
calculations are based only on a single SNP–disease
association analysis of a binary outcome; both multilocus
SNP analysis (including haplotype analysis) and the analy-
sis of quantitative traits should be uniformly more powerful
[69,70]. However, even these simple calculations make it
clear that the sample sizes used in many small-scale
case–control studies of the association of candidate
genes may well have had insufficient power to detect even
quite a large effect of a SNP. This suggests that larger-
scale studies than those currently being performed by
many groups will be needed in future.

Future directions
Diagnostics and risk profiling
After the identification of a SNP or SNP-based haplotype
that is closely associated with a disease or associated
trait, it might be possible to use this information to develop
diagnostic tests. The ability to determine the risk of
disease before the onset of symptoms would be poten-
tially of great benefit in asthma. The understanding of
asthma pathophysiology might then enter the realm of clin-
ical and population genetics. As for all diagnostic genetic
tests, the utility and ultimate success of diagnostic testing
for asthma susceptibility by using SNPs in a particular
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Table 2

Sample size requirements for case–control analyses of single nucleotide polymorphisms

Dominant model Recessive model

Exposure (%) No. of cases required Exposure (%) No. of cases required

Allele frequency (%) α=0.05 α=0.005 α=0.05 α=0.005

10 19 430 711 1 6113 10,070

20 36 311 516 4 1,600 2,637

30 51 308 512 9 769 1,269

40 64 354 590 16 485 802

50 75 456 762 25 363 602

60 84 661 1,107 36 311 516

There were two controls per case; a detectable difference of OR is 1.5 or more; power = 80%. The allele frequencies shown are those in controls.
Exposure (that is, prevalence) is that in controls assuming a diallelic locus with a dominant or recessive allele at Hardy–Weinberg equilibrium. In the
dominant model, estimates are for an OR of 1.5 between cases and controls for the possession of at least one copy of disease-associated SNP by
case; in the recessive model, estimates are for an OR of 1.5 between cases and controls for the possession of two copies of disease-associated
SNP by case.
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population would depend on the following: the extent and
nature of disease heterogeneity; the frequency of the high-
risk allele and the concomitant attributable risk; the pene-
trance of a specific allele; and the ability to define a useful
risk model including other genetic factors, important envi-
ronmental risk factors, and interactions between the SNP
and factors such as age and gender [32,148]. In addition,
there are both technical problems with routine genetic
testing, largely related to false negatives, and important
ethical and psychosocial concerns that remain unresolved
[148–150]. However, it is clear that very large, longitudi-
nal, well-characterized cohort studies originally estab-
lished for epidemiological purposes, such as the Nurses’
Health Study [151] and the Busselton Health Study [152],
will be critical to the future success of any diagnostic
SNP-based tests.

Gene–environment interaction
In addition to pharmacogenetic applications, the identifica-
tion of groups of individuals likely to be affected by other
environmental exposures owing to their genetic suscepti-
bility might also be beneficial to our future understanding
and treatment of asthma. Examples of potentially important
environmental factors that might interact with underlying
genetic susceptibilities include exposure to cigarette
smoke, exposure and sensitization to common inhalant
aero-allergens, exposure to viral infections, housing and
lifestyle factors, in utero factors acting during pregnancy,
and diet [4,153–158]. Prediction of response to these
environmental factors in individuals genetically predis-
posed to asthma is potentially of major significance to
public health and health economics [4]. The incorporation
of genotype, probably based on SNPs, into initiatives in
public health could become an increasingly important
factor in preventive medicine.

Homogeneity testing and study design
Genetic heterogeneity is a major issue complicating gene
discovery in asthma [12]. Strategies to minimize genetic
heterogeneity in studies of asthma genetics have included
the use of large pedigrees, genetically isolated populations
likely to exhibit founder effects, and the division of study
populations into phenotypically homogenous subgroups. A
further strategy for maximizing homogeneity, at present not
feasible for asthma or most other complex diseases, is the
division of a study population into genetically homogenous
groups on the basis of previously defined susceptibility loci
[159]. Random panels of SNPs could be used to partition
study populations into genetically homogenous groups.
Heterogeneity testing can be used to test explicitly for pop-
ulation stratification in association analyses [160] and to
assess the potential generalizability of SNP–phenotype
associations. In addition to variation in allele frequencies,
there is also a high degree of variation in linkage disequilib-
rium strength between populations of different origins [161]
and also between different genomic regions [162,163].

As SNP-associated pharmacogenetic, diagnostic, and
gene–environment effects are discovered and used to
further our understanding of asthma pathophysiology, the
study of genetic heterogeneity will become increasingly
important. This is particularly so as the current major
markets for asthma therapeutics are industrialized nations
such as the USA, western Europe, and Australia [2], all of
which have substantially and increasingly admixed popula-
tions.

Conclusions
The technology for SNPs has undergone rapid develop-
ment, extensive catalogues of SNPs across the genome
have been constructed, and SNPs have been used increas-
ingly as a method of investigating the genetic etiology of
complex human diseases. The potential areas of application
for SNP technology in improving our understanding of
asthma pathophysiology include gene discovery and
mapping, association-based candidate polymorphism
testing, pharmacogenetics, diagnostics and risk profiling,
the prediction of response to non-pharmacological environ-
mental stimuli, and homogeneity testing and epidemiologi-
cal study design. Although only the first three of these are
currently areas of active research in asthma genetics, it is
likely that they will all become increasingly important in
investigations of genetic susceptibility to asthma. There are
technical, statistical, ethical, and psychosocial issues that
remain unresolved in the use of SNP technology to investi-
gate these aspects of asthma pathophysiology.

Genetic approaches to asthma offer great potential to
improve our understanding of the pathophysiology of this
disorder, but they also offer significant challenges. Despite
much progress in defining the genetic basis of asthma and
atopy in the last decade, accompanied by rapid technical
progress in SNP genotyping technologies, further research
is required. In particular, genetic localization of most
asthma susceptibility loci is still insufficiently precise for the
positional cloning of new genes influencing the disease.
However, many groups are currently active in addressing
methodological problems in SNP genotyping and genetic
statistics, and technological advances in positional cloning
and candidate loci linkage-disequilibrium mapping tech-
niques with the use of SNPs will probably accelerate our
understanding of the pathophysiology of asthma.
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