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ABSTRACT: The de novo drug design based on SMILES format
is a typical sequence-processing problem. Previous methods based
on recurrent neural network (RNN) exhibit limitation in capturing
long-range dependency, resulting in a high invalid percentage in
generated molecules. Recent studies have shown the potential of
Transformer architecture to increase the capacity of handling
sequence data. In this work, the encoder module in the
Transformer is used to build a generative model. First, we train a
Transformer-encoder-based generative model to learn the
grammatical rules of known drug molecules and a predictive
model to predict the activity of the molecules. Subsequently,
transfer learning and reinforcement learning were used to fine-tune
and optimize the generative model, respectively, to design new
molecules with desirable activity. Compared with previous RNN-based methods, our method has improved the percentage of
generating chemically valid molecules (from 95.6 to 98.2%), the structural diversity of the generated molecules, and the feasibility of
molecular synthesis. The pipeline is validated by designing inhibitors against the human BRAF protein. Molecular docking and
binding mode analysis showed that our method can generate small molecules with higher activity than those carrying ligands in the
crystal structure and have similar interaction sites with these ligands, which can provide new ideas and suggestions for
pharmaceutical chemists.

1. INTRODUCTION

Nowadays, with the dramatic improvement of the computing
power of computers and the rapid progress of artificial
intelligence and machine learning algorithms, CADD is also
developing rapidly due to the integration of new methods.1

Deep-learning-based CADD methods have been widely used in
many fields such as performing protein−ligand activity
classification, affinity prediction, ADMET prediction, synthesis
route design, and protein folding prediction.2−6 Compared
with the existing computational methods, this kind of model
showed superior performance in terms of calculation speed and
precision. In recent years, several deep generative models have
been proposed to explore the vast space of drug-like chemistry
by encoding molecules into a continuous latent space.7 Segler
et al.,8 Popova et al.,9 and Olivecrona et al.10 trained an end-to-
end recurrent neural network (RNN) generative model using
only SMILES as the input. To improve the efficiency of the
model to generate valid molecules, memory-augmented RNN
was introduced.9 Similar generative models include variational
autoencoders (VAEs)11 and generative adversarial networks
(GANs),12 which learn underlying data distribution in an
unsupervised setting.
With the excellent performance of reinforcement learning

(RL) in solving dynamic decision problems, Popova et al.9 and

Olivecrona et al.10 applied it to the problem of designing
chemical libraries with required properties.
RL is used to combine the generative model with the

predictive model to guide the generator to generate novel
chemical entities with desired properties. Similar to it is the
particle swarm optimization (PSO) algorithm.13,14 RL guides
the generative model through the reward mechanism to find
the optimal search space, while the PSO algorithm aims to find
the optimal point from the whole chemical space under the
guidance of Objective function. Transfer learning (TL) is used
to design drugs for specific targets. Several research groups
have demonstrated that RNNs can be fine-tuned by TL to
generate molecules that are structurally similar to drugs with
known activities against particular targets.15,16 However, these
generative models are based on RNN, which exhibits limitation
in capturing long-range dependency,17 whereas molecules
expressed in the SMILES format have longer sequences. The
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increasingly long sequences significantly affect these models’
prediction capacity.
The more recent Transformer model18 achieved impressive

performance in a number of tasks by getting rid of recurrence
and introducing a multihead self-attention mechanism, which
enabled processing very long sequences. Grechishnikova et al.
used a complete Transformer architecture to generate lead
compounds for specific proteins with only sequence
information, treating molecular generation as a translation
task for protein sequences and molecular SMILES.19 Zheng et
al. proposed a scaffold hopping model using the Transformer
architecture.20 The goal of this model is to predict the
“hopped” molecule with improved pharmaceutical activity and
a dissimilar two-dimensional (2D) structure but a similar
three-dimensional (3D) structure by inputting a reference
molecule and a specified protein. All of these works used the
complete encoder−decoder architecture of the Transformer.
In this work, we propose a novel ligand-based de novo

molecular design approach for targeting specific proteins. First,
we trained a Transformer-encoder-based generator on
ChEMBL’s 1.6 million data sets to learn the grammatical
rules of known drug molecules. Second, TL is used to
introduce the prior knowledge of drugs with known activities
against particular targets into the generative model to construct
new molecules similar to the known ligands. This is then
followed by an RL module to combine the generative model

and the predictive model to optimize the parameters of the
generator to generate small molecules with high scores, that is,
molecules with drug-like properties that are expected to bind
well with the target. Finally, molecular docking was used to
further evaluate the activity of the generated molecules.
The evaluation results showed that the generative model

based on the Transformer was superior to the generative
model based on RNN (GRU, LSTM) in terms of the stability
of the training process, the accuracy of generating valid
molecules, the performance of RL, and the feasibility of
molecular synthesis. In addition, the samples generated by the
generative model almost covered the entire chemical space
occupied by BRAF inhibitors, which proves that the Trans-
former-based de novo drug design method is successful under
“low data” conditions and our generative model has the
potential to generate BRAF inhibitors with novel structures
and higher activity. Finally, molecular docking and binding
mode analysis proved that our model could generate quality
candidate compounds for BRAF.

2. RESULTS AND DISCUSSION

2.1. Performance Evaluation of Generative and
Predictive Models. Our Transformer-based generative
model was trained with ∼1.6 million structures from the
ChEMBL database to learn the rules that define SMILES
strings corresponding to chemical structures and design new

Figure 1. Training process of three generative models: Transformer-based, bidirectional GRU-based, and GRU-based models. (A) and (B) are the
changes of loss on the training set and verification set during the training process, respectively, and (C) and (D) are the accuracy change process on
the training set and the validation set during the training process, respectively.
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chemical libraries (please see Materials and Methods for
technical details). To compare the performance of the
Transformer-based generative model with the previous RNN-
based one, we trained a stack-augmented gated recurrent unit
(GRU) model for molecular generation on the same data set,
which is widely used in de novo drug design.9,10,16 We tested
the effect of different layers of GRU on generating valid
molecular percentages. Unlike Transformer structures, the
expressive power of the GRU cannot be increased by
deepening the network (Table S1). Therefore, only one layer
of GRU was used for molecular generation in our experiment.
It can be seen from the training process that our generative
model is more stable and has higher accuracy on the validation
set (Figure 1). In addition, it was found in the experiment that
the bidirectional GRU did not improve the performance of the
generative model (Figure 1).
A known drawback of approaches for de novo design is

frequent generation of chemical infeasible molecules.7,10 To
address this problem, a total of 100 000 compounds were
sampled from the pretrained generative model for 10 times,
10 000 compounds at a time. (Among them, the samples of
GRU were sampled at the position of iteration = 300, and the
samples of the Transformer were sampled at the position of
iteration = 500.) As can be seen from the statistical results in
Table 1, our generative model reduced the percentage of

invalid molecules (which cannot be parsed by the RDKit
library) from 4.368 to 1.694%. In addition, we count the
lengths of retained and invalid molecules. The average value of
the two in the Transformer-based generative model is 46/55,
while in the GRU-based generative model it is 44/62,
indicating that the RNN model is weaker than the Transformer
model in capturing the long-range dependency of small
molecules.
In addition to the efficiency of producing valid molecules,

another key for de novo-generated molecules is the feasibility
of their synthesis. We calculated the synthetic accessibility
score (SAS) from the two generator samples, which were in
the range of 1−10. The mean SAS of molecules generated by
the Transformer was 2.78 and that of GRU was 2.89,
compared with 2.84 from the ChEMBL training set. Therefore,
our generative model is superior to GRU-based generative
model in terms of the accuracy of generating valid molecules
and the feasibility of their synthesis.
To introduce the existing structure experience of the specific

targets into the generative model, the Transformer-based
model and the GRU-based model were, respectively, fine-
tuned by TL. A total of 4702 inhibitors (pIC50 ≥ 4) of BRAF
and its similar proteins (UniProt ID: P15056, P10398,
P04049) were used as a training set of TL. TL was performed
for 100 epochs until the distribution of the Tanimoto similarity

Table 1. Sample Statistical Results of Transformer-Based and GRU-Based Generators

pretrained model optimized model (aver reward = 15)

transformer GRU transformer GRU

invalid 1.694% ± 0.102% 4.368% ± 0.361% 1.170% ± 0.052% 2.690% ± 0.167%
redundant 0.075% ± 0.022% 0.038% ± 0.015% 30.273% ± 0.525% 33.828% ± 0.616%
retained 98.231% ± 0.115% 95.594% ± 0.351% 68.557% ± 0.552% 63.482% ± 0.456%

Figure 2. Performance of the generative model and the predictive model. (A) Distribution of the maximum Tanimoto similarity between the
molecules generated by the model and the BRAF inhibitors. (B) Example of the Tanimoto similarity between the generated molecule and the
original structure. (C) Comparison between predicted and observed pIC50 values. Metrics reported are Pearson’s correlation coefficient (R) and
root-mean-squared error (RMSE).
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(TS) between the generated molecules and the training data
set showed no further improvement. It can be seen from Figure
2A,B that the TS between the molecules generated after TL
and the training set increased, which indicated that the
generative model captures the structural features of the existing
inhibitors. In addition, the generative model based on GRU
generated more structures that were more similar to the
training set after TL (44% of the molecules have TS greater
than 0.5), while our method enables a bigger structural leap
from the existing inhibitors (47% of molecules have TS
between 0.3 and 0.5). Therefore, although the similarity
between the molecules generated by our generative model after
TL and the training set increases, there is no limit to the ability
of the generator to produce novel scaffolds.
Predictive models are key to generating molecules with

specified desired properties for the de novo drug design. Any
QSAR model is generally designed to establish a conversion
between the molecular descriptor of a compound and its
biological activity.9 In this work, we built a regression model to
predict pIC50 values using only molecular SMILES as the
input (please see Materials and Methods for technical details).
Using 5-fold cross-validation on BRAF and its similar protein
inhibitors, we obtained the model accuracy expressed as
Pearson’s correlation coefficient (R) = 0.82 and root-mean-
squared error (RMSE) = 0.76 for predicting pIC50, indicating
a strong positive correlation between the predicted and
observed values (Figure 2C). In addition, to confirm the
predictive ability of the model, we performed verification on
the PDBbind data set. As a ligand-based prediction model, we
obtained the model accuracy expressed as Pearson correlation
coefficient (R) = 0.68 and RMSE = 1.46 for predicting pIC50
on the PDBbind data set (Table S2). Therefore, our predictive

model can establish a good correlation between the molecular
structure and the biological activity.
Subsequently, RL is used to guide the generative model

(after TL) to generate novel compounds with desired
properties (please see Materials and Methods for technical
details). The Transformer-based and GRU-based generative
models were optimized by the same RL architecture,
respectively. To evaluate the generation efficiency of the
optimized generative model, a total of 100 000 compounds
were sampled from the optimized generative model for 10
times. It can be seen from Table 1 that the optimized model
has a higher redundancy percentage, which may be due to the
fact that RL has reduced the sampling space of the model to
obtain higher rewards. It is worth noting that as the reward
increases, the redundancy percentage increases, resulting in a
decrease in the proportion of valid and unique molecules
(Table S3). Therefore, we stopped optimizing at reward = 15.
Figure 3 shows the optimization results of the molecules

generated by the two generative models. It can be seen from
Figure 3A that when the two models achieved similar activity
distributions, the molecules generated by the Transformer
were less similar to the existing BRAF inhibitors (Figure 3B).
Therefore, the molecular structures generated by the Trans-
former were more novel. In addition, the molecules generated
by the Transformer performed better in drug-likeness
distribution and synthesizable distribution (Figure 3C,D). As
a result, our Transformer-based generative model can improve
the problems faced by RNN-based generative models and
perform better in the property distribution and structural
diversity of the generated molecules.

2.2. Discovery of New Candidate Compounds
Targeting BRAF. After RL, 50 000 molecules were sampled

Figure 3. Property distribution of transformer-based and GRU-based generative models. (A) Distribution of the predicted pIC50 value before and
after reinforcement learning. (B) Distribution of the maximum Tanimoto similarity between the molecules generated by the two models and BRAF
inhibitors. (C) Distribution of the Quantitative estimate of drug-likeness scores and (D) distribution of the synthetic accessibility scores in the two
generative models and existing BRAF inhibitors.
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from the Transformer-based generative model to find
candidate compounds targeting BRAF, of which 63.4% of the
small molecules were unique and valid (invalid: 1.14%,
redundant: 33.21%, training set-identical: 2.17%). Finally,
63.4% (31 714) of the small molecules were retained for
further analysis. The Murcko scaffold21 was extracted from the
training data set and the retained set of generated molecules to
check whether a new structure was generated. The total
number of unique Murcko scaffolds were found to be 1404 in
existing BRAF inhibitors and 15 058 in generated molecules. A
TS cutoff of 0.5 was used to define the dissimilarity between a
pair of scaffolds.22 After all pair-wise scaffold similarities were
computed, 10 595 scaffolds (70.4%) from the generated
molecules were found to be dissimilar to the scaffolds in the
training set. Extended Connectivity FingerPrint (ECFP4) was
used as the descriptor for embedding, and each small molecule
was projected onto a two-dimensional plane using t-SNE. As
can be seen from Figure 4, the samples almost covered the

entire chemical space occupied by BRAF inhibitors, which
indicated that the generative model after RL captures the
structural features of the existing inhibitors and has the
potential to generate BRAF inhibitors with structural diversity.
At present, the reported BRAF protein has two inhibitor

binding sites, as shown in Figure S1. The first binding site is
competitive occupation of adenosine triphosphate (ATP)
binding sites and these inhibitors are called kinase I inhibitors
(Figure S1A); PLX-4032 is a typical kinase I inhibitor. Another
is the allosteric binding site, and these inhibitors are called
kinase II inhibitors (Figure S1B); belvarafenib belongs to
kinase II inhibitors. Due to the binding of allosteric sites,
kinase I inhibitors have better selectivity than kinase II
inhibitors. Therefore, the reserved 31 714 molecules were
virtually screened for the two crystal structures (6XFP, 3OG7)
of BRAF, respectively, and conformations with a score less
than −8 kcal/mol were retained for study, among which 3533
compounds were reserved for 6XFP and 3519 for 3OG7.
Figure 5 shows the representative compounds with different

scaffolds generated by the generative model that had a higher
docking score (DS) than the ligands from BRAF crystal
structures. Some of these molecules differ greatly in structure
from existing inhibitors (lower TS) but have high docking
scores, which has the potential to become potent BRAF
inhibitors with novel structures. More structures with their
docking scores are provided in Supporting Information 2.

2.3. Comparing the Binding Mode of Representative
Compounds with Belvarafenib and PLX-4032. First, the
ligand PLX-4032 in 3OG7 and belvarafenib in 6XFP were re-
docked in their binding pockets to verify the accuracy of Glide,
and the docking scores are −11.8 kcal/mol and −14.3 kcal/
mol for PLX-4032/BRAF and belvarafenib/BRAF complexes,
respectively. Then, we selected five compounds with different
frames for the two BRAF binding pockets and compared the
binding modes, as shown in Figures 6 and 7. Figure 6 shows
the binding mode of BRAF to the representative compounds
with different frames with higher scores than that of PLX-4032,
and these compounds also have low similarity (compared with
already reported BRAF inhibitors), which illustrates that these
compounds have better affinity with BRAF than that with PLX-
4032. The important interaction of BRAF and inhibitors is to
form hydrogen bonds with the residues in the hinge region of
BRAF (GLN530, TRP531 and/or CYS532) and hydrophobic
interaction at the ATP binding sites. Obviously, the five
compounds form hydrogen bonds and hydrophobic inter-
actions with the residues GLN530, TRP531, and/or CYS532.
However, when these compounds bind to ATP binding sites,
some groups are exposed to solvents, and these structures will
have greater flexibility, such as Mol_00147 and Mol_09590.
These two compounds may need to be structurally modified in
the future.
The compounds Mol_00605, Mol_22896, Mol_06416,

Mol_12256, and Mol_19439 have similar interaction with
BRAF at the ATP binding site and with belvarafenib, including
the hydrogen bond with the residues GLN530, TRP531, and/
or CYS532 and hydrophobic interaction (Figure 7). In
addition to these key interactions, the five compounds also
have hydrophobic interaction with BRAF at the allosteric
binding site. The residues at the allosteric binding site mainly
include GLU501, ILE527, ASP594, PHE595, and LEU597,
and the interaction of the compounds with these residues
improves the selectivity of the compounds to BRAF. In
conclusion, the compounds Mol_00147, Mol_05056,
Mol_18104, Mol_18796, Mol_09590, Mol_00605,
Mol_22896, Mol_06416, Mol_12256, and Mol_19439 ex-
hibited a higher inhibitory activity to BRAF than that of PLX-
4032 and belvarafenib.

3. CONCLUSIONS
We have proposed a Transformer-encoder-based generative
model for a de novo drug design, and sample evaluation of the
original pretrained model and the RL-optimized generative
model shows that our method is superior to the existing
generative models in terms of the percentage of valid
compounds generated and the property/activity distribution
of generated molecules. It has been observed that our target-
specific generative model can capture the features of existing
active ligands and has a huge chemical sampling space (the
generated molecules almost covered the entire chemical space
occupied by BRAF inhibitors). Molecular docking and binding
pattern analysis demonstrate that our method can generate
small molecules with higher activity than those carrying ligands

Figure 4. Clustering of the molecules generated by the generative
model after reinforcement learning and BRAF inhibitors by t-SNE.
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in the crystal structure and have similar interaction sites with
these ligands, which improves the selectivity of these molecules
to BRAF. When the three-dimensional structure of the protein
and a small number of active ligands are known, the proposed
method can be applied to any target protein for the de novo
drug design. In addition, the method can also be used for
virtual screening of molecular library generation and fragment-
based molecular design.

4. MATERIALS AND METHODS

4.1. Transformer-Based Generator. As with the text
generation task, the first step in de novo drug design is to train
a generator, which aims to learn the rules of organic chemistry
that define SMILES strings corresponding to realistic chemical
structures. We collected ∼1.6 million small molecules from the
ChEMBL database23 to train the generative model, and each
small molecule is represented in SMILES format to train a
generator of Seq. 2Seq. The SMILES data set was preprocessed
to remove stereochemistry, salts, and molecules with
undesirable atoms or groups.9 In the end, ∼1.6 million small
molecules with a length of 100 or less were retained for
training the generative model.

Since the SMILES string has a natural sequential ordering, it
is common to factorize the joint probabilities over symbols as
the product of conditional probabilities.24 In recent years,
there have been significant improvements in the expressiveness
of models capable of calculating these conditional probabilities,
such as RNN like GRU9 and self-attention architectures like
the Transformer.18 In this work, the encoder module in the
Transformer is used to build our generative model (Figure
8A). A similar generative network is GPT-2, which is widely
used in commonsense reasoning, question answering, and
textual entailment.25 Compared with architectures with similar
functions such as RNN architectures, the Transformer
framework used by GPT-2 provides a more structured memory
for handling long-term dependencies in sequence, resulting in
robust transfer performance across diverse tasks.18,26,27 There-
fore, in our method, we use a generative model based on the
Transformer encoder. The architecture and parameter settings
of the generative model are shown in Supporting Information
1Table S4.
The parameters of the generative model are updated by

reducing the cross-entropy loss between the real tokens and
the predicted tokens. In the training process, the optimizer we
used was AdamW, the learning rate was set as 0.00015, and the
model tended to converge after 500 iterations of training.

Figure 5. Clustering of generated molecules filtered by virtual screening. Molecules are colored by the absolute value of the docking score (DS).
Each molecule is expressed by its DS and the maximum Tanimoto similarity (TS) between the training set. Some molecules have a lower TS but a
higher DS. (A) and (B) represent BRAF’s two pockets, 6XFP and 3OG7, respectively.
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Figure 6. Comparing the bound mode of PLX-4032 and the representative compounds. (A) is the carrying ligand in the crystal structure of 3OG7,
while (B), (C), (D), (E), and (F) are representative compounds with high docking scores and different scaffolds.

Figure 7. Comparing the bound mode of belvarafenib and the representative compounds. (A) is the carrying ligand in the crystal structure of
6XFP, while (B), (C), (D), (E), and (F) are representative compounds with high docking scores and different scaffolds.
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Finally, the trained generator is saved as a pretrained model to
be weighted by a task-specific transfer learning model.
4.2. Fine-Tuned by Transfer Learning. In the process of

the de novo drug design, random generation without prior
experience is too blind to be generated for specific targets.
Therefore, how to endow the deep generative model with
specific research experience is the key to molecular design for
specific tasks. In this work, we introduce the existing leading
experience into the pretrained model through transfer learning
(TL). We collected the existing BRAF and its similar proteins
(UniProt ID: P15056, P10398, P04049) and inhibitors (pIC50
≥ 4) from the ChEMBL database as small samples (4702
inhibitors) and used TL to guide the generative model to learn
the structure feature in those samples.
During TL, all of the layers of the generative model are

frozen, which will not be adjusted in the process of gradient
calculation and backward transmission, except for the last
linear layer (Figure 8B). Only the parameters of the last Linear
layer are adjusted, which prevent the model from forgetting the
molecular features on small samples, so as to generate
compounds that are similar to the training set. The weight of
the pretrained model was loaded and trained on small samples
during TL.
4.3. Ligand-Based Score Function. After TL, the small

molecules generated by the generator show a high structural
similarity to the training set used by TL. Therefore, we
designed a QSAR model based on neural network, which is
confirmed to be the most potential tool for QSAR analysis and
feature extraction,28,29 for predicting IC50 values of small
molecules. In this work, we designed a predictive model, RNN
taking SMILES as the only input, that contains a GRU for
extracting small molecule features and three fully connected
layers for reducing features and predicting IC50 values. The
data sets used for training the predictive model were the same

as those used for TL, and 5-fold cross-validation was used to
evaluate the model’s performance. All of the architecture and
hyperparameter information for the predictive model are
provided in Supporting Information 1Table S4.

4.4. Reinforcement Learning. The generative model
learns a prior policy during training, which is an unbiased
probability distribution of different symbols at each position of
the SMILES string. In this section, the generative model is
combined with the predictive model through reinforcement
learning (RL) to generate molecules with specified desirable
properties, where the generator acts as the agent to decide
what character to choose next given the current state.9,10,16

The set of state S is defined as all possible strings with lengths
from zero to value T, and the action space A is defined as all
probable characters for the next position. The reward is
defined as a function of the predicted value from the predictive
model. The goal of the policy gradient method (or RL) is to
update the agent to increase the reward for the generated
sequences.10

To make the agent inherit the syntax of SMILES and the
distribution of the molecular structure in ChEMBL that the
prior generator has learned, the agent is anchored to prior
policy through an augmented likelihood10

P A P A R Alog ( ) log ( ) ( )U Prior σ= +

where P(A)Prior denotes the prior likelihood, σ denotes the
weight coefficient, and R(A) denotes the reward function
calculated as

R x
x

( ) exp
3.0

= i
k
jjj

y
{
zzz

where x is the predicted value from the predictive model.9

Figure 8. De novo drug design pipeline: (A) Detailed framework of the generative model, of which N is the number of Transformer blocks. (B)
Transfer learning used to fine-tune the generative model to learn the prior structure in small samples. (C) General pipeline of reinforcement
learning to design novel molecules with desired properties.
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The long-term return G(sT) can be modified by the
agreement between the agent likelihood log P(A)A and the
augmented likelihood. The goal of the agent is to learn a
strategy for maximizing the expected return G(sT), which can
be translated into the problem of minimizing the following loss
function J(θ)

G s P A P A( ) log ( ) log ( )U AT = −[ − ]

J G s( ) ( )Tθ = −

Therefore, the problem of generating chemical compounds
with desired properties can be formulated as a task of finding a
vector of parameters θ of the agent generative model. The
parameter settings of the model are shown in Supporting
Information 1Table S4.
4.5. Virtual Screening by BRAF Receptor Structure-

Based. Molecular docking is one of the most commonly used
methods in structure-based drug design, which can predict the
affinity between the ligand and the target; so, it can be used to
screen bioactive compounds in the early stage of drug
development.30,31 Therefore, we chose BRAF inhibitor as an
example to verify our mode. First, the crystal structure of the
BRAF complex (PDB ID: 3OG732 and 6XFP33) was
downloaded from the PDB database for simple optimization,
including adding hydrogen atoms, distributing protonation
state of residues, and minimizing the energy with the OPLS-
2005 force field.34 The center of mass of the ligand in the
complex was defined as the binding site, and the receptor grid
box was set to 20 Å × 20 Å × 30 Å. All of the docking
procedures were completed in Schrödinger2015.
The reserved compounds produced in the previous training

will be docked into the preset BRAF binding pocket through
the following three-step protocol: first, all structures were
docked and scored by the Glide35 high-throughput virtual
screening (HTVS) scoring mode, and the top 10% structures
were retained; second, the saved structures from the previous
step were re-docked and scored by the Glide standard
precision (SP) scoring mode, and the top 10% structures
were retained; finally, the saved structures were re-docked and
scored by the Glide extra precision (XP) scoring mode.
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Bjerrum, E. J.; Engkvist, O.; Chen, H. A de novo molecular generation
method using latent vector based generative adversarial network. J.
Cheminf. 2019, 11, No. 74.
(13) Hartenfeller, M.; Proschak, E.; Schüller, A.; Schneider, G.
Concept of combinatorial de novo design of drug-like molecules by
particle swarm optimization. Chem. Biol. Drug Des. 2010, 72, 16−26.
(14) Winter, R.; Montanari, F.; Steffen, A.; Briem, H.; Clevert, D. A.;
et al. Efficient Multi-Objective Molecular Optimization in a
Continuous Latent Space. Chem. Sci. 2019, 10, 8016−8024.
(15) Cai, C.; Wang, S.; Xu, Y.; Zhang, W.; Tang, K.; Ouyang, Q.;
Lai, L.; Pei, J. Transfer Learning for Drug Discovery. J. Med. Chem.
2020, 63, 8683−8694.
(16) Krishnan, S. R.; Bung, N.; Bulusu, G.; Roy, A. Accelerating De
Novo Drug Design against Novel Proteins Using Deep Learning. J.
Chem. Inf. Model. 2021, 61, 621−630.
(17) Schmidhuber, J. Gradient Flow in Recurrent Nets: the Difficulty of
Learning Long-Term Dependencies; IEEE, 2001.
(18) Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.
2017, arXiv:1706.03762. arXiv.org e-Print archive. http://arxiv.org/
abs/1706.03762.
(19) Grechishnikova, D. Transformer neural network for protein-
specific de novo drug generation as a machine translation problem.
Sci. Rep. 2021, 11, No. 321.
(20) Zheng, S.; Lei, Z.; Ai, H.; Chen, H.; Deng, D.; Yang, Y. Deep
Scaffold Hopping with Multi-modal Transformer Neural Networks.
ChemRxiv 2020, No. 11767.
(21) Bemis, G. W.; Murcko, M. A. The Properties of Known Drugs.
1. Molecular Frameworks. J. Med. Chem. 1996, 39, 2887−2893.
(22) Shang, J.; Sun, H.; Liu, H.; Chen, F.; Tian, S.; Pan, P.; Li, D.;
Kong, D.; Hou, T. Comparative analyses of structural features and
scaffold diversity for purchasable compound libraries. J. Cheminf.
2017, 9, No. 25.
(23) Anna, G.; Anne, H.; Michał, N.; Patrícia, B.; Jon, C.; David, M.;
Prudence, M.; Francis, A.; Bellis, L. J.; Elena, C. U. The ChEMBL
database in 2017. Nucleic Acids Res. 2017, D1, D945−D954.
(24) Bengio, Y.; Ducharme, R.; Vincent, P.; Jauvin, C. A Neural
Probabilistic Language Model. J. Mach. Learn. Res. 2003, 3, 1137−
1155.

(25) Radford, A.; Narasimhan, K. Improving Language Under-
standing by Generative Pre-Training, 2018. https://cdn.openai.com/
research-covers/language-unsupervised/language_understanding_
paper.pdf.
(26) Liu, P. J.; Saleh, M.; Pot, E.; Goodrich, B.; Sepassi, R.; Kaiser,
L.; Shazeer, N. Generating Wikipedia by Summarizing Long Sequences.
2018, arXiv:1801.10198. arXiv.org e-Print archive. https://arxiv.org/
abs/1801.10198v1.
(27) Kitaev, N.; Klein, D. In Constituency Parsing with a Self-Attentive
Encoder, Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers); Association
for Computational Linguistics, 2018; pp 2676−2686.
(28) Fahimeh, G.; Alireza, M.; Alfonso, P. G.; Horacio, P. S. Neural
network and deep-learning algorithms used in QSAR studies: merits
and drawbacks. Drug Discovery Today 2018, 23, 1784−1790.
(29) Schneider, G. Neural networks are useful tools for drug design.
Neural Networks 2000, 13, 15−16.
(30) Fu, W.; Wang, E.; Ke, D.; Yang, H.; Chen, L.; Shao, J.; Hu, X.;
Xu, L.; Liu, N.; Hou, T. Discovery of a Novel Fusarium Graminearum
Mitogen-Activated Protein Kinase (FgGpmk1) Inhibitor for the
Treatment of Fusarium Head Blight. J. Med. Chem. 2021, 64, 13841−
13852.
(31) Zhang, Y.; Xu, L.; Zhang, Y.; Pan, J.; Wang, P.-q.; Tian, S.; Li,
H.-t.; Gao, B.-w.; Hou, T.-j.; Zhen, X.-c.; Zheng, L.-T. Discovery of
novel MIF inhibitors that attenuate microglial inflammatory activation
by structures-based virtual screening and in vitro bioassays. Acta
Pharmacol. Sin. 2021, No. 00753.
(32) Bollag, G.; Hirth, P.; Tsai, J.; Zhang, J.; Ibrahim, P. N.; Cho, H.;
Spevak, W.; Zhang, C.; Zhang, Y.; Habets, G.; Burton, E. A.; Wong,
B.; Tsang, G.; West, B. L.; Powell, B.; Shellooe, R.; Marimuthu, A.;
Nguyen, H.; Zhang, K. Y. J.; Artis, D. R.; Schlessinger, J.; Su, F.;
Higgins, B.; Iyer, R.; D’Andrea, K.; Koehler, A.; Stumm, M.; Lin, P. S.;
Lee, R. J.; Grippo, J.; Puzanov, I.; Kim, K. B.; Ribas, A.; McArthur, G.
A.; Sosman, J. A.; Chapman, P. B.; Flaherty, K. T.; Xu, X.; Nathanson,
K. L.; Nolop, K. Clinical efficacy of a RAF inhibitor needs broad
target blockade in BRAF-mutant melanoma. Nature 2010, 467, 596−
599.
(33) Yen, I.; Shanahan, F.; Lee, J.; Hong, Y. S.; Shin, S. J.; Moore, A.
R.; Sudhamsu, J.; Chang, M. T.; Bae, I.; Dela Cruz, D.; Hunsaker, T.;
Klijn, C.; Liau, N. P. D.; Lin, E.; Martin, S. E.; Modrusan, Z.; Piskol,
R.; Segal, E.; Venkatanarayan, A.; Ye, X.; Yin, J.; Zhang, L.; Kim, J.-S.;
Lim, H.-S.; Kim, K.-P.; Kim, Y. J.; Han, H. S.; Lee, S. J.; Kim, S. T.;
Jung, M.; Hong, Y.-h.; Noh, Y. S.; Choi, M.; Han, O.; Nowicka, M.;
Srinivasan, S.; Yan, Y.; Kim, T. W.; Malek, S. ARAF mutations confer
resistance to the RAF inhibitor belvarafenib in melanoma. Nature
2021, 594, 418−423.
(34) Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W.
L. Evaluation and Reparametrization of the OPLS-AA Force Field for
Proteins via Comparison with Accurate Quantum Chemical
Calculations on Peptides. J. Phys. Chem. B 2001, 105, 6474−6487.
(35) LLC, S. Glide; LLC: New York, 2015.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c05145
ACS Omega 2021, 6, 33864−33873

33873

https://doi.org/10.1016/j.cej.2021.129845
https://doi.org/10.1016/j.cej.2021.129845
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1021/acscentsci.7b00572?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscentsci.7b00572?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscentsci.7b00572?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscentsci.7b00512?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscentsci.7b00512?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscentsci.7b00512?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1126/sciadv.aap7885
https://doi.org/10.1126/sciadv.aap7885
https://doi.org/10.1186/s13321-017-0235-x
https://doi.org/10.1186/s13321-017-0235-x
https://doi.org/10.1038/s41587-019-0224-x
https://doi.org/10.1038/s41587-019-0224-x
https://doi.org/10.1186/s13321-019-0397-9
https://doi.org/10.1186/s13321-019-0397-9
https://doi.org/10.1111/j.1747-0285.2008.00672.x
https://doi.org/10.1111/j.1747-0285.2008.00672.x
https://doi.org/10.1039/C9SC01928F
https://doi.org/10.1039/C9SC01928F
https://doi.org/10.1021/acs.jmedchem.9b02147?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.0c01060?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.0c01060?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1038/s41598-020-79682-4
https://doi.org/10.1038/s41598-020-79682-4
https://doi.org/10.26434/chemrxiv.13011767.v1
https://doi.org/10.26434/chemrxiv.13011767.v1
https://doi.org/10.1021/jm9602928?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm9602928?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1186/s13321-017-0212-4
https://doi.org/10.1186/s13321-017-0212-4
https://doi.org/10.1093/nar/gkw1074
https://doi.org/10.1093/nar/gkw1074
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/1801.10198v1
https://arxiv.org/abs/1801.10198v1
https://doi.org/10.1016/j.drudis.2018.06.016
https://doi.org/10.1016/j.drudis.2018.06.016
https://doi.org/10.1016/j.drudis.2018.06.016
https://doi.org/10.1016/S0893-6080(99)00094-5
https://doi.org/10.1021/acs.jmedchem.1c01227?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jmedchem.1c01227?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jmedchem.1c01227?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41401-021-00753-x
https://doi.org/10.1038/s41401-021-00753-x
https://doi.org/10.1038/s41401-021-00753-x
https://doi.org/10.1038/nature09454
https://doi.org/10.1038/nature09454
https://doi.org/10.1038/s41586-021-03515-1
https://doi.org/10.1038/s41586-021-03515-1
https://doi.org/10.1021/jp003919d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp003919d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp003919d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c05145?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

