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To seek evidence of a primitive adaptive immune system (AIS) before vertebrate, we examined whether lymphocytes or
lymphocyte-like cells and the related molecules participating in the lymphocyte function existed in amphioxus. Anatomical
analysis by electron microscopy revealed the presence of lymphocyte-like cells in gills, and these cells underwent
morphological changes in response to microbial pathogens that are reminiscent of those of mammalian lymphocytes
executing immune response to microbial challenge. In addition, a systematic comparative analysis of our cDNA database of
amphioxus identified a large number of genes whose vertebrate counterparts are involved in lymphocyte function. Among
these genes, several genes were found to be expressed in the vicinity of the lymphocyte-like cells by in situ hybridization and
up-regulated after exposure to microbial pathogens. Our findings in the amphioxus indicate the twilight for the emergency of
AIS before the invertebrate-vertebrate transition during evolution.
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INTRODUCTION
The emergence of adaptive immunity represents a major step in

the host-pathogen arm race that has led to the current highly

elaborate immune response system in vertebrates. The identifica-

tion of lymphocyte-like cells and molecules participating in the

immune response and recognition processes in lamprey [1], the

oldest living jawed vertebrate, suggests the emergency of adaptive

immune system (AIS) before or shortly after the dawn of vertebrate

evolution approximately 500 mya ago. However, it remains

unclear exactly when AIS first appeared during evolution.

Recently, a few homologs of vertebrate genes involved in AIS

have been identified in Amphioxus [2–4], a cephalochordate that

was considered as a living invertebrate most closely related to

vertebrate [5] and has recently been thought as the ancestor of all

deuterostomes [6,7], suggesting that the evolution of these basic

components of AIS, or perhaps AIS may predate the invertebrate-

vertebrate transition. Here, we report morphological and

functional evidence for the presence of lymphocyte-like cells in

Chinese amphioxus. In addition, we provided a comprehensive list

of amphioxus genes whose mammalian homologs are involved in

certain aspects of lymphocyte-based immune response based on

a systematic analysis on our cDNA database [8]. The findings of

lymphocyte-like cells and their related genes in amphioxus

represent initial appearance of AIS before the invertebrate-

vertebrate transition during evolution.

RESULTS

Identification of lymphocyte-like cells in amphioxus
It has been previously shown that lymphocyte-like cells are present

in the intestine-associated typhlosole of lamprey [9]. To examine

whether amphioxus has lymphocyte-like cells, we dissected the gills

of amphioxus under light microscopy and observed that a cluster

of cells contained large, darkly stained nuclei and a thin rim of

cytoplasm, which were highly reminiscent of mammalian lympho-

cytes (Figure 1). We further used the electron microscope to see the

structure of the gills and observed the well-organized mucosa-

associated structures surrounded by follicle epithelium in the gill.

The follicle epithelium cells possessed cilia and rootlet structure

(Figure 2A), which was described by Ratcliffe and his colleagues

[10]. The cluster of the cells observed was surrounded by the

follicle epithelium with dense and small round cells with certain

characteristics of lymphocytes. For example, each of these cells

contained a large nucleus (N) with heterochromatin forming

a peripheral rim adjacent to the nuclear envelope surrounded by

a thin layer of cytoplasm (Figure 2B). When adult amphioxus was

challenged by pathogenic bacteria, the size of the lymphocyte-like

cells increased remarkably compared to those in the unchallenged

control (Figure 2C, 2D), indicating the morphological changes of

the lymphocyte-like cells in response to the challenge of pathogen.
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The identification of lymphoid-related homologs in

amphioxus by comparative genome analysis
The presence of lymphocyte-like cells in amphioxus prompted us

to examine to what extend this primitive organism has acquired

the various components associated with lymphocytes. To address

this issue, a systematic comparative analysis of amphioxus cDNA

database was carried out to identify the homologs or orthoglogs

which in the more advanced organisms are involved in

lymphocyte-based immunity. This study resulted in the identifi-

cation of an extensive number of candidates (Table 1). Among

those genes, the Ikaros-like gene, early B-cell factor (EBF/COE), B

lymphocyte adaptor molecule of 32 kDa (Bam32) and tandem PH

domain-containing protein (TAPP1) were noticeably identified.

The Ikaros-like gene in amphioxus contains 1725 bp and encodes

276 amino acids. The homologous analyses showed that the initial

3 C2H2 zinc domains with the DNA-binding function had 50%

homology to the typical Ikaros [11] (Figure 3). On the

phylogenetic tree of available ikaros and related sequences, the

amphioxus sequence assumes the position in the ikaros clade

expected on the basis of its taxonomical origin (Figure 4). Southern

blot results indicated that there was only one copy of Ikaros-like

gene in the amphioxus genome (Figure 5A). The EBF identified in

amphioxus contained 5400 bp and encoded 634 amino acids.

Homologous analysis indicated that the DNA-binding domain

(DBD) of amphioxus EBF had a high homology with other EBF

proteins, especially in the zinc-binding domain (Figure 6).

Following the DBD domain, a conserved IPT/TIG domain,

which was located in 283–369 amino acids, could be found and

had 91% homology with the EBF3 in human. Following the IPT/

TIG domain, a conserved helix/loop/helix (HLH) domain could

be found (Figure 7). Bam32 and TAPP1 in amphioxus encoded

318 amino acids and 250 amino acids, respectively. Alignment

result showed that the first N-terminal 30 amino acids in our

sequence were remarkably well conserved to those of vertebrate

TAPPs (Figure 8). Homologous analysis indicated that amphioxus

Bam32 was highly homologous to the Bam32 of other selected

species (Figure 9). Southern blot hybridization indicated that

Bam32 was present in two-copies in the Chinese amphioxus

genome while TAPP1 more than four-copies (Figure 5B, 5C).

The expression of the lymphoid-related genes in

amphioxus
The identification of both lymphocyte-like cells and lymphocyte-

related genes prompted us to further characterize the expressions of

those four genes. We first used Northern blot to examine the main

organs in which these genes expressed, and found expression of

Ikaros-like in ovary and gills, especially in the ovary (Figure 10B),

which was consistent with those three Ikaros-like gene family found

in lamprey [12], but different from those in the higher vertebrate

(mainly in the lymphoid tissues). We also detected Bam32 in ovary,

Figure 1. Light-microscopic views of the lymphocyte-like cells in the
amphioxus. (A) Many lymphocyte-like cells in the gills. Magnification
400. (B) The cells of the amphioxus gills contained large, darkly stained
nuclei and the thin rim of cytoplasm. Magnification 1000, Wright
stained.
doi:10.1371/journal.pone.0000206.g001

Figure 2. Transmission electron-microscopic views of the lymphocyte-like cells in follicle-associated epithelium of amphioxus gill. (A) Follicle-
associated epithelium cells in the gill contained follicle (F) rootlet (R), and cilia (C). Magnification 29000. (B) The lymphocyte-like cells contained large
nuclei (N) with heterochromatin forming a peripheral rim adjacent to the nuclear envelope. Magnification 48000. (C) Under the FAE of normal
amphioxus gill, lots of lymphocyte-like cells (L) were seen. The cells contained large nuclei (N) with heterochromatin forming a peripheral rim
adjacent to the nuclear envelope. Magnification 5800. (D) At the same magnification, after the microbial challenge, the lymphocyte-like cells were
bigger than those of normal cells.
doi:10.1371/journal.pone.0000206.g002
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gill and intestine, with the highest levels in gill and intestine

(Figure 10C). In addition, we also found that the amphioxus TAPP1

transcript was expressed in all tissues tested except notochord, with

the strongest expression in ovary (Figure 10D). We further used

Real-time PCR to study the expression of these genes with or

without challenge by microbial pathogens, demonstrating that 4 days

after challenge the expressions were gradually down-regulated, but

up-regulated again after the fifth day (Figure 11A, 11B).

Then, we examine whether these genes were expressed in the

place as it would be expected if they were indeed involved in

response to the microbial challenge that was mediated by these

cells. Results of in situ analysis showed that indeed all the mRNA of

all these genes could be detected in the first immune defense line

where the lymphocyte-like cells played their roles. Specifically,

Ikaros-like mRNA was detected in gills and ovary (Figure 12B);

EBF mRNA was detected in gills and intestine (Figure 12D);

Bam32 mRNA was detected in gill, ovary and metapleural fold.

(Figure 12F); TAPP1 positive cells were detected with strong

signals in intestine (Figure 12H).

Functional comparison of Amphioxus Bam32 and

TAPP1 with their vertebrate homologs
The common ancestors of vertebrates and amphioxus diverged

around 600 million years ago. To determine whether Bam32 and

TAPP1 from amphioxus perform the same functions as their

counterparts from vertebrates, we used a protein-lipid overlay assay

to study the interaction between these proteins and phospholipids.

Our results demonstrated that the Bam32 and TAPP1 GST fusion

proteins all interacted with PI (3, 4) P2, but not with PI (3, 4, 5) P3

and PtdIns (Figure 13), suggesting that the functions of these two

primitive genes were consistent with those in vertebrate [13].

DISCUSSION
The evolutionary origin of acquired immune mechanism has been

one of focal interests in immunology for a long period. Last years,

homology searching for the vertebrate AIS-specific molecules in

amphioxus had made some important progress [8]. However, as

the vital cells for AIS, lymphocyte in this animal was still not

Figure 3. Amino acid alignment of the first to third zinc finger domains in Ikaros family members. GenBank accession codes of the corresponding
nucleotide sequences are: U40462, Homo sapiens (Hu-I); Y11833, Gallus gallus (Ch-I); U92198, Onchorynchus mykiss (On-I); AF092175, Danio rerio (Da-I);
AF192380, Petromyzon marinus (Pe-I); AF424735, Lampetra fluviatilis (La-I); AY237104, Myxine glutinosa (My-I); AY237106, Oikopleura dioica (Oi-I); Ciin
(Ci-I). Ikaros have the model identity numbers 144428 (18 ); AF130863, human Helios (Hu-H); AF044257, mouse Helios (Mo-H); AF163847, Raja
eglanteria Helios (Ra-H); AF129512, human Aiolos (Hu-A); AF001293, mouse Aiolos (Mo-A); AF163850, Raja eglanteria Aiolos (Ra-A); AF230809, human
Eos (Hu-E); AB017615, mouse Eos (Mo-E); AF163849, Raja eglanteria Eos (Ra-E); AIL: Ikaros-like gene from amphioxus.
doi:10.1371/journal.pone.0000206.g003

Table 1. Comparative analyses of some lymphoid-related genes in our database in different organisms
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Similarity to Nematode Fruit Fly Ascidian Amphioxus Zebrafish/Fugu Mouse Human

Ikaros-like + + + + + + +

BCAP 2 + 2 + + + +

Bam32 2 2 2 + + + +

TAPP1 2 2 2 + + + +

ETS + + + + + + +

EBF + + + + + + +

CXC-R3 2 2 2 + + + +

CD9/CD81 + + + + + + +

CAST 2 2 + + + + +

CD75 2 + + + + + +

CD45 2 + 2 + + + +

doi:10.1371/journal.pone.0000206.t001..
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Figure 4. Neighbor-joining tree of ikaros proteins. The tree is based on the amino acid alignment in Figure. 3. Numbers on the branches indicate
bootstrap values. The tree is rooted at midpoint.
doi:10.1371/journal.pone.0000206.g004

Figure 5. Southern blot analysis. Genomic DNA from Branchiostoma belcheri tsingtauense was digested with restriction enzymes as indicated. The blot
was hybridized with a probe at high stringency with the full-length of Ikaros-like, Bam32 and TAPP1 from amphioxus.
doi:10.1371/journal.pone.0000206.g005
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identified although it has been identified in all species of jawed

vertebrates [14] and jawless vertebrate recently [9].

The immune system is functionally compartmentalized into

primary lymphoid organs and secondary lymphoid tissues in

vertebrates. The primary lymphoid tissues are the place where

lymphocyte precursors develop into immunocompetent naive

lymphocytes. Secondary lymphoid tissues are the spleen, lymph

nodes, and organized lymphoid tissues associated with mucosal

surfaces, including the tonsils, bronchial-associated lymphoid

tissues, gut-associated lymphoid tissues, Peyer’s patches, and other

less-prominent organized clusters of lymphoid cells associated with

the gastrointestinal, genitourinary, and respiratory tracts. These

lymphoid tissues are located at strategic sites where foreign

antigens entering the body from either the skin or a mucosal

surface can be trapped and concentrated [15]. Thus far, no

distinct lymphoid tissues have been found in agnathan and

protochordate by histological studies but some lymphocyte-like

cells were isolated from the intestine and the associated typhlosole

of lamprey [9]. In our observation of amphioxus under the

electron microscopy, though the primary lymphoid organs were

not found, the organized mucosa-associated lymphoid tissues

(MALTs) were found in the amphioxus gills with the hallmark of

Figure 6. Alignments of DNA binding domain. The zinc finger motif was colored with green. The consensus sequence was under the alignments.
Accession number for the COE family members are as following: NP_034225, MusEBF2; NP_073150, HuEBF2; AAH41178, HuEBF; NP_031923,
MusEBF1; Q07802, MoOE-1; NP_446272, RaEBF1; NP_990083, ChEBF; NP_034226, MusEBF3; NP_694538, MusEBF4; O08791, MoEBF3.
doi:10.1371/journal.pone.0000206.g006

Figure 7. Alignment of Mus EBF1 and amphioxus EBF protein sequence. The conserved DNA binding domain and IPT/TIG domain were colored with
red and orange separately. The atypical zinc finger motif obligatory for DNA binding was marked with black arrows. The horizontal dashed arrow
indicated the helix 1 and helix 2 of HLH motif. The additional duplicated helix 2 in vertebrate COE proteins was also indicated. The accession number
of Mus EBF-1 is NM_007897.
doi:10.1371/journal.pone.0000206.g007
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MALTs as the presence of lymphoid follicles. Many lymphocyte-

like cells were seen at the MALTs, and all cells fit the description

of lymphocytes by a number of criteria. First, the amphioxus

lymphocyte-like cells are morphologically similar to mammalian

lymphocytes under light or electron-microscopy. They also possess

physical characteristics of lymphocytes, such as large nuclei with

heterochromatin forming a peripheral rim adjacent to the nuclear

envelope. The nucleus is surrounded by a thin layer of cytoplasm.

Second, the amphioxus lymphocyte-like cells are abundant in

tissues such as gut (data not shown) and gills, the first defense line

against the foreign pathogens in amphioxus. Third, when

challenged with microbial, the sizes of those cells were enlarged.

Fourth, the gene products of mammalian homologs for these

four identified genes are involved in lymphocyte development

[11], B-cell lymphopoiesis [16,17] and as the adaptor proteins in

lymphocyte activation [13,18] respectively. Moreover, these genes

were up-regulated after the microbial challenge (TAPP1 was

slightly down-regulated) and were expressed mostly in gill, ovary,

hepatic cecum and intestine, which is co-localized with the tissue

location of lymphocyte at the right time and at the right place in

amphioxus. The interaction of amphioxus Bam32 and TAPP1

with PI (3,4,5) P3 and PI (3,4) P2 with preference with PI (3,4) P2

as a binding partner in vitro was found as observed previously in

vertebrate lymphocytes [13], further substantiating the finding of

functional lymphocytes in amphioxus along with the expression

profiles of the lymphocytes-restricted molecules.

In summary, though our results do not provide the directive

evidence for the emergency of AIS in the amphioxus, the

identification of lymphocyte-like cells and lymphocyte-related

genes in this animal indicates the twilight for the emergency of

fully functional AIS.

MATERIALS AND METHODS

Animals and cells
Mature adults of Chinese amphioxus, B. belcheri tsingtaunese, were

obtained from Kioachow Bay near Qingdao, China, and

cultured in our laboratory (at 25uC) filled with air-pumped

circulating infiltrated seawater. The gills of the amphioxus were

dissected under the light microscopy. Cells harvested by

Figure 8. Amino acid sequence alignment TAPP1 and TAPP2. Hu = human, Mo = mouse, Ch = chicken, Am = amphioxus, Fr = frog, Ze = zebrafish,
Ra = rat, Pu = Pufferfish. NCBI accession numbers: Q9HB21, human TAPP1; AF286164, human TAPP2; Q8BUL6, mouse TAPP1; Q9ERS5, mouse TAPP2;
XP_421799, chicken TAPP1; NP_990029, chicken TAPP2; AAH76776, frog TAPP1; AAH44452, zebrafish TAPP1; XP_341943, rat TAPP1; CAG10059,
Pufferfish TAPP1.
doi:10.1371/journal.pone.0000206.g008

Figure 9. Amino acid sequences alignment of Bam32 from various speices. Mo = Mouse, Hu = Human, Ch = chicken, Chi = chimpanzee, Co = cow,
Do = dog, Ra = Norway rat, Rjf = red jungle fowl, Am = amphioxus. NCBI accession numbers: Q9QXT1, MoBam32; NP_055210, HuBam32.1; Q9UN19,
HuBam32.2; CAG32077, ChBam32; XP_517361, ChiBam32; XP_612467, CoBam32; XP_535669, DoBam32; XP_342349, RaBam32; XP_423213, RjfBam32.
doi:10.1371/journal.pone.0000206.g009

Figure 10. Nouthern blot analysis. Total RNA from muscle, notochord,
intestine, gill and ovary of amphioxus were 20ug in each lane. (A)
amphioxus b-actin. (B) amphioxus Ikaros-like. (C) amphioxus Bam32.
(D): amphioxus TAPP1.
doi:10.1371/journal.pone.0000206.g010
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maceration of these tissues between two glass slides were

suspended in PBS. The cells were filtered and then centrifuged

at 1000 g for 10 min, then stained with Wright’s staining,

washed, and photographed.

Structural analysis of amphioxus gill using electron

microscopy
Total 5 ml (108 cells/ ml) live V.p PBS suspensions were micro-

injected into the gut of amphioxus. Animals injected with PBS only

were used as the controls. Amphioxus gills were dissected under

the microscopy after challenged 5 d and was fixed by 3%

glutaraldehyde, washed with PBS then cut into small pieces,

dehydrated in graded series of ethanol and finally dehydrated in

acetone and fixed in osmium tetroxide and embedded in spur.

Ultrathin sectioning was used for uranyl acetate and lead citrate

staining for microscopic analysis.

Full length ESTs obtained using 39 walking

sequencing
The partial cDNA sequences of Ikaros-like, EBF, Bam32 and

TAPP were obtained from different tissues cDNA libraries which

had been constructed in our lab [8,19]. The full lengths of those

genes were obtained using 39 walking sequencing.

Northern blot hybridization
Total RNA from various tissues of amphioxus was extracted and

denatured by glyoxal at 50uC for 1 h, and separated electropho-

retically on a 1% agarose gel. The gel was blotted onto a Hybond-

N+ nylon membrane (Amersham Biosciences) using 206SSC. The

membranes crosslinked with ultraviolet light and baked at 90uC
for 2.5 h. Hybridization was at high stringency in Modified

Church and Gilbert buffer overnight at 65uC. The membrane

were washed in 16SSC, 0.1% SDS at RT before exposed to X-ray

film (Eastman Kodak) for 30 h at 280uC.

Southern blot hybridization
Genomic DNA (16 mg/enzyme-reaction) was digested with EcoR

V, Spe I and Nco I, respectively. Digested genomic DNA was

fractionated by 0.8% agarose gel electrophoresis and transferred to

Hybond N+ nylon membranes (Amersham Biosciences) overnight

by alkali blotting. After hybridization at 42uC overnight, the

membrane was washed twice in 26 SSC-0.1% SDS at room

temperature and two times in 0.56SSC-0.1% SDS at 68uC. Blots

were autoradiographied for empirically optimized exposure times.

Expression analysis by quantitative PCR
In order to further study the functions of those identified genes in

the cDNA library, we re-infected the amphioxus with the V.p.

Total RNA was prepared using TRIZOL reagent (Invitrogen)

from the independently infected amphioxus at 1 d, 2 d, 4 d, 5 d

and 6 d after the injection. After digested with DNase I (RNase

free, Takara) to eliminate the genome contamination, the cDNA

was synthesized with the SuperscriptIII reverse transcriptase

(Invitrogen) using the oligo d(T) primer. Real-time PCR was

performed with the ABI PRISIM 7900 sequence detection system.

SYBR green Real-time PCR mix (Toyobo) was used for PCR

reaction, with a primer concentration of 200 nM. Reaction

conditions consisted of 95uC for 1.5 min, followed by 40 cycles

of 95uC for 15 s, 55uC for 15 s, 72uC for 1 min. Reaction of each

sample was performed in triplicate. Amphioxus b-actin was used

as control to normalize the starting quantity of RNA. Standard

curves were constructed for target genes and b-actin with two-fold

serial dilutions of cDNA. The threshold cycles and fold inductions

were calculated by the ABI PRISIM 7900HD SDS software. After

Real-time PCR, the products were analyzed on 1.5% agarose gel.

In situ hybridization
Adults of the Chinese amphioxus, B. belcheri tsingtauense, were

collected and kept in filtered seawater for 2 days. The animals

were killed and cut at 1-cm intervals. The tissue blocks obtained

were fixed in 4% paraformaldehyde in PBS and embedded in

paraffin. Tissue blocks were cut transversally and mounted on

glass slides coated with poly-lysine. The digoxigenin-labeled

probes were prepared by using the plasmids that contain the

sequences of the interesting gene with the SP6 promoter sequence

at the 39 end of the sequences as template and the antisense probes

were synthesized with the SP6 RNA polymerase according to the

protocol of the digoxigenin DIG RNA labeling kit (Roche). In situ

hybridization was performed according to Li et al. [20] with a litter

modification. The sense probes were used as the control.

GST fusion proteins and protein-lipid overlay
cDNAs encoding Bam32 and TAPP1 were cloned into pGEX-4T-

2 (Amersham) to obtain the production of Bam32 and TAPP1

GST-fusion proteins for the phospholipid-binding analysis using

Figure 11. Analysis of gene temporal expression pattern by Real-time PCR analysis. Amphioxus mRNA extracted at 1 d, 2 d, 4 d, 5 d and 6 d after the
V.p injections were used for Real-time PCR analysis. b-actin gene of amphioxus was used as endogenous control.
doi:10.1371/journal.pone.0000206.g011
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a protein-lipid overlay. Briefly, small scale cultures were induced in

exponentially growing bacteria (A600 = 0.6–0.8) with 0.1 mM

isopropyl -D-thiogalactoside for 20 h at 18uC. Fusion proteins

were then purified from the lysates using glutathione-Sepharose

spin columns (Amersham). Lipid solution (2 ml) containing 10pmol

of phospholipids, PtdIns (3, 4)P2, PtdIns (3,4,5)P3 or PtdIns

(Sigma), dissolved in a mixture of chloroform/methanol/wa-

ter(1:2:0.8) was spotted onto Hybond-C extra membrane and

allowed to dry at room temperature for 2 h. The membrane was

blocked in 3% (w/v) fatty acid-free BSA in PBST [137 mM NaCl,

2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4, 0.1%(v/v)

Tween-20] for 2h and then incubated overnight at 4uC in the

same solution containing 50 mg/ml Bam32-GST or TAPP1-GST

fusion protein and washed five times over 40 min in PBST, and

then incubated for 1h with a 1/2500 dilution of anti-GST

monoclonal antibody (Novagen). After washed, the membrane was

incubated for 1 h with a 1/200 dilution of anti-mouse-horseradish

peroxidase conjugate. Finally, the GST-fusion protein bound to

the membrane, by virtue of its interaction with phospholipid, was

detected.

Bioinformatics analysis
Full length cDNA sequences of genes were searched using the

BLASTX algorithm against NR Database from the National

Center for Biotechnology Information (NCBI). The homologous

sequences were selected from the BLASTX search results as the

Figure 13. Phosphoinositide binding properties of the amphioxus
Bam32 and TAPP1. The ability of the following GST fusion proteins of
amphioxus Bam32 and TAPP1 was analysed using a protein-lipid
overlay. The indicated phosphoinositides (20 pmol) were spotted on to
nitrocellulose membranes, which were then incubated with the purified
GST-fusion proteins. The membrane was washed, and the GST-fusion
proteins bound to the membrane by virtue of their interaction with
lipid were detected using a GST antibody. A representative experiment
of three is shown. The phosphoinositides are identified by the positions
of encircled numbers at the top of the figure. 1, PtdIns (3, 4) P2; 2,
PtdIns (3, 4, 5) P3; 3, PtdIns.
doi:10.1371/journal.pone.0000206.g013

Figure 12. Analysis of gene spartial expression pattern by in situ analysis. Amphioxus was fixed with 4% paraformaldehyde. Horizontal sections of
these samples were hybridized with the sense probes of Ikaros-like (A), EBF (C), Bam32 (E), and TAPP1 (G) as the control. (B) The Ikaros-like genes
expressed in the ovary and gills. (D) The EBF gene expressed at the gills, ovary and intestine. (F) Expression of Bam32 was in ovary, metapleural fold
and intestine. (H) Expression of TAPP1 was observed in intestine. In all sections, tissues and organs are indicated as flowed: 1, muscle; 2, hepatic
cecum; 3, intestines; 4, gill; 5, sexual-gland; 6, notochord. 7, metapleural fold. Positive signals are shown by arrow.
doi:10.1371/journal.pone.0000206.g012
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input for phylogenetic analysis. The input data for phylogenetic

methods were based on the most consistent alignment obtained

with the CLUSTALW program and reduced by GBLOCKS. The

phylogenetic analysis was conducted using the Mega3.0 software.
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