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Abstract: Connexin43 (Cx43), the main gap junction and hemichannel forming protein in the urinary
bladder, participates in the regulation of bladder motor and sensory functions and has been reported
as an important modulator of day–night variations in functional bladder capacity. However, because
Cx43 is expressed throughout the bladder, the actual role played by the detrusor and the urothelial
Cx43 is still unknown. For this purpose, we generated urothelium-specific Cx43 knockout (uCx43KO)
mice using Cre-LoxP system. We evaluated the day–night micturition pattern and the urothelial
Cx43 hemichannel function of the uCx43KO mice by measuring luminal ATP release after bladder
distention. In wild-type (WT) mice, distention-induced ATP release was elevated, and functional
bladder capacity was decreased in the animals’ active phase (nighttime) when Cx43 expression was
also high compared to levels measured in the sleep phase (daytime). These day–night differences in
urothelial ATP release and functional bladder capacity were attenuated in uCx43KO mice that, in
the active phase, displayed lower ATP release and higher functional bladder capacity than WT mice.
These findings indicate that urothelial Cx43 mediated ATP signaling and coordination of urothelial
activity are essential for proper perception and regulation of responses to bladder distension in the
animals’ awake, active phase.

Keywords: urothelium; connexin43; gap junction; hemichannel; ATP

1. Introduction

Gap junction channels and hemichannels play an essential role in the maintenance
of cell homeostasis and the coordination of cellular activity in various organ systems [1].
Gap junctions, which are intercellular channels formed by the pairing and the docking of
hemichannels from adjacent cells, provide a direct cytosol-to-cytosol pathway for exchange
of ions and small molecules that couple the cells both electrically and metabolically. Un-
paired hemichannels can also function as cell surface channels. This has been shown to
occur with hemichannels formed by some of the connexins, including connexin43 (Cx43),
which, in a such role, can participate in mechanisms of autocrine and paracrine signaling.
In the urinary bladder, a growing body of evidence indicates that not only the Cx43 formed
gap junctions [1–7] but also the Cx43 hemichannels have a significant role in micturition
physiology [8]. Earlier studies of Cx43 in the bladder focused primarily on its role in
detrusor function. Findings of increased Cx43 expression in the bladder were associated
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with bladder overactivity through increased gap junction formation and intercellular cou-
pling [9]. However, the knowledge that Cx43 is expressed in all layers of the bladder [4,10],
especially in the urothelium [8,11,12]—that is now also viewed for its role in regulating
bladder function—and findings that Cx43 hemichannels can form functional channels in
various cell types led to more recent studies aimed at further elucidating the role of Cx43
in bladder function.

The urothelium exerts both protective and sensory functions in the bladder. Protection
of the bladder against the noxious urine contents is granted by the tight barrier formed by
the highly specialized umbrella cells on the apical surface of the urothelium. The sensory
function is granted by the expression of numerous receptors and channels and the ability
of urothelial cell to respond to different stimuli with release of signaling molecules [13,14].
Of these, ATP is regarded as being the main transmitter released from the urothelium in
response to bladder distension and urothelial ATP signaling as playing a key role in the
activation of the bladder afferents that ultimately convey information to the CNS regarding
the degree of bladder fullness. A few receptors and channels have been implicated in
mechanisms of mechanosensitive urothelial ATP release. We recently demonstrated that
these also include Cx43 hemichannels, which brings another participant in mechanisms of
urothelial mechanosensory transduction that has to be considered for its potential role in
modulating bladder function [8].

Bladder function follows a diurnal rhythm with a marked increase in capacity in the
sleep phase and a decreased capacity in the active phase [15]. It has been revealed that this
diurnal change of the bladder function is generated, at least in part, by a circadian change of
Cx43 expression in both the detrusor smooth muscle cells and the urothelial cells [8,15,16].
However, little is known of the extent to which urothelial Cx43 actually contributes to
bladder function, since prior in vivo studies that assessed changes in micturition behavior
were conducted with global heterozygous Cx43 knockout mice, which could not distinguish
the role of Cx43 in bladder smooth muscle, interstitial cells, and urothelium and could not
omit the potential influence of altered Cx43 function in other tissues and organs [16,17].

In this study, to overcome these constraints and specifically evaluate the role of urothe-
lial Cx43 on bladder function, we used the Cre recombinase-LoxP (Cre-LoxP) system and
the Uroplakin II (Upk2) Cre mice to generate urothelium-specific Cx43 knockout (uCx43KO)
mice. Here, we demonstrate that urothelium-specific Cx43 downregulation blunts the
day–night differences in the urothelial ATP release response to bladder distension and dis-
rupts the diurnal regulation of bladder capacity in the awake, active phase of the uCx43KO
mice. The relevance of these findings is discussed in the overall context of mechanisms
and molecular mediators of bladder function, and we highlight the significance and the
potential role of urothelial Cx43 in bladder physiology.

2. Results
2.1. Urothelium-Specific Deletion of Connexin43

Floxed Cx43 (Cx43fx/fx) mice were crossed with Upk2Cre+ mice, and Upk2Cre+; Cx43fx/fx

(denoted as “urothelium-specific Cx43” knockout; uCx43KO) were generated as well as
Cx43fx/fx and Upk2Cre+ mice. To confirm the deletion of Cx43 protein in the urothelium, we
performed immunohistochemistry in the bladder of uCx43KO and control mice (Cx43fx/fx,
Upk2Cre+ and WT mice). In contrast to what was observed in the urothelium of control
mice, the intensity of Cx43 staining in the urothelium of uCx43KO mice was clearly reduced,
especially in the basal and the intermediate layers (Figure 1A). To further evaluate the
specificity of urothelial Cx43 deletion in uCx43KO mice, immunoblotting analysis was
performed to compare Cx43 protein expression in all the bladder layers and in the liver. The
level of Cx43 expression was decreased in the urothelium of the uCx43KO mice, whereas
in the suburothelium/detrusor muscle and in the liver, it was similar to those detected in
control mice (Figure 1B). These findings confirm that the uCx43KO mice can be used as a
urothelium-specific Cx43 knockout model.
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lium, and smooth muscle, and liver of from wildtype (WT), Upk2Cre+ (Cre), Floxed Cx43 (Cx43 fx/fx), 

and uCx43KO (Cx43fx/fx−Cre) mice. “Ratio to WT” values presented above each lane correspond to 

Cx43/GAPDH normalized by WT Cx43/GAPDH values determined from the densitometric analy-

sis of protein bands using the ImageJ software. 

2.2. Evaluation of Mechanosensitive Urothelial ATP Release in uCx43KO Mice 

Previously, we reported that Cx43 hemichannels participated in mechanisms of 

urothelial ATP release in response to bladder distension [8]. We also demonstrated that 
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diurnal expression of urothelial Cx43, and that these variations were diminished in the 

global Bmal1-knockout mice [8]. However, it is still unclear whether and to what extent 

Figure 1. The Upk2Cre+; Connexin43 Cx43fx/fx mice (uCx43KO) are urothelium-specific connexin43 (Cx43) knockouts.
(A) Immunohistochemistry of the bladder mucosa from wildtype (WT), Upk2Cre+ (Cre), Floxed Cx43 (Cx43fx/fx), and
uCx43KO (Cx43fx/fx−Cre) mice. All scale bars indicate 100 µm. (B) Representative Western blots for Cx43 expression
in bladder urothelium, suburothelium, and smooth muscle, and liver of from wildtype (WT), Upk2Cre+ (Cre), Floxed
Cx43 (Cx43 fx/fx), and uCx43KO (Cx43fx/fx−Cre) mice. “Ratio to WT” values presented above each lane correspond to
Cx43/GAPDH normalized by WT Cx43/GAPDH values determined from the densitometric analysis of protein bands using
the ImageJ software.

2.2. Evaluation of Mechanosensitive Urothelial ATP Release in uCx43KO Mice

Previously, we reported that Cx43 hemichannels participated in mechanisms of urothe-
lial ATP release in response to bladder distension [8]. We also demonstrated that luminal
ATP released levels underwent daily variations in mice that correlated with the diurnal
expression of urothelial Cx43, and that these variations were diminished in the global
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Bmal1-knockout mice [8]. However, it is still unclear whether and to what extent the urothe-
lial Cx43 expression influences the diurnal changes of the urothelial ATP release response
to bladder distension. Hence, we compared this response in WT and uCx43KO mice at two
points, meaning at the animals’ active phase (night/dark phase, as mice are nocturnal) and
sleep phase (light phase). The temporal changes in the distension-induced ATP release
response, characterized by an increase in ATP released amounts in the active phase and a
decrease in the sleep phase, were observed in both WT mice and uCx43KO mice (Figure 2).
However, the absence of urothelial Cx43 expression significantly attenuated this day–night
difference in distension-induced ATP release in the uCx43KO mice when compared to WT
mice (Figure 2). Particularly during the active phase, the luminal ATP concentration in
uCx43KO mice was reduced significantly when compared to that in WT mice.
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Figure 2. Comparison of the temporal changes in distension-induced luminal ATP release in WT and
uCx43KO mice. Luminal ATP released amounts in response to bladder distension quantified from WT
(n = 10) and uCx43KO (n = 8) mice during sleep phase (light phase; ZT8) and active phase (dark phase;
ZT20). Note higher ATP release amounts from WT mice during the awake phase when compared to
the sleep phase. This temporal difference remains in uCx43KO but is significantly attenuated when
compared to WT mice. ZT, zeitgeber time: light on at ZT0 and off at ZT12. ** p < 0.01 Student’s t-test.
# p < 0.01 versus the WT ZT20 group, one-way ANOVA followed Dunnett’s post hoc test.

Previous studies by us and others [8,18] have shown that, in addition to Cx43, other
molecular mediators of urothelial function, including transient receptor potential vanil-
loid 4 (TRPV4) and connexin26 (Cx26), have their expression following a similar diurnal
oscillation and have also been implicated in mechanisms of urothelial ATP release. In this
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regard, to rule out the possibility of off-target effects of urothelial Cx43 deletion on TRPV4
and Cx26, we compared their expression in the urothelium of WT and uCx43KO mice.
As shown in Figure 3, there were no significant differences in urothelial TRPV4 and Cx26
protein expression levels between WT and uCx43KO mice. These findings strongly indicate
that Cx43 itself has a substantial role in mechanisms of mechanosensitive urothelial ATP
release and suggest that its contribution to regulate the ATP release response to bladder
distension is more apparent in the awake, active phase compared to the sleep phase of
the mice.
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Figure 3. Urothelial protein expression of Cx43 and of other molecular mediators of urothelial ATP
release. Representative immunoblots comparing Cx43 protein expression in the urothelium of WT
and uCx43KO mice during sleep phase (light phase; ZT8) and active phase (dark phase; ZT20). Cx43
expression is barely detected in uCx43KO mice, while in WT mice, it displays a temporal expression
pattern: low in the sleep and high in the awake phase. Other mediators of urothelial ATP release, such
as connexin26 (Cx26) and transient receptor potential vanilloid 4 (TRPV4), are similarly expressed in
the urothelium of WT and uCx43KO mice at both sleep and active phases. ZT, zeitgeber time: light
on at ZT0 and off at ZT 12.

2.3. Characterization of the Voiding Behavior of uCx43KO Mice

To assess the effect of the urothelium-specific deletion of Cx43 on bladder function un-
der physiological conditions, we compared the spontaneous voiding behavior of uCx43KO
and WT mice using the automated voided stain on paper (aVSOP) method as previously
described [16]. As shown in Figure 4A, a stark difference between uCx43KO and WT
mice was observed during the animals’ active phase (dark phase) when the urine voided
volume per micturition was significantly higher in uCx43KO mice than that in WT mice.
The total urine volume as well as the voiding frequency of uCx43KO and WT mice were
not significantly different. The observed difference in the voided volume per micturition
between uCx43KO and WT mice inversely correlates with both the lower urothelial Cx43
expression in WT mice and the lower ATP concentration observed in both animals in the
active phase. These findings indicate that urothelial Cx43 is required for proper regulation
of the functional bladder capacity and generation of its diurnal rhythm, particularly in the
awake, active phase.
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Figure 4. Comparison of micturition behavior of uCx43KO and WT mice assessed by the automated voided stain on paper
(aVSOP) method. Temporal changes in average urine voided volume per micturition (A), voiding frequency (B), and total
voided urine volume (C) of uCx43KO (n = 4) and WT (n = 4) mice determined from every 6 h along sleep (light) and awake
(dark) phases. Note that WT and uCx43KO mice do not significantly differ regarding voiding frequency (B) and total voided
volume (C) at both the sleep and the awake phases of the day. The voided volume per micturition (A) of WT and uCx43KO
are also similar during the sleep phase, but during the awake phase, the voided volume per micturition is significantly
higher in uCx43KO mice. ** p < 0.01 and * p < 0.05 by Student’s t-test. All error bars indicate s.e.m. ZT, zeitgeber time: light
on at ZT0 and off at ZT 12.

3. Discussion

A convincing body of evidence has been accumulated that supports important roles
for Cx43 in the bladder, including in mechanisms that regulate the functional bladder ca-
pacity [1–7,9,11,12,15–17,19]. Cx43 functionally connects the cells in the urothelial, the sub-
urothelial, and the detrusor layers by forming gap junctions [6,9,16]. By forming hemichan-
nels, Cx43 also participates in mechanisms of mechanosensitive urothelial ATP release,
regulation of purinergic signaling, and bladder mechanotransduction [8]. However, be-
cause Cx43 is expressed throughout the bladder, it is unclear the extent to which urothelial
Cx43 itself influences bladder function. In this study, we generated uCx43KO mice to clarify
and distinguish the role of Cx43 expressed in the urothelium. The uCx43KO mice display
urothelium-specific Cx43 protein suppression and no obvious anatomical abnormalities.
Consistent with the proposed role of Cx43 hemichannels in urothelial ATP release and lack
of protein expression, the amount of ATP released into the bladder lumen of uCx43KO
mice after bladder distention tended to be lower when compared to control mice and was
significantly decreased during the awake, active phase of the mice. The bladder function
analysis showed a significant increase in the voided volume per micturition only in the
active phase of the uCx43KO mice when compared to control mice, while no differences
were observed in total urine voided volume or voiding frequency. These results suggested
that suppression of the Cx43 gap junction-mediated coupling in the urothelium and Cx43
hemichannel contribution to urothelial ATP release blunts the coordination of urothelial
responses to bladder distension, which attenuates the stimulation of urothelial cells and
bladder sensory nerves, particularly during the awake, active phase of the animals, when
the levels of Cx43 protein and of its contribution are the most important (Figure 5).
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Figure 5. A schematic model of the events occurring in the wild-type mouse and in the urothelial specific Cx43 KO mouse,
focusing on urothelial Cx43, ATP, and functional bladder capacity (Figure modified from supplement of [8]). In uCx43KO
mice, downregulation of Cx43 expression in the urothelium results in reduced urothelial ATP release, especially in the
animals’ active phase (night-time). The day–night differences in the urothelial ATP release and the functional bladder
capacity are attenuated in uCx43KO mice that, in the active phase, displayed lower ATP release and higher functional
bladder capacity than WT mice. Urothelial ATP signaling via Cx43 gap junction and hemichannel lead to stimulate P2
purinergic receptors (P2R) on the afferent nerve ending to modulate functional bladder capacity through other mechanisms.
GJ, gap junction.

The sensory role of the urothelium and the importance of both urothelial ATP signaling
and mechanisms of mechanosensitive urothelial ATP release for proper micturition function
are well recognized. Earlier studies with P2X3 purinergic receptor KO mice demonstrated
that absence of these receptors attenuated the activation of the bladder afferent nerve
fibers in response to bladder distension and to instillation of P2X3 receptor agonists, and
that animals displayed increased bladder capacity and impaired micturition reflex [20,21].
Several other studies with transgenic models have since emphasized the importance of
ATP signaling for proper urothelial mechanosensory transduction and have identified
the involvement of various receptors and channels in mechanisms of urothelial ATP
release and evaluated the extent to which their absence impacted bladder function [13].
It is thus not surprising that purine receptors and other molecular components of the
urothelial mechanosensory and transduction system are drawing growing attention for
their potential as therapeutic targets for conditions involving altered voiding behavior
or urinary perception. However, this field is not without controversy. Recent reports
show that, under physiological conditions, there are no remarkable differences in the
micturition reflex or the voiding behavior of P2X3 purinergic receptor KO mice when
compared to WT mice [22]. Additionally, in contrast to prior studies with TRPV1 KO
or TRPV4 KO mice [21,23,24] that showed reduced distension-induced urothelial ATP
release and inhibition of micturition reflex induced by ATP instillation, recent studies
have shown increased urinary frequency in TRPV1 or TRPV4 KO mice compared to WT
mice [25]. This discrepancy may come from use of global knockout mice in these reports
and differences in experimental approaches, since more physiological approaches that
evaluate overall changes in voiding behavior can be influenced by changes in function
of these molecular players on sites other than the urothelium, such as bladder detrusor,
vessels, or central nerve system. In the present study, the use of urothelium-specific genetic
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manipulations allowed us to clearly determine the role played by urothelial Cx43 in mice
under physiological conditions. To the best of our knowledge, such a urothelium-specific
approach to investigate the mechanosensory role of the urothelium and ATP release in
bladder function was used in only a few prior reports. In one report, the authors also used
the Cre-LoxP system to generate urothelial-specific β1−integrin KO mice [26]. These mice
displayed increased distension-induced ATP release that was accompanied by increased
voiding frequency, suggesting a correlation between altered urothelial ATP signaling and
bladder function. Another report disclosed the mechanosensory role of Piezo2 in both the
sensory neurons and the bladder urothelium using the Cre-LoxP system [27].

Non-invasive, physiological assessments of mouse voiding behavior have shown that
mice have a diurnal micturition rhythm with day–night changes in the voided volume
per micturition, which we have shown in this study to be attenuated but still present in
uCx43KO mice. The Cx43 formed hemichannels are not the only channels involved in
mechanisms of urothelial ATP release, nor is ATP the only urothelial transmitter involved
in the regulation of bladder volume. Other molecular mediators have also been associated
with diurnal changes in ATP release, such as TRPV1, TRPV4, Piezo1 channels, and Cx26
hemichannels that would account for the remaining regulation of the day–night change
in the ATP release and the voided volume per micturition observed in the absence of
Cx43 [18]. Such involvement of more than one molecular player in urothelial mechanisms
that regulate the functional bladder capacity denotes its physiological relevance and the
high level of safety built to maintain it. Findings that we obtained in this study using the
uCx43KO mice demonstrate that Cx43 plays a central role in these mechanisms, particularly
in the animals’ awake, active phase. Initial evidence for the involvement of Cx43 in the
regulation of functional bladder capacity was obtained from our earlier study with global
Cx43+/− mice [16]. Interestingly, there are significant differences between the voiding
behavior pattern of uCx43KO mice and Cx43+/− mice, as the later display higher voided
volume per micturition not only during the active phase but also during the resting phase
when compared to WT mice [16]. One interpretation for this discrepancy in the voided
volume per micturition between the global Cx43+/− mice and the uCx43KO mice would
take into account the effect that reduction on Cx43 gap junction coupling within the bladder
would have on the level of activation and coordination of detrusor function, which can
lead to a relatively large bladder volume. However, caution is also required with the
interpretation of findings from Cx43+/− mice, as Cx43 is expressed in most tissues and
organs, especially in brains, hearts, muscles, and endocrine systems [28,29], in which the
reduction in Cx43 might have also influenced the changes in functional bladder volume
aside from the effects imposed per se by decreased Cx43 expression in the bladder.

We recognize that this study has a few limitations. Firstly, the analysis of Cx43 function
in urothelium focused on its role in forming hemichannels that participate in mechanisms
of mechanosensitive urothelial ATP release and signaling. The Cx43 function in terms of
its role in forming gap junctions and providing for coordination of urothelial responses
to bladder distension was inferred but not experimentally demonstrated. Further studies
are expected that will assess changes in junctional coupling and gap junction-mediated
signaling in the urothelium of uCx43KO mice. Secondly, we refer to the uCx43KO mice as
functional knockout, but in these mice, the expression of Cx43 in the urinary epithelium was
not completely suppressed, and the very low but still detectable levels may be related to the
distribution of Upk2 in the urothelium or the level of Cre recombinase expression. Thirdly,
we examined the urothelial Cx26 and TRPV4 expression levels in uCx43KO mice, but other
potential off-target effects or compensation for Cx43 deletion are yet unknown and cannot
be discarded. Fourthly, uCx43KO mice are conditional knockout mice generated using
a conventional Cre-LoxP system rather than using an inducible Cre-ERT2 recombinase
technology. We attempted the generation of conditional urothelium-specific Cx43 KO mice
by crossing Upk2-CreERT2 mice [30] with Cx43fx/fx mice but obtained an unexpected Cx43
overexpression in the urothelium of the mice after tamoxifen induction. Hence, Upk2Cre+
mice were used instead of Upk2-CreERT2 mice for mating with Cx43fx/fx mice. In this regard,
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potential effect of Cx43 deletion on the urothelium during uCx43KO development cannot
be ruled out, although no changes in urothelial structure were apparent from histological
inspection (Figure 1). Bearing these limitations in mind, the findings presented in this
study clearly showed the effect that specific deletion of Cx43 expression in the urothelium
imposes on the diurnal changes in mechanosensitive urothelial ATP release and on the
regulation of the voided volume per micturition.

In conclusion, Cx43 plays an important role in urothelial function, where it participates
in mechanisms of urothelial ATP release in response to bladder distention, especially in the
active phase when Cx43 expression is higher, which may modulate the diurnal change in
the bladder capacity. Intercellular coupling provided by urothelial Cx43 gap junctions is
also expected to support the transmission of signals within the urothelial and coordinate
the responses to bladder distension, mainly in the active phase. Further studies are now
needed to clarify the relationships between the urothelial Cx43 and other receptors and
channels, the involvement of other proteins related to signal transmission in the urothelium,
and the specific roles of Cx43 in the suburothelium and in the detrusor.

4. Materials and Methods
4.1. Animals

Eight-week-old female C57BL/6 mice were purchased from CLEA Japan (Tokyo,
Japan). We obtained the Upk2Cre+ mice and the Cx43fx/fx mice from the Jackson Laboratory
(Bar Harbor, ME, USA). Bladder urothelium-specific Cx43KO mice were generated by
crossing Upk2Cre+ and Cx43fx/fx mice. Mice were housed at a constant room temperature
with a cycle of 12 h light (7:00 to 19:00) and 12 h dark (19:00 to 7:00). Food and water were
available ad libitum. This study was approved by the Kyoto University Animal Studies
Committee (Permit Number: Medkyo19242) and complied with the guidelines for animal
experimentation of the experimental animal center of the Kyoto University.

4.2. Immunohistochemistry of Mouse Bladder

Paraformaldehyde-fixed, paraffin-embedded bladders from control and uCx43KO
mice were treated with citrate buffer for antigen retrieval, and immunohistochemistry
was performed by the avidin–biotin complex (ABC) method. Anti-Cx43 (C6219, Sigma-
Aldrich, St. Louis, MO, USA, 1:500) was used as the primary antibody against Cx43, and
the biotinylated secondary antibodies (1:300) and the ABC kit were used following the
manufacturer’s instructions (ABC-Elite, Vector Laboratories, Burlingame, CA, USA).

4.3. Tissue Harvesting

Eight-week-old female C57BL/6 mice and age-match female transgenic mice were
sacrificed at ZT8 and ZT20 during the day under a dim light. Bladder tissues were then
harvested and processed for biochemical analysis as previously described [8]. Briefly, the
urothelium was gently scraped with a scalpel in cold normal saline then transferred with
the normal saline to a 2 mL Eppendorf tube and spun down. The pellet was immediately
cryopreserved in liquid nitrogen for protein assay. The remaining bladder tissue (sub-
urothelium still attached to the detrusor smooth muscle) and a part of the liver were used
as controls.

4.4. Immunoblotting

Bladder urothelium, suburothelium and smooth muscle layers, and liver tissue were
lysed with radioimmunoprecipitation assay (RIPA) buffer containing protease inhibitors.
Total cellular protein concentrations were determined using the detergent compatible
(DC) protein assay reagent (Bio-Rad Laboratories, Richmond, CA, USA). Protein lysates
(20 µg) were subjected to SDS-PAGE using 10% gel and transferred to polyvinylidene
difluoride membranes (Millipore, Bedford, MA, USA) using a Mini Trans-Blot Cell sys-
tem (Bio-Rad Laboratories). Membranes were blocked with 1% bovine serum albumin
(BSA) diluted in Tris-buffered saline with 0.1% Tween® 20 detergent (TBST) and incu-
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bated with primary antibodies diluted in 1% BSA/TBST followed by incubation with
horseradish peroxidase-conjugated secondary antibodies diluted in 1% BSA/TBST and
bands detected by enhanced chemiluminescence with SuperSignal West Pico Chemilumi-
nescent Substrate (Thermo Fisher Scientific, Waltham, MA, USA). Images were acquired
with the LAS-4000 imaging system (Fujifilm Life Science, Tokyo, Japan). Anti-Cx43 (C6219,
Sigma-Aldrich, St. Louis, MO, USA, 1:10000), Anti-Cx26 (Life Technologies/Invitrogen,
Waltham, MA, USA, 1:500), anti-TRPV4 (ab39260, Abcam, Cambridge, UK, 2 µg/mL),
and anti-GAPDH (2118, Cell Signaling Technology, Danvers, MA, USA, 1:5000) were used
as primary antibodies. Levels of Cx43 and GAPDH (loading control) protein expression
were quantified using the ImageJ software (National Institute of Health, Rockville Pike,
MD, USA, http://rsb.info.nih.gov/ij/). Values were first normalized to respective loading
control and are expressed relative to wildtype levels.

4.5. Bladder Distension and Quantification of Luminal ATP Release

Distension-induced urothelial ATP release into the bladder lumen was quantified
from eight-week-old female C57BL/6 mice and from age-match female uCx43KO mice at
both ZT8 (sleep/light phase) and ZT20 (active/dark phase). The experimental procedures
were as previously reported [8]. Briefly, with animals under 2.0% isoflurane anesthesia,
a 24 G catheter (SR-OT2419C, Terumo, Tokyo, Japan) was inserted into the urethra and
held in place with a clamp (AM-1, Natsume Seisakusho Co. Ltd., Tokyo, Japan). The
catheter was then connected to a tube filled with phosphate buffered saline (PBS) and a
pressure reservoir. After bladder distention with 30 cm H2O for 10 min, the PBS from the
bladder lumen was collected and snap-frozen in liquid nitrogen. The luciferin-luciferase
assay (CellTiter-Glo Luminescent Cell Viability Assay; Promega, Madison, WI, USA) was
used to quantify the amounts of ATP released. Briefly, 20 µL of the collected PBS samples
were individually placed in triplicate in white walled 96-well plates (Nunc F96 MicroWell;
Thermo Fisher Scientific, Waltham, MA, USA), and 20 µL CellTiter-Glo® 2.0 reagent was
added directly to each well. Plates were incubated at room temperature for 10 min and
then transferred to the Multilabel Plate Reader VICTOR X5 (PerkinElmer, Waltham, MA,
USA), where luminescence was measured using a 1 s integration time.

4.6. Micturition Analysis

For continuous assessment of the voiding behavior of free-moving mice, the automated
voided stain on paper (aVSOP) method was used as previously described [16]. Briefly,
animals were kept in the aVSOP chamber in a sound-proof room and provided with
free access to food and water. After adapting to the environment for 2 days, a laminated
filtered paper was placed under the aVSOP chamber, and the micturition behavior was
continuously assessed over 4 days.

4.7. Statistical Analysis

All data are expressed as the mean ± s.e.m. BellCurve for Excel (Social Survey Research
Information Co., Ltd., Tokyo, Japan) was used for statistical analysis. Unpaired t-test and
one-way ANOVA with Dunnett’s post hoc test were performed when appropriate. p < 0.05
was regarded as statistically significant. In the figures, statistical significance is indicated
as follows: * p < 0.05 and ** p < 0.01.
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