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Chronic back pain (CBP) is a maladaptive health problem affecting the brain function

and behavior of the patient. Accumulating evidence has shown that CBP may alter

the organization of functional brain networks; however, whether the severity of CBP is

associated with changes in dynamics of functional network topology remains unclear.

Here, we generated dynamic functional networks based on resting-state functional

magnetic resonance imaging (rs-fMRI) of 34 patients with CBP and 34 age-matched

healthy controls (HC) in the OpenPain database via a sliding window approach, and

extracted nodal degree, clustering coefficient (CC), and participation coefficient (PC)

of all windows as features to characterize changes of network topology at temporal

scale. A novel feature, named temporal grading index (TGI), was proposed to quantify

the temporal deviation of each network property of a patient with CBP to the normal

oscillation of the HCs. The TGI of the three features achieved outstanding performance

in predicting pain intensity on three commonly used regression models (i.e., SVR, Lasso,

and elastic net) through a 5-fold cross-validation strategy, with the minimum mean

square error of 0.25 ± 0.05; and the TGI was not related to depression symptoms

of the patients. Furthermore, compared to the HCs, brain regions that contributed

most to prediction showed significantly higher CC and lower PC across time windows

in the CBP cohort. These results highlighted spatiotemporal changes in functional

network topology in patients with CBP, which might serve as a valuable biomarker for

assessing the sensation of pain in the brain and may facilitate the development of CBP

management/therapy approaches.

Keywords: chronic back pain (CBP), dynamic functional connectivity, temporal grading index (TGI), pain

assessment, depression
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INTRODUCTION

Pain and pain-related diseases aremajor contributors to disability
(1–3). Among them, chronic back pain (CBP) is particularly
prevalent with the disability rate increasing by over 54% in the
last 30 years (4). CBP is known to be aroused by peripheral
and central sensitization (5, 6), and alters the connectomics of
the brain. Advances in neuroimaging technology have allowed
researchers to characterize structural and functional alterations
in the brain of patients with CBP (7–9), investigate brain
signatures for predicting pain intensity (e.g., patterns of brain
activation) (10–12), and identify effective methods for pain
relief (13). Although these studies have painted a relatively
comprehensive picture from abnormal brain alterations of CBP
to its intervention, the relationship between spatiotemporal
dysfunction of brain topological organization and pain intensity,
a key question to the understanding of CBP, remains unclear.

The cerebral alterations of patients with CBP have been
investigated in a series of studies focusing on functional
connectivity (FC) established via functional magnetic resonance
imaging (fMRI) (14–16). The large-scale functional network
established by measuring pair-wise FC provides a comprehensive
description of interactions among distinct brain regions, in terms
of correlation, coherence, and topological organization (17–20).
For example, chronic pain was associated with abnormal changes
in the connectivity within the salience and central executive
networks (21, 22) and altered strength of hub regions (23);
and the study shows that pain would cause an increase in the
shortest path length and clustering coefficient, and decreases
in small-worldness (24). These alterations in inter-regional
connectivity and network topology have largely affected the
ability of information integration and segregation in the brain of
patients with chronic pain (25, 26).

Existing evidence has suggested that the perception of pain
was influenced by maladaptive neuroplastic changes over time
(27, 28), and the CBP may derive from these changes in
the central nervous system which could enhance nociceptive
efficiency, influence normal attentional processing, and create
the maladaptive perception of pain (29, 30). Since the “dynamic
pain connectome” theory posits that the processing of pain
in the brain is a dynamic process (31), it is necessary to
investigate the CBP-related brain functional alteration from a
time-varying perspective. Compared to traditional FC analysis,
dynamic functional connectivity (dFC) is able to capture the
alterations of intrinsic FC over time under various physiological
and pathological brain conditions (32–36). For example, dynamic
reconfiguration of functional brain networks was found during
executive cognition by using dFC technology (37). Thus, dFC
can provide additional information that may promote our
understanding of the association between altered brain functions
and CBP (38, 39). Recent studies have shown that dFC can reflect
pain conditions at multiple timescales (e.g., short-term state and
long-term trait) rather than just the current state of patients with
chronic pain (40), and characterize pain pathophysiology from a
dynamic perspective representing oscillations of the FC (41–43).
However, previous studies have mainly focused on pain-related
alterations in dFC, with few studies exploring how dynamics of

functional network topology change in patients with CBP, and
whether these changes can predict pain intensity has not been
well explored.

The present study aims to investigate whether CBP is
associated with dynamic changes in the functional network
topology and to find an effective feature that could accurately
predict the intensity of pain in the brain of patients with CBP.
Resting-state fMRI data of 34 patients with CBP and 34 age-
matched healthy controls (HC) were used to estimate the dFC
through a sliding window approach along the time sequence.
Degree centrality, clustering coefficient (CC), and participation
coefficient (PC) of dFC network were calculated at each time
window and cascaded to represent the dynamic fluctuation of
network topology from the perspectives of nodal importance,
local efficiency, and modular communication, respectively.
Temporal grading index (TGI), a new feature that quantifies
the oscillation slope of each network metric of the CBP cohort
relative to the normative oscillation sequence of the HCs, was
proposed and utilized to predict the pain intensity of the patients.
TGI of these network metrics were submitted to three commonly
used regression models (i.e., support vector regression [SVR],
least absolute shrinkage and selection operator [Lasso], and
elastic net), with a 5-fold cross-validation strategy, to examine
the effectiveness of dynamic network topology on explaining pain
intensity of patients with CBP.

MATERIALS AND METHODOLOGY

Participants
In the study, MRI data of 34 patients with CBP and 34
healthy controls (HC) who had matched age and gender in
patients with CBP were downloaded from the Open Pain
database (www.openpain.org). The database was collected by the
OpenPain Project (OPP) for scientific investigation, teaching, or
the planning of clinical research studies. All patients with CBP
have completed the Short-Form of theMcGill Pain Questionnaire
(SF-MPQ), including a visual analog scale (VAS) ranging from
0 (painless) to 10 (maximum imaginable pain). The Beck
Depression Inventory (BDI) was used to access the depression
scores of all participants. Questions of SF-MPQ and BDI were
finished 1 h before the brain scan.

MRI Data Acquisition
MRI data were acquired on a 3-Tesla Siemens Trio whole-
body scanner using the standard radio-frequency head coil.
All participants were required to close their eyes during the
scan. High-resolution 3-dimensional T1-weighted data were
acquired with the following parameters: voxel size 1×1×1
mm3, repetition time (TR) = 2,500ms, echo time (TE) =

3.36ms, flip angle = 9◦, number of slices = 160, field of
view = 256 mm, in-plane matrix resolution = 256×256.
Resting-state fMRI (rs-fMRI) data were acquired using an
echo-planar imaging (EPI) sequence at the same scanner with
the following scanning parameters: repetition time (TR) =

2,500ms, echo time (TE) = 30ms, flip angle = 90◦, number
of slices = 40, slice thickness = 3mm, in-plane resolution
= 64×64, number of volumes = 245 or 305. For images
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TABLE 1 | Demographic information of participants.

CBP (N = 30,

mean ± SD)

HC (N = 29,

mean±SD)

p-value

Age 50.3 ± 8.1 49.2 ± 9.4 0.6519a

Gender (M/F) 17/13 17/12 0.6888b

BDI score 6.3 ± 5.6 1.3 ± 2.2 < 0.05a

VAS score 6.8 ± 1.7 - -

Pain duration 15.9 ± 11.6 - -

CBP, chronic back pain; HC, healthy control; BDI, beck depression inventory; VAS, visual

analog scale; a denotes two-sided two-sample t-test; b denotes two-sided Pearson

chi-square test.

that had 305 volumes, we removed the last 60 volumes
to make the time point consistent (245 volumes for all
images) (44, 45).

Image Preprocessing
All rs-fMRI data were preprocessed via the statistical parametric
map 8 (SPM, https://www.fil.ion.ucl.ac.uk/spm/software/spm8)
using the general pipeline. Briefly, the pipeline included
the following steps: (1) removing the first 5 volumes; (2)
correcting slice timing and head motion; (3) registering the
functional images to the corresponding T1-weighted images, and
normalizing the acquisition to Montreal Neurological Institute
(MNI) space with a resampling voxel size of 3×3 × 3 mm3

resolution; (4) smoothing the normalized images with a 5-
mm full-width at half-maximum (FWHM) Gaussian kernel
spatially according to previous literature (46); (5) reducing low-
frequency drift and high-frequency noise with bandpass filtering
(0.01–0.1Hz). The global signal regression was not conducted
avoiding the removal of the significant neuronal signals (47,
48). Participants with poor image quality or excessive head
motion [translation distances > 2mm or rotation degree >

2◦ or mean framewise displacement > 0.2mm (49, 50)] were
excluded (51), leaving 30 CBP patients and 29 healthy controls
for further analysis. The demographics for patients with CBP
and HC are shown in Table 1. The human Brainnetome atlas
(52) was used to parcellate the whole brain into 274 regions [246
for the cerebrum and 28 for the cerebellum derived from the
Probabilistic Cerebellar Atlas (53)].

Dynamic FC Estimation
After preprocessing, a data matrix (n×T) for each participant
was obtained, where T = 240 denotes the number of time points
and n = 274 denotes the number of brain regions. We used the
DynamicBC toolbox (https://guorongwu.github.io/DynamicBC)
(54) to estimate the dynamic functional connectivity (dFC) of
each participant. As a key parameter in the sliding window
approach, it has been proved that the method would introduce
spurious correlations when window lengths < 1/fmin, where fmin

denotes the lowest frequency (i.e., 0.01Hz) in preprocessing of
bandpass filtering (55–57). The dFC matrices were calculated
within t= 191 consecutive windows produced by sliding window
approach with 50 TRs length of the window and 1 TR length
of sliding step (58). Finally, t functional connectivity matrices

w ∈ R
n×n , with negative- and self- connectivity removed (59),

were obtained for each participant (Figure 1A).

Computation of TGI for Patients With CBP
We averaged the functional networks of each time window across
the HCs, resulting in a series of average dFC (Wh ∈ R

t×n×n)
of HC subjects. The Brain Connectivity Toolbox (BCT, http://
www.brain-connectivity-toolbox.net) was used to calculate the
network properties of dFC matrices w of each subject across
time windows, including degree, clustering coefficient (CC), and
participation coefficient (PC) (Figure 1B). The PC was calculated
based on the modular structure including Yeo’s 7 cortical
functional networks (i.e., visual, somatomotor, dorsal Attention,
ventral attention, limbic, frontoparietal, default and subcortical
networks) (60), subcortical network, and cerebellar network. The
subcortical network was composed of all subcortical regions,
including the amygdala (BN label 211–214), thalamus (BN
label 231–246), caudate (BN label 219–220, 227–228), putamen
(BN label 225–226, 229–230), globus pallidus (BN label 221–
222), nucleus accumbens (BN label 223–224); and the cerebellar
network was composed of all cerebellar lobules (excluding the
brain stem) in the BN_274 atlas (BN label 247–274). For each
network property of a participant, we concatenated this property
across time windows to form a dynamic matrix X ∈ R

t×n.
As shown in Figure 1B, for the j-th brain region, we subtracted

the regional network property calculated fromWh (the averaged
dFC networks of the HCs) from the regional network property
of each patient with CBP. Then a linear regression (equation
1) model, with the result of the subtraction as the dependent
variable and the network property of average HC Wh as the
independent variable, was performed to extract the temporal
gradient index (TGI) of each brain region of CBP patients.

y− x = ki,jx+ b (1)

The slope k is the TGI that represents the alteration gradient
of this patient relative to the HC group at the temporal scale. For
each patient with CBP, we concatenated the TGI of each network
property across brain regions. In addition, the combination of all
the TGI features was calculated via the z-score strategy.

Regression Analysis
To examine the validity of TGI in assessing the pain intensity of
patients with CBP, three commonly used regression models (i.e.,
support vector regression [SVR], least absolute shrinkage and
selection operator [Lasso], and elastic net) were applied to predict
pain intensity (VAS scores) using the TGI. Five-fold cross-
validation repeated ten times was performed and mean square
error (MSE) was used to evaluate the regression performance.

The Linear SVR (61) we used for the prediction
can approximate the actual pain intensity y with two
hyperparameters E and o ascertain a linear regression function
expressed as:

f (ω, b) = ωx+ b (2)
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FIGURE 1 | The pipeline of TGI extraction. (A) We assess the dynamic functional connectivity (dFC) using the sliding window analysis with 50 TRs length for a window

and 1 TR length for sliding step, resulting in t windows. (B) We extract dynamic property matrix (degree, clustering coefficient [CC], and participation coefficient [PC])

for the network of each CBP patient and the average network of the HCs. A linear regression model was then used to extract the TGI Ki,j of each network property of

the j-th brain region for i-th CBP subject.

where ωǫR1×n and b are the parameters of the function. For
the prediction of the pain intensity, xǫRn×1and the output f (xi)
denoted the TGI feature of each brain region extracted from
patients and the prediction result for the i-th patient, respectively.

The regression problem of Lasso (62) can be described as
equation 3, where βǫRn×1 is the parameter of the regression
function. The L1-norm regularization was used to make the
coefficients sparse so that the irrelevant predictors could be
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FIGURE 2 | Distribution of the TGI of different network properties [degree, clustering coefficient (CC), and participation coefficient (PC)] in cerebrum and cerebellum.

excluded (62).

min
β

‖y− Xβ‖2 + λ‖β‖1 (3)

Compared to Lasso, elastic net (63) had one more regularization
term (βǫRn×1) and the elastic net will turn into Lasso when
setting α =0 (see equation 4). The L2-norm regularization
enabled the model to select a subset rather than only one from
the highly correlated features to overcome the deficit of using
L1-norm regularization only.

min
β

‖y− Xβ‖2 + λ‖β‖1 + α‖β‖2 (4)

We used the grid search method to calibrate the λ in Lasso
regression according to the previous study (64). For example, the
Lasso was constructed by varying the λ in a specified range λ=
{0.10,0.15,0.20,...,1} and then the optimal λwas used in the testing
dataset. A two-step grid search method was applied to calibrate
the parameters for both SVR and elastic net according to previous
studies (65, 66). When calibrating parameters of SVR and elastic
net models, we first specified a coarse grid search to determine
the best region of the calibrated parameters and then conducted
a finer grid search to find the optimal parameters.

We then adjusted the bias between predicted pain intensity
and real pain intensity according to the bias-adjustment scheme
proposed by Beheshti et al. (67). For each subject in the training
set, we calculated the 1 by subtracting the real intensity from
the predicted intensity of pain and then used a linear regression
model of 1 against the real pain intensity to get a linear
regression function with the slope µ and the intercept ϕ. The
offset can be calculated as below:

offset = µ� + ϕ (5)

where � denote the real pain intensity. The bias-free back
pain intensity was calculated by subtracting the offset from
individual predicted pain intensity (more information about
the relation between 1 and pain intensity could be found in
Supplementary Figure S1).

Statistical Analysis
Between-group differences in age and BDI score were estimated
by using a two-sample t-test, and the gender difference was
estimated via the Chi-square test. Pearson correlation analysis
was performed to assess the relationship between TGI and
BDI score (68) to examine whether the changes in TGI were
influenced by affective factors. In addition, a two-sample t-test,
with age, gender, and BDI score as covariates, was performed to
examine the between-group differences in the network properties
(i.e., nodal degree, CC and PC) in brain regions that had high
prediction power. The false discovery rate (FDR) correction with
q < 0.05 was used to correct the results formultiple comparisons.

RESULT

Spatial Distribution of the TGI of the Three
Network Properties
The average TGI of each network property across patients
with CBP is shown in Figure 2. The average TGI of degree
is mainly negative values across the brain, except in the left
posterior parietal thalamus (PPtha) and right ventrolateral
fusiform gyrus [ventrolateral Brodmann area 37 (A37vl)] which
have more positive values. Similarly, the average TGI of PC
is mostly negative values except for cerebellar right lobule
VIIb and left rostroventral ventral anterior cingulate cortex
[rostroventral Brodmann area 24 (A24rv)]. The average TGI
of CC shows more positive values relative to the other two
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FIGURE 3 | Prediction performance of pain intensity using the TGI of different network properties. The scatter plot shows the correlation between the real VAS score

and the predicted VAS score estimated by different features through different regression models. The solid lines indicate the identity line (y = x). CC, clustering

coefficient; PC, participation coefficient; VAS, visual analog scale.

properties, which locates in A37vl, right rostral temporal
thalamus (rTtha), and right medial pre-frontal thalamus
(mPFtha), whereas the TGI of medial prefrontal and occipital
cortices are highly negative. From the result (more details
could be found in Supplementary Figure S2) of Pearson
correlation analysis between TGI and BDI scores, we found no
significant difference.

Prediction Performance of Pain Intensity
Using the TGI Features
We used the TGI of degree, CC, PC as well as their combination
as input features of SVR, Lasso, and elastic net models to predict
the VAS score via a cross-validation strategy. The results are
visualized in Figure 3. The scatter plots illustrate the correlation
between estimation and the real VAS scores. The MSE of
each regression task is given in Figure 4. For TGI of degree,

SVR achieved the best prediction performance by using the
parameters of (O, E) = (1,0.17), with the mean MSE = 0.45 ±

0.09. The TGIs of CC and PC achieved the mean MSEs of 0.56±
0.18 and 0.54± 0.14, respectively, using the elastic net under the
parameters (λ,α) = (0.08,0.28). The combination of all the TGI
features significantly improved the regression performance of all
the three models, and the Lasso achieved the minimum MSE =

0.25± 0.05 under the parameter λ = 0.65.

Temporal Fluctuation of Network
Properties of High Informative Brain
Regions
The distribution of brain regions with the TGI that highly
contributed to the regression process is shown in Figure 5A

(the fluctuations of the other brain regions can be found
in Supplementary Figures S3–S5 in Supplementary Materials).
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FIGURE 4 | The MSE is derived from different models and features. Bars represent the mean and SD of the MSE during the cross-validation process. CC, clustering

coefficient; PC, participation coefficient.

For the TGI of degree, brian regions contributing to prediction
were mainly placed in the temporal lobe, subcortical nuclei,
and insular cortex, including superior temporal gyrus (STG),
insular gyrus (INS), and basal ganglia (BG). For the TGI of
CC, the high informative brain regions were located in the
frontal and temporal lobes, including the superior frontal gyrus
(SFG), superior temporal gyrus (STG), and inferior temporal
gyrus (ITG). For the TGI of PC, high-weight brain regions were
located across frontal, temporal, and parietal cortices, including
the middle frontal gyrus (MFG), posterior superior temporal
sulcus (pSTS), inferior frontal gyrus (IFG), superior temporal
gyrus (STG) and superior parietal lobule (SPL). Furthermore, the
cerebellum, caudoposterior superior temporal sulcus (cpSTS),
and rostral somatosensory association cortex [rostral Brodmann
area 7 (A7r)] highly contributed to regression tasks using
each type of TGI. We also compared the fluctuations of
degree, CC, and PC of five brain regions, including ventral
caudate (vCa), opercular Broca’s area [opercular Brodmann area
44 (A44op)], cerebellum lobule V (V), rostroventral inferior
temporal gyrus [rostroventral Brodmann area 20 (A20rv)],
dorsal agranular insula (dIa), cerebellum lobule VIIIa (VIIIa),
dorsal dysgranular insula (dId), medial superior occipital gyrus
(msOccG), caudoposterior superior temporal sulcus (cpSTS),
inferior frontal junction (IFJ), rostral temporal thalamus (rTtha),
cerebellum lobule Crus I (CrusI) and cerebellum lobule IX
(IX), with the highest weights in pain prediction between the
two groups (Figure 5B). Compared to the HC cohort, the CC

showed higher values over time in patients with CBP in all the
five brain regions, whereas, the PC in these regions showed
the opposite alteration trend in the CBP cohort. In addition,
the fluctuations of the nodal degree of CBP patients showed a
relatively larger overlap with the HC when compared to the other
two network properties.

DISCUSSION

The present study aimed to (1) investigate whether CBP is
associated with altered dynamics of topological organization of
functional brain networks, and (2) develop a novel kind of feature
(TGI) that could better characterize pain sensation from dynamic
functional networks. We found CBP significantly altered the
dynamics of functional network properties, and the gradient of
these dynamics of CBP patients relative to the HCs accurately
predicted pain intensity. These results suggested that CBP is
accompanied by abnormal alterations of functional topology at
the temporal scale, which may serve as an effective biomarker for
estimating pain perception in the brain.

Studies have shown that the degree gradient of patients with
CBP relative to the HCs can characterize a unique neurological
state of chronic pain (46, 69), such as a global randomization
state of functional connectivity (46). Regarding the dynamic
nature of the functional brain connectome, we speculated that
the TGI extracted from the dFC networks might better depict
the variations in neurological states of CBP over time than using
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FIGURE 5 | Brain regions have high prediction power and the fluctuation of their nodal topology over time. (A) The weight of nodes contributed to the prediction

process. Larger nodal size indicates a higher weight. (B) The fluctuation of network properties [nodal degree, clustering coefficient (CC), and participation coefficient

(PC), not TGI] of the five nodes with the highest weights. The black point indicates a significant between-group difference (p < 0.05, FDR corrected). vCa, ventral

caudate; A44op, opercular Broca’s area (opercular Brodmann area 44); V, cerebellum lobule V; A20rv, rostroventral inferior temporal gyrus (rostroventral Brodmann

area 20); dIa, dorsal agranular insula; VIIIa, cerebellum lobule VIIIa; dId, dorsal dysgranular insula; msOccG, medial superior occipital gyrus; cpSTS, caudoposterior

superior temporal sulcus; IFJ, inferior frontal junction; rTtha, rostral temporal thalamus; CrusI, cerebellum lobule Crus I; IX, cerebellum lobule IX.
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static functional networks. The high prediction performance of
pain intensity suggested the effectiveness of the TGI feature,
and no significant difference between TGI and BDI scores
suggested the stabilization of the TGI feature that TGI would
not be influenced by abnormal emotion (i.e., depression).
Furthermore, the combination of three types of TGI significantly
improved the prediction performance, suggesting the complex
neural mechanism of CBP requires information from diversified
domains to assess pain sensation. Nodal degree, CC and PC
were indicated to represent network hubness, segregation, and
integration of the brain network, respectively (59, 70, 71).
Studies have reported the differences in nodal degree and PC
of functional brain networks between patients with CBP and
the HCs (72, 73). The CC of the insular cortex was found to
be correlated with individual pain thresholds (74). Therefore,
the combination of the TGI of these three network properties
can comprehensively depict the alternation of brain networks of
patients with CBP, which undoubtedly performed better than the
TGI of a single network property in predicting the pain intensity.

Interestingly, we also found that the dynamics of CC and PC

of brain regions that had TGI with high prediction power (i.e.,
STG, ITG, pSTS, SPL, IFG, INS, and parts of the cerebellum)
showed distinct fluctuation patterns between patients with CBP
and the HCs. Although previous studies have shown altered
CC and PC of the static functional network in the CBP cohort
(70, 75), our study moved a further step to show abnormalities
in the temporal fluctuation of these two properties in patients
with CBP. Since CC and PC represented the segregation and
integration of the network, respectively. The altered fluctuation
of themmay indicate the topological reorganization of functional
brain networks in patients with CBP that the network tended
to be more locally connected with disruptions in inter-modular
connectivity. This is in line with previous studies indicating
lower efficiency of information transfer in the brain networks
of patients with CBP than the HCs (42, 76). The brain regions
with abnormal fluctuation of CC and PC were indicated to be
extensively involved in pain processing (77–80). For example,
IFG and ITG are involved in pain-related memories (81, 82), and
INS plays a critical role in pain modulation (83). Furthermore,
the cpSTS and the A7r of SPL showed a high contribution to
pain prediction in all regression tasks using the TGI derived
from different network properties (i.e., degree, CC and PC),
suggesting the abnormal changes in these two brain regions were
not only in local connectivity with other regions but also in
the flow of information throughout the brain. These findings
were supported by the previous studies indicating increased
vigilance of the pain within these two brain regions (84–86).
All these results supported our argument that TGI of network
properties might better characterize the neurological condition
of the individual with CBP in a dynamic manner.

There were several limitations in the present study. First, the
sample size was limited in this study. Here, we performed a 5-fold
cross-validation strategy and employed three commonly used
regression models (i.e., SVR, Lasso and elastic net) that showed
high generalizability across studies (87–89) to reduce the risk of
overfitting, and achieved robust performance. Replications on a

larger and independent dataset are still necessary to further verify
the effectiveness of TGI of network topology in assessing pain
intensity. Second, the dynamics of functional networks largely
rely on the chosen parameters of the sliding window approach
that determine the scale of the time sequence (90). In the
present study, we chose the parameters according to the previous
literature (55–57). Nevertheless, whether the parameters could
influence the prediction power of TGI on the pain intensity need
to be further explored.

CONCLUSION

We proposed a novel feature called TGI that was derived
from the dFC network to represent the temporal deviation of
network topology in patients with CBP relative to HCs. The
TGI of network properties achieved outstanding performance
in predicting the pain intensity of patients with CBP in three
commonly used regression models, with a minimum MSE of
0.25 ± 0.05. Our findings suggested that the TGI can serve
as a valuable biomarker for pain intensity evaluation and has
potential application in CBP management/therapy.
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