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Abstract

Mycobacterium tuberculosis (M.tb) infection stimulates the release of cytokines, including

interferons (IFNs). IFNs are initiators, regulators, and effectors of innate and adaptive immu-

nity. Accordingly, the expression levels of Type I (α, β) and II (γ) IFNs, among untreated

tuberculosis (TB) patients and household contacts (HHC) clinically free of TB was assessed.

A total of 264 individuals (TB patients-123; HHC-86; laboratory volunteers-55; Treated TB

patients-36) were enrolled for this study. IFN-αmRNA expression levels predominated com-

pared to IFN-γ and IFN-β among untreated TB patients. IFN-α transcripts were ~3.5 folds

higher in TB patients compared to HHC, (p<0.0001). High expression of IFN-α was seen

among 46% (56/ 123) of the TB patients and 26%, (22/86) of HHCs. The expression levels

of IFN-α correlated with that of IFN transcriptional release factor 7 (IRF) (p<0.0001). In con-

trast, an inverse relationship exists between PGE2 and IFN-α expression levels; high IFN-α
expressers were associated with low levels of PGE2 and vice-versa (Spearman’s rho =

-0.563; p<0.0001). In-vitro, IFN-α failed to restrict the replication of intracellular M.tb. The

anti-mycobacterial activity of IFN-γ was compromised in the presence of IFN-α, but not by

IFN-β. The expression of IFN-α and β diminished or is absent, among successfully treated

TB patients. These observations suggest the utility of assessment of Type I IFNs expression

levels as a prognostic marker to monitor tuberculosis patient response to chemotherapy

because changes in Type I IFNs expression are expected to precede the clearance and

/reduction in bacterial load.

Introduction

Tuberculosis (TB) remains a global public health problem. Annually TB accounts for >10 x106

new cases, and ~1.2 x 106 deaths [1]. A large proportion of individuals exposed to M. tubercu-
losis (M.tb) generate immune responses that clear the infecting bacilli or drive them to dor-

mancy resulting in latent TB infection (LTBI). Approximately 10% of these individuals with

LTBI later reactivate to develop clinical disease. Protective immunity appears to be associated
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with the generation of antigen-specific CD4+ T cells expressing IFN-γ (Type II IFN), including

IL-12 and TNF-α. In contrast to the well established protective role of IFN-γ, type I IFNs can

be either protective or detrimental in bacterial infections [2]. Type I IFNs are primarily

involved in the immune response to viral infections. IFN-α comprises of multiple forms,

whereas, IFN-β is a single type. Type I IFNs can potentially exacerbate pathogenesis in chronic

viral infections via immunosuppression or inflammation and tissue destruction [3]. On the

one hand, Type I IFNs (IFN-α/β) are potent inhibitors of IL-12 production by human mono-

cytes/macrophages, a critical cytokine required for the induction of IFN-γ [4]; on the other

hand, they can induce IFN-γ production by T and NK cells in an IL-12 independent manner

[5]. IFNα/β reduces monocyte viability, compromises their bacteriostatic activity, and antigen

presentation ability [6]. However, IFN-β enhances BCG immunogenicity by facilitating den-

dritic cell (DC) cell maturation [7]. Type I IFNs have been administered as an adjunctive ther-

apeutic agent to PTB patients harboring multi-drug resistant M.tb strains [8,9]. Several studies

have reported that the induction of Type I IFNs precedes the onset of clinical tuberculosis [10–

13]. Thus the design of the current study included: 1) assessment of the levels of Type I (IFN-α
and β) and II (IFN-γ) IFNs among Indian TB patients, and 2) to examine the effect of Type I

IFN in modulating replication of M.tb resident in human macrophages.

Materials and methods

Study subjects

TB patients were enrolled from the Out-patient Department of Pulmonary, Critical Care and

Sleep Medicine, AIIMS, New Delhi. Of the 123 TB patients recruited, 56 were pulmonary

(PTB) and 67 were extra-pulmonary TB (EPTB) patients. Healthy family contacts (HHC,

n = 86) of the patients were also recruited for participation in the study. Thirty six/123 TB

patients were available for follow-up after successful treatment; healthy laboratory volunteers

(HV, n = 55) were recruited from the Department of Biotechnology, AIIMS, New Delhi were

included as controls. Informed consent was taken from all individuals, and the study has been

approved by the Ethics Committee of AIIMS (IEC/NP-196/2013, OP-01/10.04.2015).

RNA isolation and cDNA synthesis

Sera and RNA were obtained from peripheral blood samples. For the latter, RBCs were lysed

on ice using ACK lysis buffer (154.4 mM ammonium chloride, 10 mM potassium bicarbonate,

97.3 μM EDTA tetrasodium salt for 1L) for 20 minutes and the leukocyte pellet suspended in

TRIzol reagent was processed for RNA extraction, (Promega Co., Wisconsin, MD, USA). The

extracted RNA was treated with DNase I (Promega, Wisconsin, MD, USA), cleaned by using

the RNeasy Blood Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s

instructions. DNA-free RNA (1μg) from each sample was reverse transcribed using the Max-

ima First Strand cDNA Synthesis kit (ThermoFischer Scientific, Rockford, USA), according to

the manufacturer’s instructions. For serum, clotted blood samples were processed as per the

routine procedure. The separated sera were aliquoted and stored at -20˚C.

Real-time PCR

The cDNA obtained was subjected to Real-Time PCR analysis of IFN-α, IFN-β, IFN-γ, IRF5,

and IRF7 mRNA expression using primers detailed in Table 1.

PCR master reaction mix (25μl) was setup containing Maxima1 SYBR Green / ROX qPCR

Master Mix (ThermoFischer Scientific, Rockford, USA), 0.5 μM of each primer, and 100ng of

cDNA / sample. Real-time detection of transcripts was carried out in MyIQ cycler (Bio-Rad,
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California, U.S.A.) with cycling parameters as follows, denaturation at 94˚C for 5 min; 40

cycles each of denaturation at 94˚C for 15 sec, annealing at 60˚C for 30 sec and extension at

72˚C for 30 sec. The fluorescence signal was collected during the extension step. On comple-

tion of the run, the threshold cycle (Ct) values were determined. The melt curve was generated

at a ramp rate of 2% (CFX Manager, v2.0, Bio-Rad, California, U.S.A.).

Assessment of IFN-α, IFN-β, IFN-γ, IRF5, and IRF7 mRNA expression in the samples

derived from TB patients, their family contacts, and healthy volunteers was done. Accordingly,

the normalized expression of IFN-α, IFN-β, IFN-γ, IRF5, and IRF7 was calculated from the

threshold cycle (Ct) values normalized to β-actin Ct values. The normalized mRNA expression

of IFN-α, IFN-β, IFN-γ, IRF5, and IRF7 relative to healthy volunteers was calculated as a 2-

ΔΔCt method [16]. The ratio between: IFN Transcripts determined in a patient / Group mean

of IFN Transcripts for Healthy Volunteers; established the ‘Fold’ expression for the IFN in the

individual. Accordingly in individuals wherein mRNA expression of an IFN was higher than

the group mean of healthy volunteers (>1-fold) was considered as a high expression. The sta-

tistical significance of the fold mRNA expression between groups was determined using the

Mann-Whitney test.

ELISA

Serum Prostaglandin E2 levels were determined for 62 TB patients (24 PTB, 38 EPTB) and 18

family contacts with a commercially available kit (PGE2, Enzo Life Sciences Inc., NY, USA)

In vitro infection of THP-1 cells with M.tb

Undifferentiated (0.5x106) THP-1 (human monocytic) cells were seeded in 24 well plates,

stimulated with 50ng/μl of Phorbol myristate acetate (PMA, Sigma Aldrich, Co., St Louis,

USA) for 16 hours. The plate was washed and kept for 48 hours in CO2 incubator for 48 hours.

After a resting period of 48 hours, the PMA differentiated cells were exposed to live and heat-

killed M.tb (H37RV) (M.tb: THP-1; MOI 10:1) for 4 hours. The extracellular bacteria were

removed by washing with plain RPMI and the infected cells maintained with 10% RPMI for 0

(T0), 2(T2), 4(T4), 6(T6), 8(T8), 16(T16), 24(T24), and 48 (T48) hours respectively. RNA extrac-

tion, cDNA preparation, and RT-PCR for assessment of transcripts for IFN-α, IFN-β, and

IFN-γ were performed at each time point, as described Above.

Inhibition of mycobacterial growth assay

Differentiated THP-1 cells (0.1x106) were seeded and infected, as mentioned above. In desig-

nated wells simultaneously 1μl of anti-IFN-α (Biorbyt, Cambridge, U.K.), anti-IFN-β and anti-

Table 1. Primers used in the study.

Target

Primer

ReferenceForward Reverse

IFN-α 50- GCTGAATGACCTGGAAGCCTGTG -30 50- GGGAGGTTGTCAGAGCAGAAATC-30 Verma et al., 2012 [14]

IFN-β 50-AAGGAGGACGCCG CATTGAC-30 50-ATAGACATTAGCCAGGAGGTTC-30 Self-designed

IFN-γ 50- TCGTTTTGGGTTCTCTTGGC-30 50-TCCGCTACATCTGAATGACC-30 Self-designed

IRF5 50-CAGGACGGAGATAACACCAT-30 50-GGTGTATTTCCCTGTCTCCT-30 Self-designed

IRF7 50-AAAACCAACTTCCGCTGC-30 50-GCCTCAGTCTGGTCCGTGC-30 Self-designed

β-actin 50- CGGCATCGTCACCAACTGG-30 50- ACGTTGCTATCCAGGCTGTGC-30 Verma et al., 2012 [14]

IFI44 50-GAGAGATGTGAGCCTGTGAGG-30 50-TTTTCCTTGTGCACAGTTGAT-30 Self-designed

FCγR1 50-CTT CTC CTT CTA TGT GGG CAG T-30 5’-GCT ACC TCG CAC CAG TAT GAT-30 Zhang et al., 2014 [15]

https://doi.org/10.1371/journal.pone.0235488.t001
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IFN-γ (Affymetrix, ThermoFischer Scientific, Rockford, U.S.A.) neutralizing antibodies were

added individually or as a mixture of antibodies, (Treated cultures); untreated cultures served as

Controls. The extracellular bacteria were removed 4 hrs post-infection, and cultures maintained

with 10% RPMI alone in case of untreated control cultures; whereas in case of treated cultures

respective antibody was added along with 10% RPMI for 5 days; after which cells were lysed

and serial dilutions of lysates plated on 7H11 agar plates. Colony-forming units (CFUs) were

obtained at five weeks post-plating. The neutralizing activity of the antibodies was confirmed by

monitoring the inhibition of expression of the respective interferon-inducible genes namely

IFI44 (IFN-α/β inducible gene [17,18] and FcγR1 (IFN-γ inducible gene [19,20], (S1 Fig). The

primers used to monitor the expression of IFI44 and FcγR1 have been listed in Table 1.

Results

Enhanced IFN-α gene expression in TB patients compared to healthy

household contacts (HHC)

The relative mRNA expression of IFNs α, β, and γ among TB patients and HHC is presented in

Fig 1 and Table 2. The median fold expression of IFN-β (TB- 0.030; HHC- 0.031) and IFN-γ
(TB- 0.71; HHC- 0.79) were similar in TB and HHC. However, IFN-α transcripts were ~3.5 folds

higher (p<0.0001) in TB patients (0.8 median fold,) compared to HHC (0.23 medial fold; Fig 1;

Table 2). High expression of IFN-α was seen among 46% (56/ 123) of the TB patients. Similar lev-

els of mRNA expression for IFN-α was limited to a lower percentage (26%, 22/86) of HHC.

Effective ATT alters the expression of interferons in patients treated

The expression levels of IFN-α, IFN-β, and IFN-γ in 36 TB patients at the time of enrolment

and following successful completion of DOTS treatment were compared (Figs 2 & 3). A

Fig 1. Box plot shows the fold mRNA expression of IFN-α, IFN-β and IFN-γ in untreated TB patients (n = 123) compared

to healthy family contacts of patients (n = 86) as estimated by Real-Time PCR. Target gene expression was normalized with

β-actin gene expression. The data has been calculated with the 2-ΔΔCt formula, as described in methods. The fold mRNA

expression has been determined with reference to healthy laboratory volunteers. The horizontal bar represents the median value

for mRNA in each group, the 25th and 75th percentile have been represented by the boxes. ┴ & ┬—the whiskers represent the

maximum and minimum values of the data, respectively. The data has been plotted in log10 scale. To compare the transcripts

level between groups, non-parametric Mann Whitney test was applied, ���p< 0.0001, IFN-α expression in TB patients Vs

Healthy family contacts.

https://doi.org/10.1371/journal.pone.0235488.g001
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substantial decrease in the expression levels of IFN-α and IFN-β (Fig 2A & 2B) was observed.

IFN-α expression levels were ~3-fold reduced in treated patients (0.13 median fold) compared

to untreated patients (0.37; Fig 2A; p< 0.001). Similarly, IFN-β levels were also ~2-fold lower

in treated patients (0.04) compared to untreated patients (0.02; Fig 2B; p< 0.001). However,

IFN-γ expression was sustained and unaltered in patients as assessed at the time of enrolment

and on successful completion of treatment (Fig 2C).

Modulation of IFN-α levels in TB patients by PGE2 and Interferon

Regulatory Factors (IRFs)

We evaluated some critical regulators of IFN-α expression, namely PGE2 and IRF5 & 7 among

TB patients and HHCs. Prostaglandin E2 (PGE2) is an eicosanoid derivative, which functions

as a potent inhibitor of Type I IFNs [21]. As expected, we found in individuals expressing (>1

fold) high levels of IFN-α (in both TB patients and HHC groups), had diminished serum levels

of PGE2 and vice versa (Fig 4A & 4B). This inverse relationship between levels of PGE2 and

IFN-α was significant (Spearman’s rho = -0.563; p<0.0001, Fig 4C).

Amongst the Interferon Regulatory Factors (IRFs) that transcribe Type I IFNs, IRF7 is criti-

cal [22]. Although IRF5 promotes the IFN-γ pathway through direct induction of IL-12

[23,24], reports indicate that it may be necessary for the transcription of Type I IFNs as well

[25,26]. Levels of IRF5 amongst the high (n = 30, TB patients) and low (n = 32, TB patients)

IFN-α expressers, were similar (Fig 5), indicating IRF5 may not be directly involved in Type I

IFN modulation. In agreement with published reports [27–29], the expression of IRF7 was sig-

nificantly elevated (~967 folds higher; median fold expression 60 × 10−4) in high IFN-α
expressing patients, compared to low IFN-α expressing patients, (0.062 × 10−4; p> 0.0001;

Fig 5).

Temporal expression of IFN-α, IFN-β, and IFN-γ in THP1 cells infected

with live or heat-killed M.tb

Our results demonstrated that successful treatment of TB patients results in a significant

reduction of IFN-α and IFN- β expression (Figs 2 and 3). The impact of these changes on the

survival of intracellular M.tb in human macrophages in vitro was assessed. Elevated levels of

IFN-α compared to IFN-γ and β in live M.tb infected THP-1 cells was observed at 24 hours (S2

Fig, Panel A). The conditions seen among treated and untreated TB patients were mimicked

in-vitro by the addition of specific antibody into designated wells containing infected cells. The

specific antibody neutralized the biological activity of each IFN present in the milieu of

infected THP-1 cells. The enumeration of CFUs confirmed the presence of viable intracellular

M.tb in the treated cell cultures.

Table 2. Comparative analysis of fold mRNA expression detected for interferons among TB patients and healthy family contacts.

Group Fold mRNA expression of Interferon@

IFN-α IFN-β IFN-γ

Low Median High Low Median High Low Median High

TB Patients (n = 123) 0.2066 0.8036� 2.2420 0.01626 0.03035 0.07899 0.4588 0.7101 1.2980

Healthy family Contacts (n = 86) 0.1022 0.2348 0.8931 0.01270 0.03099 0.1032 0.5145 0.7934 1.230

(@- fold mRNA expression calculated with reference to healthy laboratory volunteers

�—p< 0.0001 IFN-α expression in TB patients Vs Healthy family contacts)

https://doi.org/10.1371/journal.pone.0235488.t002
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Fig 2. Box plot depicting comparative analysis of mRNA expression of IFNs detected in paired samples obtained

at the time of recruitment and after successful completion of treatment from 36 patients. Panel A, IFN-α; Panel B,

IFN-β; and Panel C, IFN-γ. Target gene expression was normalized with β-actin gene expression. The data has been

calculated with the 2-ΔΔCt formula, as described in methods. The horizontal bars represent the group median,

longitudinal bars represent minimum and maximum values (┴& ┬). The data has been plotted in log10 scale. To
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IFN-α enhances mycobacterial growth

Anti-IFN-α neutralizing antibody significantly reduced the CFUs (5,595 ± 412.22 CFUs) com-

pared to untreated infected control cells (24,166.33 ± 1687.68 CFUs, p<0.0001; Fig 6). In con-

trast, infected cultures treated with anti-IFN-γ antibody, the M.tb CFUs were significantly

higher (39,880.67 ± 5806.31CFUs) than the control cultures, (24,166.33 ±1687.68 CFUS,

p<0.001, Fig 6). Whereas in infected cultures treated with either anti-IFN-β antibody alone

(21,428 ±5893.4 CFUs) or simultaneously with a mixture anti-IFN-α, anti-IFN-β and anti-

IFN-γ neutralizing antibodies, the enumerated M.tb CFUs (22,142±3092.87 CFUs) did not dif-

fer significantly from the control cultures, (24,166.33 ± 1687.68 CFUs). The lowest number of

viable M.tb was obtained in cultures treated with anti-IFN-α antibody (6071±412.2 CFUs)

compared to all other cultures exposed individually or in combination to the panel of neutral-

izing antibodies. The highest number of viable M.tb was obtained in cultures treated with anti-

IFN-γ antibody (46,428±5806.3 CFUs).

Discussion

Results of this study showed that of the three IFNs examined, IFN-α mRNA expression levels

predominated compared to IFN-γ and IFN-β among untreated TB patients. The significant

maximal median fold of mRNA IFN-α expression is among untreated TB patients compared

to family contacts clinically free of tuberculosis. However, the levels of IFN-α expression

among the TB patients varied. On the other hand, following successful treatment, expression

levels of IFN-α, and IFN- β regressed, resulting in the predominance of IFN-γ. The circulatory

levels of PGE2 and IRF expression influenced the expression levels of IFN-α. These observa-

tions showed that IFN-α expression was indeed associated with ongoing active clinical tuber-

culosis, and the levels reduced or absent in patients following clearance and reduction in

mycobacterial load induced by effective chemotherapy. Further, using in-vitro M.tb infected

THP-1 cells, it was observed neutralization of IFN-α enabled an effective reduction in myco-

bacterial viability. In contrast, the presence of IFN-α / β in the absence of IFN-γ leads to

enhanced viability of intracellular M. tb.

Production of type I IFNs in cultured peripheral blood monocytes of patients with active

TB and the inducible transcriptional signature of type I IFNs in blood leukocytes derived from

active TB patients has been reported [30,31]. Among untreated TB patients, a higher number

of pDCs in circulation, the principal source of IFN-α is reported [32]. In mice, copious quanti-

ties of Type I IFN is induced by virulent strains compared to non-virulent strains of M.tb
[33,34]. Mycobacterial constituents and extracellular mycobacterial DNA (eDNA) bound to

Toll-like and cytosolic receptors, respectively, induce IFN-α [33–37]. Furthermore, the induc-

tion of IFN-β varies with the infecting strain of M.tb ability to induce the release of host mito-

chondrial DNA [38]. The concentration of PGE2 and positively regulating transcriptional

factors, namely IRF5 & IRF7, modulate Type I IFN expression. An inverse relationship exists

between the amount of PGE2 in circulation and the levels of IFN-α mRNA; high IFN-α
expressers with low levels of PGE2 and vice versa. Elevated levels of Type I IFN limit and

inhibit PGE2 production both in vitro as well as in vivo [39]. IRF7 expression was limited to

high IFN-α expressers, whereas IRF5 expression was minimal. These differences in the expres-

sion of transcriptional factors influenced by the sensing mechanism, and the availability of the

appropriate ligand, bias the expression level(s) of the transcriptional factors and the IFN-α

compare the transcript levels between groups, non-parametric Mann Whitney test was applied, ��- p< 0.0001, IFN-α
expression baseline Vs After treatment; �- p< 0.001, IFN-β expression baseline Vs After treatment.

https://doi.org/10.1371/journal.pone.0235488.g002
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Fig 3. Line graph depicting mRNA expression of IFNs detected in individual paired samples at the time of

recruitment and after successful completion of treatment, (N = 36 patients). Panel A: IFN-α; Panel B: IFN-β; and

Panel C: IFN-γ. Target gene expression was normalized with β-actin gene expression. The fold mRNA expression has

been calculated with the 2-ΔΔCt formula, as described in methods. The data has been plotted in log10 scale. �� p< 0.001-

IFN-α expression before and after treatment, ��� p< 0.0001- IFN-β expression before and after treatment.

https://doi.org/10.1371/journal.pone.0235488.g003
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subtype generated [40]. The cytosolic sensor, namely the nucleotide-binding oligomerization

domain (NOD) 2 mediates expression of IRF5. The ligand associated with NOD2 induced pro-

duction of Type I IFN is muramyl dipeptide (MDP) [41,42], whereas the ligand for stimulating

expression of IRF7 is nucleic acids sensed by cytosolic receptors [40].

Fig 4. Scatter plot shows the inverse relationship between IFN-α expression and circulating levels of Prostaglandin E2

among TB patients (Panel A) and household family contacts (Panel B). High IFN-α expression: fold mRNA expression

>1; low IFN-α expression: fold mRNA expression<1. The data has been plotted in log10 scale. Non-parametric Mann

Whitney test was applied, ���- p<0.0001, P—TB patients expressing IFN-α High Vs Low expressers; ��-p<0.001, C-

Family Contacts expressing IFN-α High Vs Low expressers. Panel C: Correlation plot between IFN-α expression and

circulating levels of Prostaglandin E2 among TB patients. Non-parametric Spearman’s rho = -0.563; p<0.0001.

https://doi.org/10.1371/journal.pone.0235488.g004

Fig 5. Boxplot shows the fold mRNA expression of transcriptional factors IRF5 and IRF7 among TB patients. Comparative

fold mRNA expression of transcriptional factors IRF5 and IRF7 among TB patients segregated into High (fold mRNA

expression>1) and low (fold mRNA expression<1) IFN-α expressers. Target gene expression was normalized with β-actin

gene expression. The data has been calculated with the 2-ΔΔCt formula, as described in methods. The fold mRNA expression has

been determined with reference to healthy volunteers. The horizontal bar represents the median value for mRNA in each group,

the 25th and 75th percentile have been represented by the boxes. ┴ & ┬—the whiskers represent the maximum and minimum

values of the data, respectively. The data has been plotted in log10 scale. To compare the transcripts level between groups, non-

parametric Mann Whitney test was applied. ���- p< 0.0001, IRF 7 expression among high IFN-α expressers Vs Low IFN-α
expressers.

https://doi.org/10.1371/journal.pone.0235488.g005
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IFNs influence viability of intracellular M.tb. In the current study, the in-vitro neutraliza-

tion of IFN-α enables efficient mycobactericidal activity facilitating a reduction in mycobacte-

rial viability, despite the presence of IFN- β. In contrast, the presence of IFN-α/ β in the

absence of IFN-γ leads to enhanced viability of intracellular M.tb, as seen by the highest num-

ber of CFUs recovered from these cultures. These results showed that alterations in the bio-

activity of IFNs influence intracellular survival of M.tb, as evidenced by the heightened efficacy

in the killing of M.tb in the absence of IFN-α and enhanced viability of M.tb seen in the

absence of IFN-γ. The presence or neutralization of IFN-β did not influence the survival/kill-

ing of intracellular M.tb. These deliberate in vitro alterations emphasize the significance of

high levels of IFN-α expressed by patients before treatment (during active disease, Fig 1,

Table 2) potentially impact IFN-γ mediated anti-mycobacterial activity adversely during active

disease; compared to the repression of IFN-α expression leading to the predominance of IFN-

γ that occurs after successful treatment. Several reports suggest IFN-α exacerbates M.tb infec-

tion in multiple ways [31,33,43]. IFN-α mediates the downregulation of potentially protective

cytokines such as TNF-α, IL-1β & IL-12 and promotes the secretion of IL-10 an immune-sup-

pressive cytokine [44]. IFNAR-/- mice have enhanced and late mortality compared with WT

mice [34]. IFN-α suppresses IFN-γ mediated killing of mycobacteria both by an IL-10 depen-

dent [45], as well as in an independent manner. IFN-α disrupts IFN-γ mediated activation of

macrophages, compromising anti-mycobacterial activity, by downregulating IFN-γ receptor

Fig 6. Histogram depicting the effect of blocking IFNs with specific neutralizing antibodies on survival of intra

cellular M.tb present in THP-1 cells, as determined by colony forming units (CFU). Differentiated THP-1 cells were

infected with M.tb (10:1 MOI). The extracellular bacteria were removed and the respective neutralizing anti-IFN

antibodies were added as described in methods. The cells were harvested on the 5th day and processed for CFU

estimation. The bars represent the mean CFU ±SD of three independent experiments. The ���—p<0.0001, CFU of

Control Vs CFU of M.tb infected cells Rx with anti-IFN-α antibodies, ��—p<0.001, CFU of Control Vs CFU of M.tb
infected cells RX with anti-IFN-γ antibodies. Students t Test.

https://doi.org/10.1371/journal.pone.0235488.g006
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expression [46]; down-regulation of IFN-γ receptor expression following M.tb infection has

been reported [47]. In-vitro M.tb THP-1 model of infection showed the predominance of IFN-

α, similar to that seen among untreated TB patients. The predominance of IFN-α would

enhance mycobacterial viability leading to in-vivo overburdening and chronicity of infection.

In contrast, the dominance of IFN-γ, as seen in treated TB patients, would lead to the aug-

mented killing of intracellular M.tb, and in-vivo clearance, [48,49].

The current study showed that IFN-α expression was indeed associated with ongoing clini-

cal tuberculosis and is reduced or absent following successful treatment. These observations

suggest that the assessment of Type I IFNs levels would help monitor the patient’s response to

chemotherapy. Hence assessment of Type I IFNs would be advantageous compared to the

detection of acid-fast bacilli (AFB) by conventional smear microscopy, as changes in the

expression of Type I IFNs are expected to occur earlier and to precede the clearance and reduc-

tion in the mycobacterial load. Early and reliable assessment of response to chemotherapy

would benefit the clinical management of tuberculosis patients.

Supporting information

S1 Fig. Histogram depicting expression of interferon and interferon inducible genes in the

presence of specific neutralizing anti-interferon antibodies. (Panel A) IFI44 (type I inter-

feron inducible gene), and (Panel B) FcγR1 (type II interferon inducible gene) was monitored

in PMA differentiated THP-1 cells. The gene expression was normalized with β-actin gene

expression. The fold expression was calculated as described in methods. The bars represent the

mean fold mRNA expression ± SD of three independent experiments. The data has been plot-

ted in log10 scale. ���—p<0.0001, IFI44 and FcγR1 expression in control Vs cells treated with

neutralizing anti-IFN-α and anti-IFN-γ antibodies respectively, Students t Test.

(TIF)

S2 Fig. Time kinetics of mRNA expression as assessed by real-time PCR of type I and type II

interferons in PMA-differentiated THP1 cells infected with M.tb (Panel A: Live; Panel B: Heat-

killed). RNA was extracted at indicated time points and subjected to real-time PCR. Target

gene expression was normalized with β-actin gene expression. The data has been calculated

with the 2-ΔΔCt formula, as described in methods and has been plotted in log10 scale.

I-Mean ± SD.

(TIF)

S1 Data.
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