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Abstract: Anastomotic leakage is a dreadful complication in colorectal surgery. It has a negative
impact on postoperative mortality, long term life quality and oncological results. Nanofibrous poly-
caprolactone materials have shown pro-healing properties in various applications before. Our team
developed several versions of these for healing support of colorectal anastomoses with promising
results in previous years. In this study, we developed highly porous biocompatible polycaprolactone
nanofibrous patches. We constructed a defective anastomosis on the large intestine of 16 pigs, covered
the anastomoses with the patch in 8 animals (Experimental group) and left the rest uncovered (Con-
trol group). After 21 days of observation we evaluated postoperative changes, signs of leakage and
other complications. The samples were assessed histologically according to standardized protocols.
The material was easy to work with. All animals survived with no major complication. There were
no differences in intestinal wall integrity between the groups and there were no signs of anastomotic
leakage in any animal. The levels of collagen were significantly higher in the Experimental group,
which we consider to be an indirect sign of higher mechanical strength. The material shall be further
perfected in the future and possibly combined with active molecules to specifically influence the
healing process.

Keywords: colorectal surgery; nanofibrous materials; anastomotic leakage; intestinal anastomosis;
anastomotic patch; polycaprolactone; electrospinning; experiment; peritoneal adhesions

1. Introduction

Anastomotic leakage (AL) is a severe and feared complication in colorectal surgery.
There used to be a lack of consensus over the classification of such conditions in the past,
making it difficult to compare complication rates after specific types of procedures. Rahbari
et al. [1] created a clear classification of the leaks depending on the type of approach to
the complication, which is generally accepted by the wider medical community. However,
different hospitals have different approaches and what could be treated conservatively in
one department (classified as grade A or B [1]), could also end up with an anastomosis
resection and a Hartmann procedure in another (classified as grade C [1]). It is therefore
very difficult to assess the real incidence of AL, however it is usually reported to be as high
as 5 to 19% [2–4]. The majority of colorectal procedures are performed for colorectal cancer
and the number of performed procedures is enormous. Therefore, these complications
form a great medical problem [5,6].
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Many risk factors have been identified and one of the strongest is the position of
anastomosis. Especially low anastomoses (within 5 or 6 cm from the anal verge [7,8]) show
high risk of AL [9,10]. Other known factors are age, gender, smoking, steroid therapy
and more [9–11]. All of the risk conditions are assumed to decrease the patient’s healing
abilities generally or locally. However, the specific pathophysiological mechanisms are
not well described. As postoperative life quality is often terribly compromised after such
complications and the complication itself is in many cases (especially grade C) fatal, AL is
considered a large socioeconomic burden [12,13].

Peritoneal adhesions (PAs) are a common problem in abdominal surgery. They are
formed in various extents after all surgical procedures and also other damage to the
peritoneal cavity. Their purpose is protective, however they are in many cases a source of
long term postoperative complications such as gastrointestinal obstruction, infertility or
abdominal discomfort [14].

Some kind of patch seems to be a promising solution for local prevention of AL (and
possibly PAs). Many materials have been tested for these purposes yet none of them are
currently accepted in routine clinical practice [15–17]. There also has not been any material
developed and tested for prevention of both PAs and AL according to our knowledge and
a literature search.

Nanofibrous materials are nonwoven fabrics created by different techniques, usually
from polymeric biomaterials. The variety of source materials and range of fabrication
protocols offer an enormous spectrum of such fabrics, naturally resulting in novel applica-
tions in medical use. Some versions of nanofibrous planar biodegradable materials have
been described to have a positive effect on wound healing by several authors [18–20]. It
is assumed to be caused, among other factors, by its structural similarities to collagenous
extracellular matrix [19]. There are a variety of synthetic biodegradable materials suitable
for fabrication of nanofibrous scaffolds such as polycaprolactone (PCL), polylactide, polyg-
lycolide, polydioxanone, polyhydroxybutyrate and others [21]. PCL is among the most
used for implantable devices because of its good mechanical and biological properties and
for the fact that it is a substance already in use in clinical medicine [22–24].

Electrospinning is one of the most commonly used approaches for scaffold production.
The versatility of the process together with easily controlled parameters has led to wide use
of electrospun scaffolds in the field of regenerative medicine and tissue engineering [25].
In our study, the planar nanofibrous PCL layers were fabricated via a needleless electro-
spinning technique called NanospiderTM. The chosen method contrasts with commonly
used needle electrospinning by allowing large-scale industrial production, thus supporting
further introduction of the material to the market.

Our team developed and tested several versions of these materials [26,27]. A complex
histological, clinical and macroscopic evaluation system has been perfected in recent
works [26].

The healing process of both a skin wound or an anastomosis on the small or the large
intestine is a complicated process that is yet to be fully explored and understood [28]. How-
ever, some parts of the process are known and it is certain that this process must remain well
balanced for a successful outcome. A healthy peritoneum is a well-perfused metabolically
active structure capable of relatively high metabolic exchange with its surroundings in-
cluding both peritoneal fluid and other viscera and neighboring peritoneal surfaces [29,30].
Based on the results of our previous experiments and on the presumption that a certain
level of metabolic exchange between the sutured intestine and the surrounding peritoneal
surfaces is needed to maintain the healing process rather than creating a sealed barrier,
we decided to create a very fine porous nanofibrous patch. Such a patch should allow
this metabolic exchange while maintaining the pro-healing properties of a nanofibrous
mesh we proposed in the previous studies [26,27]. The process conditions for fabricating a
material with a low surface density were optimized via needleless electrospinning.

According to our knowledge, our study is the first to propose the idea of a porous
anastomotic patch for healing support that should not act only as a mechanical barrier, but
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support the healing process of the intestinal anastomosis. We intend to develop such a
patch into a product that could be routinely used in colorectal surgery for healing support
in either all or high risk anastomoses.

In this study we aimed to develop an ultrafine porous polycaprolactone nanofibrous
patch, use it in a perfected model of complicated anastomotic healing on the large intestine,
and further develop current assessment methods for evaluation of anastomotic healing in
experimental settings.

2. Materials and Methods
2.1. Material Preparation (Electrospinning Method)

A mixture of 16% w/w PCL (Mw 45,000 g/mol, Sigma Aldrich, St. Louis, MI, USA) in
chloroform/ethanol/acetic acid in ratio 8/1/1 (Penta Chemicals, Prague, Czech Republic)
was stirred 24 h until complete dissolution of the PCL granulate. Subsequently, the solution
was electrospun using the needleless NanospiderTM 1WS500U electrospinning device (El-
marco, Liberec, Czech Republic) (scheme in Supplementary Figure S1). The environmental
parameters such as the relative humidity and temperature were controlled via the climatic
system NS AC150 (Elmarco). The nanofibers were collected on a polypropylene spunbond
substrate. The process parameters were optimized to produce a nanofibrous layer with
low surface density, namely 10 g/m2 (listed in Appendix A, Table A1).

2.2. Material Characterization

A scanning electron microscope (SEM) VEGA 3 TESCAN (SB Easy Probe, Brno, Czech
Republic) was used to obtain the surface morphology of the fabricated nanofibers. Prior
to scanning, the samples were sputter coated with 10 nm of gold using QUORUM Q50ES
(Quorum technologies, Lewes, UK). The fiber diameters were assessed by the software
IMAGE J (NIH Image, Bethesda, MD, USA) by randomly measuring 500 fibers in the scans.
The specific weight was calculated by weighing of samples in the dimension 10 × 10 cm
(n = 10).

Sterilization and in vitro biocompatibility tests: Before in vitro testing, the materials
were sterilized via low temperature ethylene oxide (Anprolene, Andersen Sterilizers, Haw
River, NC, USA) according to the Czech norm CSN EN ISO 11135-1. The materials were
tested one week after sterilization to eliminate the effect of ethylene oxide residues in the
layers. The PCL scaffolds were seeded with 3T3 mouse fibroblasts (ATCC, Manassas, VA,
USA) in a concentration 7 × 103 cells per well. Metabolic activity was evaluated after
3, 7, 14 and 21 days via colorimetric Cell Counting Kit-8 (CCK-8) (Dojindo Laboratories,
Rockville, MD, USA). During the CCK-8 assay, the scaffolds were incubated with 10% (v/v)
of CCK-8 solution in full DMEM media for 3 h at 37 ◦C, 5% CO2. Absorbance was measured
at 450 nm (n = 5). The morphology of the cells on the PCL materials was also monitored.
Fluorescence imaging was performed with Nikon Eclipse-Ti-E (Nikon Imaging, Prague,
Czech Republic) on fixed cells with 2.5% v/v glutaraldehyde (Sigma Aldrich, St. Louis,
MI, USA) in PBS by adding DAPI (for cell nuclei visualization) and phalloidin-FITC (for
staining actin cytoskeleton) after 3, 7, 14 and 21 days. The MATLAB software (MATLAB
Student R2020b, Mathworks, Natick, MA, USA) was used to calculate the number of cells
per 1 mm2 of the scaffold from 10 random fields of view. Dehydrated samples with fixed
cells were also scanned via SEM during the same time period to obtain the morphology of
the cells.

2.3. Experimental Design

We used 16 Prestice black-pied pigs in two groups; this number was chosen after
consultation with a statistician (Supplementary Document S1). The animals were subjected
to transection of the descending colon and anastomosis with a standardized defect under
general anesthesia (Figure 1).
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Figure 1. Construction of a defective anastomosis. Intestinal anastomosis with a defect on antimesen-
teric side pulled through a small incision.

The defect was covered with the nanomaterial in the Experimental group while it
was left uncovered in the Control group. The animals were observed for 3 weeks. Sample
collection and macroscopic evaluation were performed on the 21st postoperative day
(POD). Histological evaluation followed.

2.4. Surgical Procedure

The animals were not fed on the day of the surgery, but no further intestinal prepara-
tion was applied. They were premedicated with ketamine (Narkamon 100 mg/mL, BioVeta
a.s., Ivanovice na Hané, Czech Republic) and azaperone (Stresnil 40 mg/mL, Elanco AH,
Prague, Czech Republic) administered intramuscularly. The animals were weighed prior
to the surgical procedure. General anesthesia was maintained by continual application of
propofolum MCT/LCT (Propofol 2% MCT/LCT Fresenius Medical Care a.s.). Nalbuphin
(Nalbuphin, Torrex Chiesi CZ s.r.o., Prague, Czech Republic) was used for analgesia. A
single dose of 0.6 g Amoksiklav (Amoksiklav 1.2 g, Sandoz s.r.o., Prague, Czech Republic)
was administered intravenously 30 min before the skin incision, a second 0.6 g dose was
administered 2 h later.

A Pro-Port implantable central venous catheter (Deltec, Smiths medical, Minneapolis,
MN, USA) was introduced in general anesthesia through the right jugular vein and attached
to the subcutaneous tissue on the right lateral side of the neck in each animal for easy and
stress-less manipulation with the animal during the follow-up. After the implantation,
we entered the abdominal cavity via a 10-cm-long transrectal incision performed in the
left caudal abdominal quadrant. We pulled the descending colon up through the incision.
We then transected the colon approximately 20 cm from the anus. We used soft intestinal
clamps to prevent solid intestinal contents from contaminating the abdominal cavity. We
cleaned the two ends of the transected colon using wet cotton balls. We constructed
a hand-sewn end-to-end anastomosis using the standard seromuscular running suture
using glyconate monofilament 4/0 suture line (Monocryl 4/0, B. Braun Medical s.r.o.,
Prague, Czech Republic). We intentionally left a 1-cm-large defect on the ventral side of
the anastomosis, simulating a technical fault. We placed a standard 2.5-cm-wide sheet of
the nanomaterial onto the sutured intestine, covering the intestinal circumference with the
defect and the neighboring parts of the mesocolon in the Experimental group. We left the
defect uncovered in the Control group. We placed the colon back to the abdominal cavity
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and sutured the peritoneum with an absorbable material (Vicryl 3/0, Ethicon Inc., Johnson
& Johnson, s.r.o., Prague, Czech Republic) to prevent adhesions to the abdominal wall.
Then we closed the muscle layer using single non-absorbable sutures (Mersilene 1, Ethicon
Inc., Johnson & Johnson, s.r.o., Prague, Czech Republic). We rinsed the subcutaneous tissue
with saline solution before finally suturing the skin.

2.5. Postoperative Observation

The animals were observed for 3 weeks and they were checked daily for stool passage,
body temperature and clinical signs of complications by both a surgeon and a veterinarian.
Activity of the animals was scored using a 4-point scale (normal activity, decreased activity,
little to no activity, irritated animal). Intravenous infusions of 250 mL 10% glucose and
250 mL Hartmann solution were applied daily in the first 3 Postoperative days (PODs). The
animals were fed according to a re-alimentation schedule created for previous experiments.
When feeding intolerance occurred, intravenous infusions were administered in the same
way as in the first three PODs. Blood samples were obtained in defined time points (before
the surgical procedure, 2 h after construction of colonic anastomosis, on the 1st POD, 3rd
POD, 7th POD, 14th POD, 21st POD) and tested for blood count, level of bilirubin, liver
enzymes, hemoglobin, urea and creatinine to distinguish metabolic disorders. Animals
were weighed each time the blood sample was taken. A 5% weight difference from the
initial weight was considered a significant weight change.

2.6. Macroscopic Evaluation

The animals were subjected to laparotomy again on the 21st POD under general
anesthesia. The abdominal cavity was inspected and checked for signs of AL (visible
free intestinal contents or purulent secretion, macroscopic changes of peritoneal surfaces),
visible defects in the site of anastomosis, changes in the intestinal diameter (stenosis of the
anastomosis, dilation of oral segments of the intestine) or any other visible postoperative
changes. At same time, the extent and location of PAs (according to qualitative Zühlke’s
grading and quantitative Peritoneal Adhesions Amount Score (PAAS) (Supplementary
Figure S2) [26]), amount and macroscopic quality of peritoneal fluid and the position and
appearance of the nanofibrous material (if present) were recorded.

The intestinal specimens including the anastomoses were collected together with
surrounding adhering tissues, cut on the mesenteric side longitudinally, pinned onto a cork
underlay and stored in 10% buffered formalin.

2.7. Histological Evaluation

The intestinal samples were cut into 5 pieces, 5 mm thick, crosswise to the line
of the anastomosis in the area of the anastomotic defect. The tissues were processed
by common paraffin technique. Each sample was cut to 5 µm slides and stained with
hematoxylin and eosin for comprehensive overview; a Gomori trichrom kit was used to
stain connective tissues.

The samples were investigated semi-quantitatively and quantitatively. Epithelization,
inflammatory infiltration and necrosis were assessed in a single overall semi-quantitative
investigation (Intestinal Wall Integrity Score (Appendix B, Table A2)). The inflammatory
reaction to stitches and microabscesses were not included in the score. The score was
determined for all five blocks, and the three blocks with the highest score (corresponding
to the area of the anastomotic defect) were used for statistical evaluation.

The blocks with the highest total score for each pig were subsequently analyzed quan-
titatively; 5 µm sections were stained with picrosirius red (Direct red 80) for visualization of
collagen in polarized light. Immunohistochemical methods were used for detection of the
vascular endothelium using Anti-Von Willebrand Factor antibody (Abcam ab6994, dilution
1:400); Calprotectin Monoclonal Antibody MAC387 (Invitrogen MA1-81381, dilution 1:200)
was used for detection of granulocytes and tissue macrophages.
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The area for quantitative evaluation for samples without visible defect of the muscular
layer was defined as the intestinal wall excluding mucosa located 3 mm orally and aborally
from the center of the anastomosis. The evaluation area for samples with a defect of the
muscular layer or pseudodiverticulum was defined as 2 mm orally and aborally from
the defect margins. The volume of endothelial cells, volume of MAC387 positive cells
and volume of collagen was assessed using stereological methods in a similar way as in a
previous study [26].

2.8. Statistics

Common descriptive statistics and frequencies were used to characterize the sample
data set. Due to their non-normal distribution, the intestinal wall integrity scores and histo-
logically determined volume fractions were compared between the Experimental and Con-
trol group using Mann–Whitney U test in STATISTICA data analysis software (Version 12,
StatSoft, Inc., Tulsa, OK, USA). The material properties, presented as mean ± standard
deviation (SD), were analyzed using GraphPad Prism (Version 7, GraphPad Software, San
Diego, CA, USA). Firstly, the Shapiro–Wilk test was used to prove or reject the normal
distribution of the data. For the normally distributed data, a parametric ANOVA test with
Tukey’s multiple comparison was performed. The nonparametric Kruskal–Wallis with
Dunn’s multiple comparison was chosen for the data following non-normal distribution.
All reported p values are two-tailed and the level of statistical significance was set at
α = 0.05.

3. Results
3.1. Material Properties

Sheets of PCL nanofibrous material were successfully prepared and sterilized. The
material appeared very subtle yet the manipulation with it was still comfortable. The
material was easy to apply onto the intestinal surface and it remained adhered to the
spot of application without any need of further fixation. The morphology of the fibrous
material was assessed by SEM (Figure 2A). The fibers had no defects and were without any
dominant orientation. The fiber diameter was (385 ± 239) nm (Figure 2B). The high SD is a
consequence of ultrafine fibers being present together with larger ones. The specific weight
of the material was calculated as (9.67 ± 0.77) g/m2; the data are symmetrical around the
mean value (Figure 2C).

3.2. Cytocompatibility

Adhesion, proliferation and morphology of the 3T3 mouse fibroblasts on the PCL
scaffolds were monitored with fluorescence microscope and the scanning electron micro-
scope after 3, 7, 14 and 21 days (Figure 3A). The length of the experiment corresponds
with the duration of the in vivo study. Cell viability was determined using a colorimetric
assay CCK-8 after 3, 7, 14 and 21 days of incubation of 3T3 mouse fibroblasts with the
tested fiber layers. The obtained mean absorbance values express the cell viability of the
cultured cells (Figure 3B). According to the CCK-8 assay, the absorbance was low during
the first testing day, which is in positive correlation with the microscopy observation. On
the seventh day of cultivation, an increase in viability was measured. At the same time,
spreading of the cells was observable on the microscopy images, as the cells expanded
across the material and began to form isolated cell islands. After 14 days of cultivation,
there was a further increase in viability and the cells formed a sub-confluent layer. On
the last testing day, the SEM image revealed 100% confluence of the cells. The number of
the cells (Figure 3C) correlates with the remaining results. The highest cell density was
observed during the 14th day (3887 ± 539) cells/mm2, while on the last testing day it
dropped to (2735 ± 880) cells/mm2.
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3.3. Manipulation

The material was easy to apply and no further fixation was needed. Procedure times
were not prolonged by the usage of the material.

3.4. Clinical Results

All animals survived the observation period in good clinical condition. A temporary
activity decrease was observed in one animal from the Control group (12.5%) and in three
animals from the Experimental group (37.5%).

There were no major complications during the observation period. Laparotomy
wound infection occurred in one animal from the Experimental group (12.5%) and one
animal from the Control group (12.5%). Infection of the skin wound of the pro-port system
occurred in the same animal from the Control group (12.5%).

No animal developed signs of gastrointestinal obstruction (vomiting, feeding intoler-
ance). No animal developed signs of peritonitis and sepsis (abdominal wall tenderness,
significant activity decrease, significant laboratory changes). Peroral intake was tolerated
by all animals, all animals were fed according to the schedule with no exceptions. Only
three animals from the Control group (37.5%) gained more than 5% of weight during the
experiment, while six animals from the Experimental group (75%) showed such weight
gain (Appendix C, Table A3).
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3.5. Macroscopic Results

There was no macroscopically visible pathological reactions to the material in theab-
dominal cavities of the animals after 3 weeks of observation. Four animals (50%) had no
PAs at the site of the anastomosis in the Control group, while three animals (37.5%) from
the Experimental group had no PAs there. A mean PAAS value of 1 was recorded in both
the Control and the Experimental group (Tab). All PAs were scored 2 points according to
the Zühlke’s grading system in both groups (partially vascularized adhesions, possible to
separate by combination of blunt and sharp dissection). Stenosis of the anastomosis was
observed in one animal from the Control group (12.5%) with low shrinkage of the intestinal
diameter (less than 1/3) (Figure 4A). No stenoses were observed in the Experimental group
(Figure 4B). No signs of gastrointestinal obstruction (dilatation of oral segments) were ob-
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served in any of the animals. No macroscopic signs of AL were observed (no visible defect
in the site of the colonic anastomosis, no free intestinal content in the abdominal cavity).
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Figure 4. Macroscopic findings in situ at the end of the observation period; (A) stenotic anastomosis
from the Control group; (B) anastomosis with attached material (Experimental group).

Complete dislocation of the material was not observed in any of the animals of the
Experimental group. Partial dislocation was observed in three animals (37.5%), however
the material always kept covering the location of the anastomotic defect (Figure 5). The
defect was not visible in the Control specimens without a patch (Figure 6A). The material
was well attached in the most of the specimens (Figure 6B).

Most of the adhesions in the site of the anastomosis were between the large intestine
and the urinary bladder. There were no PAs observed in the rest of the abdominal cavity in
any animal.

3.6. Blood Sample Results

There were no statistically significant differences in the measured parameters be-
tween the two groups and no significant deviations from normal levels of the parameters
(see Supplementary Table S1).

3.7. Histological Results

The material was washed out during the histological fixation and staining. There
were no microscopic signs of AL (no full-thickness defect was found in any specimen
in either the Control or the Experimental group). We found normal morphology of the
intestinal wall in all specimens using a comprehensive overview (Figure 7). In some cases,
the muscular layer did not heal completely and pseudodiverticula were formed (three
cases in the Control group (37.5%) and seven cases (87.5%) in the Experimental group;
Figure 8)). There was no statistically significant difference between the groups according
to our Intestinal Wall Integrity Score (Figure 9A). There were significantly higher volume
fractions of collagen in the Experimental group (Figure 9B). There was no statistically
significant difference between the two groups in volume fractions of MAC 387 positive
cells (Figure 9D) and endothelial cells (Figure 9C).
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Figure 8. Example histological specimens from both groups. Gomori trichrome (A) Control group, optimal healing, normal
morphology of the intestinal wall, muscular layer with normal scar tissue; (B) Control group, larger defect of the muscular
layer, a pseudodiverticulus; (C) Experimental group, optimal healing, normal morphology of the intestinal wall, visible
residues of the nanofibrous material in the bottom of the image; (D) Experimental group, large defect of the muscular layer,
a pseudodiverticulus, visible residues of the nanofibrous material in the bottom of the image covering the incomplete defect
of the intestinal wall.
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Figure 9. Graphical depiction of main histological results. (a) The intestinal wall integrity score in the Control group and the
Experimental group with no significant differences with median value above 80%. (b) Significantly higher volume fractions
of collagen at the site of anastomosis in the Experimental group. (c) No significant differences between the two groups in
volume fractions of endothelial cells, lower dispersion range of values in the Experimental group. (d) The difference in
volume fractions of inflammatory cells at the site of anastomosis between the groups is not statistically significant.

4. Discussion

We developed a nanofibrous material based on biodegradable polycaprolactone with
very low specific weight. The material was uniquely designed for the reinforcement of GI
anastomoses and its design was based on our previous in vitro and in vivo experiments.
Polycaprolactone is often used for its biocompatibility and biodegradability [31–33]. The
in vitro testing with 3T3 mouse fibroblasts proved the cytocompatibility of the material;
the cells formed a fully confluent layer on the surface of the scaffold after 21 days. This
observation is consistent with other literature resources, where the combination of micro-
and nanofibers in PCL scaffolds supported cell growth [21,22]. Prior to the in vitro testing,
the scaffolds were sterilized with low temperature ethylene oxide with respect to the low
melting point of PCL. The possible effect of the ethylene oxide sterilization on PCL was
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already examined in our previous study by Horakova et al. [27]. The PCL patches are
easy to apply and we value this as an important property. While the material is very
subtle as its specific weight is only 10 g/m2, it was still mechanically strong enough to be
handled easily. The material always remained in the site of application during the surgical
procedure and during reposition of the viscera without further fixation. The convenient
application together with natural fixation are key properties should this approach be used
in routine clinical practice.

We successfully created a model of anastomosis with a defect on the large intestine
of a pig. We used the Testini’s [16] modified model from previous experiments [26] in
order to move the anastomosis to a location with bacterial contamination and higher
risk of healing complications. The defect was chosen to be small enough to simulate a
technical fault (which is also one of the contributing factors of AL [34]) and large enough
to induce imperfect healing. The position of the anastomosis 20 cm from the anus was
chosen for its good accessibility, no need for further preparation, possibility of small
abdominal wound and therefore low non-anastomosis related complication risk. The
model allowed us to focus only on imperfect anastomotic healing with no other disturbing
factors. Together with the assessment methodology, the model allowed a reduction in
the number of experimental animals and gave what we consider statistically reliable
results. A three-week observation period was chosen based on our previous experience
and the possibility of using evaluation histologic systems from previous publications. AL
is typically an early complication, usually appearing within the first 10 PODs [2,35]. To
verify the behavior of the material in a long term period regarding its complete absorption
and impact on the risk of late complications, longer observation times would be necessary.

All of the animals in both groups survived the observation period in good clinical
shape with a low complication rate. An activity decrease was observed only in the early
postoperative period in both groups, which we considered as normal postoperative state.
The feeding tolerance was equally good in both groups. The animals from the Experimental
group gained weight in more cases than in the Control group. Weight gain is a sign of
good postoperative adaption [36]. No animal developed ileus or sepsis or other serious
pathological reaction to the material. This contributes to our assumption that it is safe to
use in this application.

We observed slight shifting of the material in a few cases, however the material always
remained covering the spot of anastomotic defect. We observed this also in the last study
on the small intestine with an earlier version of the material, and therefore we assume it
is not a coincidence [26]. This barrier was always present even in specimens with larger
defect of muscular layer, and no macroscopic or microscopic AL was observed. It remains
a question whether the material is able to prevent manifestation of AL. An anastomotic
leakage is in experiments usually obtained by either large anastomotic defects or other
negative influences (infection, radiation, devascularization). The model of a small defect
was chosen to study the impact of the material on imperfect anastomotic healing in highly
standardized conditions.

There was one partial shrinkage of the intestinal diameter at the site of the anastomosis
in one animal from the Control group (12.5%), therefore we assume the material does not
cause formation of anastomotic strictures. Those can however develop in longer time
periods and thus a longer observation time would be needed to verify this information [37].

The level of adhesions was similarly low in both groups, suggesting the current
material version to be the first in our series of polycaprolactone electrospun materials
without pro-adhesive properties [26]. We consider the generally low amount of adhesions to
be also a result of short procedure times with low manipulation with tissues [38]. Excessive
formation of PAs is considered to be a result of a healing problem [39]. The visceral
peritoneum is the superficial layer of the intestine, so wound healing of the peritoneum
is a part of anastomotic wound healing. Therefore, we think, qualitative and quantitative
assessment of PAs should be involved in the evaluation of anastomotic healing [26].
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There were no statistically significant differences in vascularization and inflammatory
cells infiltration according to the stereological measurements. This suggests a normal
healing process [40]. However, the levels of collagen were found higher in the Experimental
group. It was previously observed in mechanical tests of intestinal anastomoses that higher
levels of collagen are associated with higher mechanical strength and higher anastomotic
bursting pressure [41]. Bacterial collagenases were identified as a possible contributor
to development of AL. Their activity causes collagen degradation in the site of intestinal
anastomosis. Intestinal colonization with several bacterial species was identified as a strong
risk factor of AL due to their production of collagenases [41–43].

We used both traditional evaluation methods [40] with those that were developed for
our purposes in previous papers [26]. The intestinal wall integrity score from the previous
study was adjusted for a defective model on the large intestine. Together with the rest
of the involved assessment methods, it forms the most robust and complex evaluation
system of anastomotic healing in similar experiments according to our knowledge and
literature search.

The above-mentioned results all suggest possible contribution to AL prevention by
our material only indirectly. To obtain more distinguishable results, a model with more
compromised anastomotic healing with high risk of AL manifestation would be necessary.
This is certainly a limitation of this study.

Because the material was washed out during the histological processing, we cannot
evaluate the level of biodegradation. However, this was studied earlier for PCL in other
forms [44].

The material seems to be an ideal version for use in combination with active substances
like anti-inflammatory drugs, antibacterial agents or antibiotics as an anastomotic patch.
Polycaprolactone was identified as a good medium for regulated drug release [33,45]; there
is a broad spectrum of active molecules that could be beneficial for either AL prevention
or prevention of excessive PA formation [39,46–49]. Therefore, we intend to perfect the
material using these substances and to study their impact on anastomotic healing and
complications further to finally offer a perfect anastomotic patch for patients with high risk
of AL. Possible clinical studies will be planned afterwards.

5. Conclusions

We succeeded in creating a unique ultrafine polycaprolactone electrospun material
and in applying it in a model of complicated anastomotic healing on the pig colon. The
planar PCL layer was fabricated via needleless electrospinning technique, a method suit-
able for eventual large-scale production. The material is easy to use without any need for
further fixation. The presence of the material did not cause any adverse effects in vivo.
The PCL layer showed good cytocompatibility and biocompatibility and was well toler-
ated during the whole animal study. The material is also not pro-adhesive and did not
cause anastomotic strictures or other complications. The anastomotic specimens showed
significantly higher levels of collagen after the 3 weeks of observation, which is an indirect
sign of higher mechanical strength. Impact on the risk of AL was not observed directly
as no AL appeared in either group. We intend to develop new versions of the material
with active agents and study them further in adjusted experimental settings to obtain more
distinguishable results before moving to clinical studies on colorectal surgical patients.
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Appendix A

Table A1. Process parameters of the needless electrospinning via NanospiderTM.

Distance between the electrodes [mm] 175

Voltage Electrode 1 [kV] −10

Voltage Electrode 2 [kV] 40

Rewinding speed [mm/min] 60

Cartridge movement speed [mm/s] 450–500

Temperature [◦C] 22

Relative humidity [%] 50

Appendix B

Table A2. Intestinal Wall Integrity Score.

Layer Points Finding

Mucosa
1/4 Completely re-epithelized

0/4 Incompletely re-epithelized

Submucosa
1/4 Completely healed

0/4 Purulent infiltration, necrosis

Muscularis *

3/12 No distance (≤0.09 mm)

2/12 Distance 0.1 to 1.99 mm

1/12 Distance 2 to 3.99 mm

0/12 Distance over 4 mm

Serosa

3/12 No purulent infiltration and necrosis

2/12 Purulent infiltration and/or necrosis from the muscular layer to area of nanomaterial **

1/12 Purulent infiltration and/or necrosis from the area of nanomaterial to the peritoneum ***

0/12 Purulent infiltration and/or necrosis passes to the peritoneum

* Distance between the two anastomosed muscle layers. ** 2/12 points for purulent infiltration and/or necrosis from muscular layer to half
thickness of the serosa in the Control group. *** 1/12 points for purulent infiltration and/or necrosis from half thickness of the serosa to the
peritoneum in the Control group.
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Appendix C

Table A3. Weight profile of experimental animals.

Animal POD 0
Weight (kg)

POD 3
Weight (kg)

POD 7
Weight (kg)

POD 14
Weight (kg)

POD 21
Weight (kg)

Control group

cg 01 34 31.6 31.4 33.8 33

cg 02 31 30.1 29.4 30.7 30.7

cg 03 37 33.8 33.7 34.5 34.5

cg 04 45.5 41.3 41.1 42 42.1

cg 05 48.4 43.6 42.8 44 43.8

cg 06 30.6 30 30.7 29.5 32.5

cg 07 30 29 29.8 33.6 32.1

cg 08 27.8 25.9 27.2 30.5 30.5

Experimental group

eg 01 28.7 28.3 29.2 29.4 29.4

eg 02 29.9 29.3 28.2 29 30.3

eg 03 35.8 35.2 35.2 39 37.9

eg 04 37.3 36.8 36 41 41

eg 05 41.7 41.5 41.3 43.4 45.2

eg 06 42.9 42.2 42.2 43.8 45.1

eg 07 27.9 27.4 26.3 29.4 30

eg 08 27.2 26.8 25.8 29.1 29
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