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Abstract

Antigenic characterization based on serological data, such as Hemagglutination Inhibition (HI) assay, is one of the routine
procedures for influenza vaccine strain selection. In many cases, it would be impossible to measure all pairwise antigenic
correlations between testing antigens and reference antisera in each individual experiment. Thus, we have to combine and
integrate the HI tables from a number of individual experiments. Measurements from different experiments may be
inconsistent due to different experimental conditions. Consequently we will observe a matrix with missing data and
possibly inconsistent measurements. In this paper, we develop a new mathematical model, which we refer to as Joint Matrix
Completion and Filtering, for HI data integration. In this approach, we simultaneously handle the incompleteness and
uncertainty of observations by assuming that the underlying merged HI data matrix has low rank, as well as carefully
modeling different levels of noises in each individual table. An efficient blockwise coordinate descent procedure is
developed for optimization. The performance of our approach is validated on synthetic and real influenza datasets. The
proposed joint matrix completion and filtering model can be adapted as a general model for biological data integration,
targeting data noises and missing values within and across experiments.
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Introduction

Influenza virus causes both seasonal epidemics and pandemics,

and continues to present a threat to public health. Antigenic

changes by drift or shift at influenza surface glycoproteins,

especially hemagglutinin, changes its antigenic properties, and

thus allows influenza virus to evade the accumulating herd

immunity from influenza infection or vaccination [1,2]. Serolog-

ical assays such as Hemagglutination Inhibition (HI) and Micro

Neutralization (MN) are routine procedures used in antigenic

variant identification [3].

A serological data can be viewed as an n|m matrix, where n
and m are the numbers of antigens and antisera in the assays,

respectively. This matrix is used to quantify (direct or indirect)

binding reactions between the two comparing antigen and

antiserum. Each matrix entry (titre) can be a numeric value (high

reactor), or a low reactor, or a missing value [4]. The low reactors

are results of the detection limit of a serological assay, marked as

ƒh, where h is a threshold indicating the detection limit. The

missing values are generally caused by the limitation of resources.

In many cases, it would not be possible to perform all pairwise

comparisons between antigen and antiserum in each individual

experiment. Thus, we have to combine and integrate the datasets

from a number of individual experiments, each of which could be

a separate dataset (matrix with missing values) by itself.

Measurements from different experiments may be inconsistent

due to different experimental conditions. Consequently we will

observe a matrix with missing data and possibly inconsistent

measurements. Taking the HI assay as an example, typically less

than 15 reference antisera (antibodies) are used in each assay but

the number of test antigens (viruses) can be more than 100. It is

not possible to perform HI for all pairs of antigen and antiserum

reactions. Thus, the resulting HI table is generally incomplete.

The data absence in these low throughput biological experiments

could be up to 95%.

Integration of influenza serological data is critical for vaccine

strain selection and pandemic preparedness by providing an

antigenic ‘‘bluemap’’ for influenza viruses, including contempo-

rary and historical human influenza viruses and zoonotic influenza

viruses. However, integration of influenza HI datasets is not trivial

because HI data are notoriously noisy within and across the

experiments. A number of factors can affect the robustness of HI

assays [3]:

N Reference antisera. The antisera batch (from different

challenge experiments), storage conditions (temperature time),

and frozen-thawing can affect HI titre values.

N Types and batches of red blood cells. The red blood cells from

different animal species affect the HI titre values dramatically,

and the red blood cells from the same species can affect the HI

titre values.

N Variations in supplies. The types of plates (e.g., ‘‘U’’ or ‘‘V’’

shape) can affect the HI data interpretation.

N Error from personnel.
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Among these parameters, the antisera and red blood cells will

probably most significantly affect the results from HI assays [3].

To date, there is still lack of robust computational models for

integrating influenza HI data.

This paper proposes a new mathematical model called Joint

Matrix Completion and Filtering Model, for influenza serological

data integration. We address the major challenges caused by the

incompleteness and uncertainty in the observation. The proposed

model simultaneously handles these two challenges by assuming

that the underlying joint table is low rank and carefully modeling

different levels of random effects in each individual data table. We

develop an efficient blockwise coordinate descent procedure for

optimization. The performance of our model is validated on

synthetic and real influenza datasets.

Joint Matrix Completion and Filtering Model for
Biological Data Integration
In this study we focus on influenza HI data. There are two

major challenges in HI table integration: (i) to complete missing

entries; (ii) to handle noisy observations. We propose a joint matrix

completion and filtering method to simultaneously address these

two challenges. The basic idea of this model is to approximate the

merged data matrix using low-rank matrix decomposition, and to

incorporate the experimental bias of individual tables. The

challenge of missing data is handled by the low-rank matrix

model, where we have assumed that the antigens and antisera can

be represented by latent low-dimensional vectors, and the pairwise

inner product of these vectors approximate HI titre values

(including missing entries). The low-rank assumption of the

merged HI table is motivated from the intuition that its rows

corresponding to those antiviruses with similar antigenic charac-

terization are expected to be linearly dependent. Such a low-rank

assumption has also been made in our previous work [4] which

was shown to work quite well in completing a manually merged HI

table from [5]. The challenge of noise is handed by a two-level

hierarchical model which incorporates the biases of antisera in

different experiments and the system noise. The antiserum-level

bias should be considered because the antisera batch (from

different challenge experiments), storage conditions (temperature

time), and frozen-thawing can affect HI titre values. The system

noise comes from a number of sources such as types and batches of

red blood cells, variations in supplies, and error from personnel.

By combining the above two ideas, the joint model can be

mathematically posed as follows:

hi,j,k~uTi vjzrj,kzi,j,k, ð1Þ

where hi,j,k are the observed HI titre values between the antigen-

antiserum pairs (i,j)[I|J in table k[K , ui,vj[R
d are latent

representing vectors for antigen i and antiserum j, respectively, rj,k
are the (deterministic) bias of antiserum j in table k, and

i,j,k*N (0,s2) are the i.i.d. Gaussian random noises with unknown

variance s. Our goal is to estimate the parameters ui,vj ,rj,k,s from

the observations hi,j,k.

We propose to estimate the parameters via solving the

maximum log-likelihood objective which is equivalent to the

following minimization problem:

min
U ,V ,R,s

X
i,j[V,k[Kij

(hi,j,k{uTi vj{rj,k)
2=s2z log (s2), ð2Þ

where U~(ui)[R
d|DI D, V~(vj)[R

d|DJ D, and R~(rj,k)[R
DJ D|DK D.

The summation of (i,j) is taken over V(I|J which is the set of

antigen-antiserum pairs observed in at least one table. The

summation of k is taken over Kij(K which is the set of tables in

which the HI titre between antigen i and antiserum j are observed.

Note that the estimation of U ,V ,R is separated from that of s in

model (2). That is, we may first estimate fU ,V ,Rg via the

following least square formulation

fÛU ,V̂V ,R̂Rg~ argmin
U ,V ,R

X
i,j[V,k[Kij

(hi,j,k{uTi vj{rj,k)
2, ð3Þ

Figure 1. RMSE versus rank curves achieved by our method on
the simulated data. It can be observed that when data is noise free,
the minimal RMSE is achieved at the ground truth rank 10. For noisy
data, the minimum is attained at rank 5.
doi:10.1371/journal.pone.0069842.g001

Table 1. Simulated HI dataset: RMSE of HI titre and antiserum bias under different noise level configurations.

Measurements Methods (r,s) = (1,1) (2,1) (2,2) (3,3)

RMSE Our Model 1.213 (0.049) 1.336 (0.043) 1.414 (0.066) 1.624 (0.061)

(in HI titre) Average Model 1.228 (0.065) 1.602 (0.052) 1.663 (0.058) 2.004 (0.068)

RMSE Our Model 1.054 (0.022) 0.984 (0.016) 1.005 (0.013) 1.091 (0.026)

(in antiserum bias) Average Model 1.078 (0.026) 1.225 (0.031) 1.225 (0.028) 1.403 (0.035)

These figures are generated by setting rank values as the optimal ones according to Figure 1.
doi:10.1371/journal.pone.0069842.t001
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and then estimate s according to

ŝs~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
i,j[V,k[Kij

(hi,j,k{ûuTi v̂vj{r̂rj,k)
2

vuut ,

where n~
P

i,j[V,k[Kij 1 is the total number of observations in all

HI tables.

We present a blockwise coordinate descent procedure to solve

the problem (3). Starting from an initialization R(0), the algorithm

alternates between solving the following two subproblems on

fU ,Vg and on R respectively:

(U (tz1),V (tz1)
� �

~ argmin
U ,V

X
i,j[V,k[Kij

(hi,j,k{uTi vj{r
(t)
j,k)

2, ð4Þ

R(tz1)~ argmin
R

X
i,j[V,k[Kij

(hi,j,k{(u
(t)
i )Tv

(t)
j {rj,k)

2: ð5Þ

In our implementation, we initialize the algorithm with R(0)~0
which works satisfactory in the empirical study. We next describe

how to solve the subproblems (4) and (5).

Let us consider the minimization of subproblem (4), which is

equivalent to the following problem of rank-d matrix factorization

with missing values:

min
Z,U ,V

E(Z{UTV )0WE2Frob, s:t: zij~�zzij , i, j[V,

where E:EFrob denotes the Frobenius norm of matrix,

�zzij : ~1=DKij D
P

k[Kij (hi,j,k{r
(t)
j,k), Wi,j~DKij D if i, j[V and

Wi,j~0 otherwise. This problem is well studied in the matrix

completion literature and a number of efficient algorithms are

available online [6–10]. Here we utilize the LMaFit solver

developed by [6] which works well for our problem.

Concerning the minimization problem (5), it is not difficult to

check that R(tz1) has the following closed-form solution: for each

j,

Figure 2. Antiserum bias distribution. Top row: the ground truth antiserum bias added to the simulated tables for antisera #1, #20, #40, #80.
Bottom row: the recovered antiserum bias by our algorithm for the same four antisera. The noise level configuration for this group of experiment is
(r,s)~(3,1). The rank value d~5 is selected in our model.
doi:10.1371/journal.pone.0069842.g002
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Figure 3. Antigenic cartographies constructed by the considered models on the simulated data. Here we use MC-MDS for cartography
construction.
doi:10.1371/journal.pone.0069842.g003
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r
(tz1)
j,k ~

1P
i:(i,j)[V 1

P
i:(i,j)[V (hi,j,k{(u

(t)
i )Tv

(t)
j ), if k[

S
i K

ij

0, otherwise

8<
: :

After recovering the merged HI table, we will project the

influenza antigens onto a two-dimensional antigenic cartography.

Antigenic cartography presents an intuitive way to validate our

computational models with biological domain knowledge. The

details can be found in the Methods and Materials section.

Results

Parameter Selection
There is one free parameter, the rank d for matrix completion,

in our model. For the simulated data and the influenza HI data of

2009 H1N1 an H3N2 used in this study, a 10-fold cross validation

suggested a value of d between 3 and 20 for achieving low Root

Mean Squared Error (RMSE). For model initialization, we simply

use the mean table as the starting point. We have also tried

random initialization in the vicinity of the mean table. The

unreported experimental results suggest that the solution of our

model is insensitive to these initialization schemes.

Data Integration on Simulated HI Dataset
To demonstrate the effectiveness of our model in influenza data

integration, we performed Monte Carlo simulation using 100

randomly generated HI tables according to the joint model (1) (see

Materials and Methods section). The ground truth full HI table

contains 600 antigens versus 100 antisera and its rank is 10. We

further respectively group antigens and antisera into 10 groups.

The intra group HI titre is set to be high while the inter group HI

titre is set to be low. Six noise level configurations

f(r,s)g~f(0,0),(1,1),(2,1),(2,2),(3,1),(3,3)g are considered in

the simulation.

We use RMSE between the recovered HI titre and the true HI

titre as a measure of accuracy. We repeat the experiment 10 times,

and report the mean and standard deviation of RMSE. Figure 1

shows the RMSE versus rank curves obtained under different

noise level configurations. From this group of curves we can make

the following observations: (i) RMSE increases as the noise level

increases, especially when rank is relatively large; (ii) the lowest

RMSE is achieved at the rank close to ground truth rank 10; and
(iii) the lowest RMSE is insensitive to noise level. The second and

third observations confirm that low-rank approximation and

hierarchical noise model are effective for accurately and robustly

imputing the missing entries.

We now compare the proposed model to a baseline method

which simply averages the measurements observed at each entry

and then perform matrix completion over the resultant mean

table. We call this method average model. This can be viewed as a

simplified model of ours by setting rj,k:0 in Equation (2) (see

Materials and Methods section). Table 1 lists in rows 2 and row 3

the RMSE achieved by these two methods respectively. Note that

the only difference between our model and the average model is

whether or not the antiserum bias is explicitly modeled. These

results clearly showed that the explicit estimation of the antiserum

bias improves the matrix completion accuracy. Figure 2 shows the

ground truth antiserum biases we add to the data and the

recovered biases r̂rj,k by our model with the noise level

configuration (r,s)~(3,1). The rank value parameter is set to be

d~5 which is optimal according to Figure 1. We can see from this

qualitative result that the recovered antiserum bias is close to the

ground truth in terms of bias distribution and direction. The

RMSE values between the estimated antiserum bias and the

ground truth antiserum bias are listed in the row 4 and row 5 of

Table 1, respectively for our model and the average model. Here

the RMSE of antiserum bias by the average model is estimated in

a similar way as in our model (recall that the average model can be

taken as a special case of our model). This group of quantitative

comparisons confirm the advantage of our model over the average

model in recovering antiserum bias.

Figure 3 shows the constructed antigenic cartographies from the

ground truth table, the integrated tables by our model as well as

those by the average model. For each model, we show the

cartographies constructed by MC-MDS [4] which is a represen-

tative MDS method for antigenic cartography construction. We

show the results under noise level configuration (r,s)~(2,1) (see
Figure 3(b)&3(c)) and (r,s)~(3,1) (see Figure 3(d)&3(e)). For each
noise level configuration, we select the optimal rank d in our

model based on the RMSE curves in Figure 1. Visual inspection

on Figure 3 shows that the cartographies constructed from our

model are closer to the ground truth than those constructed from

the average model.

Data Integration on HI Datasets of 2009 H1N1 Influenza A
Viruses
The H1N1 2009 HI dataset contains 6 HI tables collected from

May of 2009 to August of 2009. The merged table is of size

253|28, i.e., 253 viruses versus 28 antisera. The RMSE versus

rank curves for H1N1 2009 are shown in Figure 4. The mean and

deviation of RMSE are calculated by 10-fold cross validation. The

curves show that our model consistently achieves lower RMSE

than average model under different ranks, especially when rank is

less than 10. This result supports the claim that explicitly modeling

the antiserum bias across tables is effective to improve the

prediction accuracy of table integration.

Figure 5 shows the constructed antigenic cartographies from our

model and the average model with MC-MDS. The scale of

antigenic cartography is based on the antigenic distances from HI

tables, e.g., each unit (grid) in the antigenic cartography represents

a 2-fold change in HI titre. In Figure 5(a)&5(b), the antigens are

Figure 4. RMSE versus rank curves achieved by the considered
models on H1N1 2009 data. The mean and deviation of RMSE are
calculated by 10-fold cross validation.
doi:10.1371/journal.pone.0069842.g004
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colored by month in which they are collected, while the antigens

are colored by tables in Figure 5(c)&5(d). Here we select rank d~3
in our model through 10-fold cross-validation (see Figure 4).

The antigenic cartography by the average model showed that

the viruses are separated by strips, indicating the viruses from

different months are antigenically different. This is not true

because there is no significant evidence demonstrating influenza

antigenic drift in the first wave of 2009 H1N1 pandemic. In

contrast, our joint matrix completion and filtering model was able

to integrate these data, and the viruses from different months are

mixed altogether. This is biologically sound.

Data Integration on HI Datasets of 2000–2007 H3N2
Human Seasonal Influenza Viruses
The H3N2 2000–2007 data used in our study contains a total of

369 individual HI tables performed from 2000 to 2007, including

11383 viruses and 393 antisera. All HI experiments were

performed using turkey red blood cells. The RMSE versus rank

curves are plot in the Figure 6. The mean and deviation of RMSE

are calculated by 10-fold cross validation. Once again, the curves

suggest that our model outperforms average model in table

integration accuracy.

Figure 7 shows the constructed antigenic cartographies for both

our model and average model. These antigens are labeled

according to their collected years. Visualization shows that the

constructed cartography from our automatic model is more

compact than that from average model. It is interesting to note

that our cartography is consistent to that created from a manually

curated HI table [11]. The Matlab code for reproducing the

results in this paper will be available upon request.

Figure 5. Antigenic cartography of H1N12009 dataset. Here the rank value d~3 is selected in our model for matrix completion and MC-MDS
is used for cartography construction. Top row: the antiviruses are colored by collected date. Bottom row: the antiviruses are colored by table.
doi:10.1371/journal.pone.0069842.g005
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Discussion

In this work, we investigated the problem of combining a set of

HI tables from different experiments in the same laboratories or

even from different laboratories into an integrated table. With

such a fusion of data, the rich but potentially redundant

information contained in individual tables can be compactly and

robustly represented in a single table which will in turn facilitate

data visualization and higher level biological data mining tasks

such as influenza surveillance. We note that each HI table

(experiment) only includes a dozen of reference antisera, which are

updated at each influenza season or even each month within the

same influenza season. In addition, it is common for individual

laboratories to use different antisera. Therefore, the integrated HI

table is typically an incomplete matrix. For each pair of antigen-

antiserum, its observed HI titre values in individual tables could be

varying due to the random effects of antisera and the system noise.

Therefore, the incompleteness and uncertainty of observations

present two major challenges in combining tables into an

integrated table.

We proposed a computational method for integrating multiple

HI tables, and demonstrated its usefulness in antigenic character-

ization. We paid special attention to the major challenges caused

by the incompleteness and the uncertainty of data. It is shown by

extensive experiments that the standard approach by averaging

the observations does not perform well. We proposed a

simultaneous matrix completion and filtering model which

carefully models different levels of random effects in each

individual table. Our experimental results showed that more

accurate results can be obtained through this new method. After

table merging, we can use MDS to construct its antigenic

cartography. In our experiments, we constructed antigenic

cartography by using MC-MDS [4]. We have also tried another

representative MDS method, the metric MDS [5], for cartography

construction. The main difference between metric MDS and MC-

MDS lies in that the former directly fits the HI titre (with proper

transformation) of antigen-antiserum pairs while the latter regards

each antigen as a row vector of data matrix and fits the pairwise

Euclidean distances between antigens. Our unreported results

suggest that both MDS methods work well although the MC-MDS

tends to output more compact cartographies than metric MDS, as

described elsewhere [4].

As we have shown in Figure 4 and Figure 6 that the prediction

performance deteriorates as the rank parameter of matrix

completion increases. In fact, the same trend has also been

observed in the constructed antigenic cartography. Figure 8 shows

the antigenic cartographies of H1N1 2009 constructed by MC-

MDS under rank 3, 10, 20. It can be seen that as rank increases,

the antigenic cartography becomes more and more separative.

This verifies that low rank assumption is vital for HI table

integration.

The proposed data integration model can be used as a generic

data integration model for biological datasets, especially the

binding affinity data. The study of biological systems typically

involves quantification of the binding affinity amongst different

types of biological agents, which could be DNA, RNA, ligands,

proteins, cells, or even living organisms, such as viruses. The

reactions could be DNA versus DNA, DNA versus RNA, DNA

versus protein, protein versus ligand (e.g. carbohydrates), and

protein versus protein. Similar to HI data, the data point in these

binding affinity datasets also suffers from missing values. For

example, the missing data problem is also very common in high

throughput DNA microarrays, protein microarrays and glycan

microarrays, and these missing values can result from different

version of array, poor printed spots in the slides, insufficient

resolution, or hybridization problems [12]. Integration of this

binding affinity data from individual experiments can be

formulated to a similar problem as HI data integration studied

in this paper. Thus, our proposed joint matrix completion and

filtering model can be adapted as a general model for biological

data integration, targeting data noises, missing values, and low

reactors within and across experiments.

Materials and Methods

Generation of Simulated HI Datasets
In Monte Carlo simulation study, we generated a set of HI

tables according to the data model (1). More specifically, we

utilized the following steps to generate tables:

N Generate d~10 dimensional latent coordinates U[Rd|DI D and

V[Rd|DJ D for DI D~600 antigens and DJ D~100 antisera,

respectively. Both the antigens and antisera are equally

partitioned into 10 blocks. In order to generate such U ,V ,

we first generate a matrix T[RDI D|DJ D (the ground truth full

table ) wi th entry Ti,j i s randomly drawn from

f10{Dti{tj D,10{Dti{tj D{1,10{Dti{tj D{2,10{Dti{tj D{3g
where ti, tj are the corresponding block index. We then

calculate U ,V by rank-d decomposition of T through singular

value decomposition.

N Generate the antiserum bias R[RDJ D|DK D for DK D~100 tables,

with integer rj,k uniformly drawn from interval ½{r,zr�.
Choose variance s for the white Gaussian noise. We will

consider different configurations of r and s in our empirical

study.

N Given U ,V ,R and s, we randomly generate DK D~100
individual tables according to the linear model (1).

We generated 10 independent copies of the data and reported

the mean and deviation of RMSE.

2009 H1N1 HI Dataset from Influenza Surveillance
The 2009 H1N1 HI dataset contains six individual HI tables

spanning from April to August in 2009. The sizes of tables differ

Figure 6. RMSE versus rank curves achieved by the considered
models on H3N2 2000–2007 data. The mean and deviation of
RMSE are calculated by 10-fold cross validation.
doi:10.1371/journal.pone.0069842.g006

Influenza Serological Data Integration

PLOS ONE | www.plosone.org 7 July 2013 | Volume 8 | Issue 7 | e69842



Influenza Serological Data Integration

PLOS ONE | www.plosone.org 8 July 2013 | Volume 8 | Issue 7 | e69842



greatly, e.g., table #1 is of size 11|8, table#2 of 46|8 and table

#6 of 92|9. Each table only includes up to 16 reference ferret

antisera, only some of them appear in two or more tables. A total

number of 253 antigens (viruses) and 28 antisera are included from

these six tables. Figure 9 shows the occurrence of the six HI tables

in the merged 253|28 antigen-antiserum array (left panel), as well

as the distribution of observed entries in the merged array (right

panel). Data statistics show that there are only 36:86% observed

entries in the merged table.

Table 2 lists four selected antigen-antiserum pairs which have

multiple observations of HI titre across the six HI tables in H1N1

2009. Note that one unit of HI titre represents 2-fold dilution of

antiserum in the HI assay. It can be seen that the observed HI titre

values are not consistent for 3 out of the 4 pairs. For example,

there exists up to 4-fold divergence among the HI titers for the pair

(A/New York/18/2009, A/California/7/2009). Therefore, un-

certainty of observation presents another challenge for the table

integration problem.

2000–2007 H3N2 Human Seasonal Influenza Viruses HI
dataset
In Figure 10, we show the distribution of observed entries in

another dataset used in this study, the H3N2 2000–2007 datasets,

in which the tables are collected from year 2000 to year 2007. This

dataset contains 369 tables and the merged table has 11,383

Figure 7. Antigenic cartography of H3N2 2000–2007 dataset. Here the rank value d~3 is selected in our model for matrix completion and
MC-MDS is used for cartography construction.
doi:10.1371/journal.pone.0069842.g007

Figure 8. Antigenic cartography of H1N12009 data constructed by our model with different ranks.
doi:10.1371/journal.pone.0069842.g008
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antigens as rows and 393 antisera as columns. Visual inspection of

Figure 10 shows that a large portion of the entries in the combined

H3N2 table are missing, and there are only 27:4% of observed

entries. Similar to the H1N1 2009 dataset, the observed HI titre

values of the same pair of antigen-antiserum in individual tables

could be varying. One important task is to fill out the missing

entries based on the noisy observations in individual tables.

Performance Evaluation
In this study, the performance of our data integration model is

evaluated using the following two criteria: root mean squared error

and biological interpretation, which is mainly through antigenic

cartography.

Quantitative Evaluation by RMSE

Given N true values fxngNn~1 and prediction values fyngNn~1,

the root mean squared error is defined by:

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n~1 (xn{yn)

2

N

s
:

.

If a prediction scheme has a small RMSE value, then the

predicted values are close to the true values. For real data, since we

have no ground truth for the merged HI table, we calculate the

RMSE values on individual tables through 10-fold cross-valida-

tion. The observed HI titre values hi,j,k from the tables are

partitioned into 10 equal parts. Each time, one part is used for

testing and the remaining nine parts for training. That is, each

time we estimate the parameters of model (2) using 9 parts as

observed values, and then calculate RMSE between the predicted

values and the observed values on the remaining part. The process

is repeated for every part and we report the mean and standard

deviation of RMSE. It is known that standard deviation

calculation based on cross validation is often smaller than the

true standard deviation; however, the numbers still provide

meaningful indications and hence are included.

Qualitative Evaluation by Antigenic Cartography
The biological interpretation is based on quantification of the

reported antigenic variant groups in the influenza antigenic

cartography. An antigenic cartography is a geometric representa-

tion of HI assay data. In such a cartography, the relative positions

of antigens and antisera are adjusted such that the distances

Figure 9. Data distribution in the H1N1 2009 dataset. Left panel: the individual tables; right panel: the merged table. White indicates entries
observed, while black for missing entries. Both x-axis (index of antiserum) and y-axis (index of antigen) are temporally ordered.
doi:10.1371/journal.pone.0069842.g009

Table 2. H1N1 2009 dataset: examples of HI titre
observations across multiple tables.

Antigen – Antiserum T1 T2 T3 T4 T5 T6

A/Wisconsin/10/1998 –
A/Wisconsin/10/1998

9 8 8 – – –

A/Brisbane/59/2007 –
A/California/7/2009

– – 0 0 0 1

A/New York/18/2009 –
A/California/7/2009

– – 8 7 9 7

A/Mexico/4108/2009 –
A/TEXAS/15/2009

– – 9 9 9 8

doi:10.1371/journal.pone.0069842.t002
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between antigens and antisera in the map represent the

corresponding HI measurements with least error. Distance in

the map thus represents antigenic distance and the closer antigens

are to each other in the map the more similar they are

antigenically.

Multidimensional scaling (MDS) is a statistical technique widely

used in information visualization [13]. It attempts to embed a set

of data into low dimensional vectors while preserving their

pairwise distances. This technique has been applied to the

construction of influenza antigenic cartography [4,5,14,15].

Particularly, the MC-MDS method was developed in [4] to

visualize antigenic distances. The goal is to minimize the errorP
i,j (di,j{Eai{ajE)2 in which ai and aj are two or three

dimensional representation of antigen i and antigen j. Here we

conventionally define the antigenic distance di,j as the Euclidean

distance between the row vectors associated with antigens i and j

in the merged HI titre table. One unit of such an antigenic

distance corresponds to a 2-fold dilution of antiserum in the HI

assay.
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