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Bacterial and viral diseases in aquaculture result in severe production and economic

losses. Among pathogenic bacteria, species belonging to the Vibrio genus are one of the

most common and widespread disease-causing agents. Vibrio infections play a leading

role in constraining the sustainable growth of the aquaculture sector worldwide and,

consequently, are the target of manifold disease prevention strategies. During the early,

larval stages of development, Vibrio species are a common cause of high mortality rates

in reared fish and shellfish, circumstances under which the host organisms might be

highly susceptible to disease preventive or treatment strategies such as vaccines and

antibiotics use, respectively. Regardless of host developmental stage, Vibrio infections

may occur suddenly and can lead to the loss of the entire population reared in a

given aquaculture system. Furthermore, the frequency of Vibrio–associated diseases in

humans is increasing globally and has been linked to anthropic activities, in particular

human-driven climate change and intensive livestock production. In this context, here

we cover the current knowledge of Vibrio infections in fish aquaculture, with a focus

on the model species gilthead seabream (Sparus aurata), a highly valuable reared

fish in the Mediterranean climatic zone. Molecular methods currently used for fast

detection and identification of Vibrio pathogens and their antibiotic resistance profiles

are addressed. Targeted therapeutic approaches are critically examined. They include

vaccination, phage therapy and probiotics supplementation, which bear promise in

supressing vibriosis in land-based fish rearing and in mitigating possible threats to human

health and the environment. This literature review suggests that antibiotic resistance is

increasing among Vibrio species, with the use of probiotics constituting a promising,

sustainable approach to prevent Vibrio infections in aquaculture.
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INTRODUCTION

Aquaculture Production and Commercial
Value
Global seafood production including fish, crustaceans, molluscs,
and other aquatic animals but excluding aquatic mammals,
reptiles, seaweeds, and other aquatic plants, was estimated to
reach 179 million tonnes in 2018, with an approximate first sale
value of 401 billion US$, being the aquaculture sector responsible
for 250 billion US$. This corresponds to a worldwide production
of 82.1 million tonnes derived from aquaculture practices
compared with 96million tonnes fromwild captures (FAO, 2020)
(Figure 1A). Totals of 22.2 million tonnes were used, in that year,
for fish meal and fish oil production, while 156.4 million tonnes
were used for human consumption, matching the demand for
seafood production by the growing human population, which
reached a record high of 20,5 kg per capita (FAO, 2020). Global
fish production, including capture and aquaculture, both for
human consumption and ancillary purposes, is still growing
worldwide, mainly due to the contribution of the aquaculture
sector (Figure 1A) (FAO, 1996, 2002, 2004, 2010, 2012, 2016,
2018, 2020). In fact, 52% of the fish biomass produced for human
consumption currently derives from aquaculture activities (FAO,
2020). Global fish production is dominated by China (35%),
closely followed by the remainder of the Asian continent (34%),
Americas (14%), Europe (10%), Africa (7%) and Oceania (1%)
(FAO, 2020).

Given the obvious growth of the aquaculture industry and
the emerging pressures it causes on human and environmental
health, including the spread of bacterial diseases, this review
covers alternative approaches to antibiotics and antimicrobials
usage to suppress bacterial diseases in fish larvi- and aquaculture.
Where appropriate, we place focus on studies of the model,
cultured teleost fish gilthead seabream (Sparus aurata),
an economically valuable reared species of relevance in
Mediterranean countries. Our approach to pathogenicity
in aquaculture emphasizes the opportunistic Vibrio species,
highlighting environmental and public health concerns resulting
from seafood vibriosis as well as human vibriosis acquired
via seafood ingestion. In this context, the term vibriosis is
herein defined as any sort of disease with clearly observable
symptoms caused by Vibrio species on an animal host. PCR-
based detection of virulence factors and mass spectrometry
protocols used in the identification of Vibrio pathogens in fish
and shellfish are thoroughly examined. Further emphasis is
given to the existence of determinants of antibiotic resistance
in Vibrio species present in commercial seafood products,
given that they increase the risk of spread of antibiotic
resistance genes from aquaculture to the consumer. New
approaches for prophylaxis and treatment of vibriosis in fish
relying on the management of pathobiomes and microbial
communities in the aquaculture sector are then discussed,
including the application of vaccines, bacteriophages, and
probiotics to prevent bacterial disease proliferation. Particularly,
we provide an overview of probiotics-based studies designed
to supress Vibrio spp. across a broad range of host animals
and aquaculture settings, portraying a solid body of work

accumulated during the last 30 years which evidences great
potential in the administration of probiotics for the control
of vibriosis.

Aquaculture Production of Gilthead Seabream

(Sparus aurata)
The marine perch-like fish Sparus aurata (Linnaeus, 1758),
commonly known as gilthead seabream, is an economically
valuable cultured species in southern European countries
(Balebona et al., 1998b), ranking along with seabass as the
most important fish species farmed in the Mediterranean zone
(Firmino et al., 2019). World gilthead seabream aquaculture
production, with regard to both quantity (tonnes) and value
(thousand US$), has shown a consistent, continuous growth
during the past three decades (Figures 1B,C).

Because of its plasticity and high amenability to rearing
conditions, gilthead seabream can be cultured following
extensive and semi-intensive methods in coastal ponds
and lagoons. The extensive method relies partially on the
species’ natural migration and subsequent caught into fishing
traps. Source juveniles obtained this way are, then, usually
supplemented with additional juveniles reared in hatcheries by
most of the modern stations employing the extensive method
(FAO, 2021). A starting juvenile pool is, this way, seeded into
a coastal lagoon, with juveniles (c. 45 DAH) weighting 2–3 g
on average. Under this system, a juvenile achieves the first
commercial size of 350 g in 20 months, with an average yield of
15–30 Kg/ha/yr and fish densities usually not exceeding 0.0025
kg/m3. Within semi-intensive rearing conditions, the increase
of inputs derived from human activities (e.g., artificial feed and
supplemental oxygen) results in a greater average production
yield of 500–2,400 kg/ha/yr and higher fish densities of c. 1
kg/m3 (FAO, 2021).

Intensive rearing methods, in their turn, result in much higher
yields in comparison with extensive and semi-intensive rearing
methods. The densities of fish grown under this system, when
raised in tanks receiving massive oxygen supply under optimal
temperature conditions (18–26◦C), are typically very high (15–
45 kg/m3). In these circumstances, pre-fattened 5 g gilthead
seabream may achieve the first commercial weight of 350 g in
1 year (FAO, 2021). Rearing of gilthead seabream in sea cages
is a widely adopted methodology in the Mediterranean Sea,
whereby reared fish densities may reach up to 10–15 kg/m3.
Although intensive fish biomass production in sea cages is
somewhat lower than that of land-based installations, the profits
are much higher as there are no energy costs for pumping,
aeration, or post-rearing water treatment (FAO, 2021). The main
disadvantage is the absence of temperature control in sea cages
and, consequently, the longer rearing period needed to reach the
commercial size and to stock larger juveniles. Under this method,
the larger, pre-fattened gilthead seabream (10 g) may take 1 year
to reach the first commercial size of 350–400 g, while smaller
seeding juveniles (5 g) achieve the same size in 16 months (FAO,
2021). Figure 2 lists the top ten gilthead seabream producing
countries in the Mediterranean area. Interestingly, although not
ranking among the three most producing countries in terms
of quantity (tonnes/year), Italy (8,88 US$/kg), Portugal (7,59
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FIGURE 1 | (A) Evolution of wild capture and aquaculture-based seafood production (million tonnes, live weight). The total seafood production is growing due to the

increase in fish / shellfish biomass derived from the aquaculture sector, contrasting with near constant capture values. The data include fish, crustaceans, molluscs,

and other cultured aquatic animals, and were retrieved from reports by the Food and Agriculture Organization of the United Nations (FAO) spanning the period (FAO,

1996, 2002, 2004, 2010, 2012, 2016, 2018, 2020). (B,C) show the worldwide gilthead seabream aquaculture production (in tonnes) (B) and their commercial value

(thousand US$) (C). Data collected from FAO, query online, http://www.fao.org/fishery/statistics/global-aquaculture-production/query/en.
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FIGURE 2 | The top ten gilthead seabream producing countries in the Mediterranean zone. Colored bars represent quantity (tonnes) and commercial value (thousand

US$/kg) of cultured gilthead seabream biomass produced for human consumption in 2019. The primary Y -axis represents quantity in tonnes, while the secondary

axis represents the commercial value per kg of cultured gilthead seabream sold. Data collected from FAO, query online, http://www.fao.org/fishery/statistics/global-

aquaculture-production/query/en.

US$/kg), Croatia (6,59 US$/kg), and Spain (5,73 US$/kg), in
this order, were the countries presenting the highest commercial
value of cultured gilthead seabream sold in the market.

Aquaculture Microbiology
Aquaculture facilities constitute a high-density species
environment where the use of live feed, the stress and the
animals’ physical proximity increase the propagation of parasites
and diseases (Guidi et al., 2018; Sanches-Fernandes et al., 2021a).
Therefore, monitoring quality, safety, and microbiological
indicators, across all production stages, will play a decisive role
in the development of future, sustainable and cost-effective
aquaculture practices (FAO, 2020). One main problem to be
overcome is the fact that most fish species display very low
survival rates during larval rearing, which can be partially
attributed to the spread of bacterial diseases (Snoussi et al., 2008;
Sanches-Fernandes et al., 2021a). In fact, bacterial diseases are
responsible for mass stock mortalities in fish farms throughout
Mediterranean waters, independently of the reared species
and host developmental stage (Bordas et al., 1996; Akayli and
Timur, 2002; Kahla-Nakbi et al., 2006), resulting in a significant
production bottleneck. In this context, it is not only essential to

move beyond traditional microbiological assessments of food
items using more efficient methodologies, in particular next
generation DNA sequencing, to ensure effective monitoring
of microorganisms in animal and plant-derived foods and
tissues (Lorenzo et al., 2018). It is also important to advance our
understanding of the roles played by beneficial microorganisms
in aquaculture facilities to effectively steer these built ecosystems
toward a more environmentally friendly state, whereby disease
proliferation and pollution can be mitigated using natural
resources (Vadstein et al., 2013; Borges et al., 2021). Borges
et al. (2021) have recently reviewed the diversity and properties
of potentially beneficial microbes that occur in aquaculture
facilities, including a vast diversity of Alphaproteobacteria species
belonging to the Roseobacter clade (e.g., Phaeobacter inhibens)
which rank as promising probiotic candidates to control bacterial
diseases in these settings (see more in section Microbial-Based
Strategies to Prevent Vibrio Diseases in Aquaculture).

In intensive larval rearing of commercial fish species, live
feed provision is still mostly required, usually including rotifers
(Brachionus spp.) as the first feed item provided, followed
by brine shrimp Artemia sp. at nauplii and metanauplii
developmental stages, according to the mouth size of the growing
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fish larvae (Pousão-Ferreira, 2009). Although strains of the
genera Pseudomonas (Skjermo and Vadstein, 1993; Rombaut
et al., 2001), Aeromonas (Dhert et al., 2001), Flavobacterium
(Skjermo and Vadstein, 1993; Dhert et al., 2001; Rombaut et al.,
2001), Marinomonas and Pseudoalteromonas (Rombaut et al.,
2001) have been quite commonly found in cultured rotifers,
Vibrio species were the dominant bacteria associated with
these animals according to early, cultivation-dependent studies
(Verdonck et al., 1997). Altogether, the ingestion of rotifers
and Artemia is a potential mechanism of transport of various
pathogens into fish larvae. In addition, intake of pathogens
from water by fish larvae is a concern, even within recirculation
aquaculture systems (RAS), which are regarded as the safest in
terms of disease control (Vadstein et al., 2013). Therefore, in
larviculture facilities which need to use high densities of both
rotifers and Artemia as live feed to fish larvae, the high load of
organic matter present in water increases the risk of proliferation
of opportunistic pathogenic bacteria to the developing fish host
(Verdonck et al., 1997; Rombaut et al., 2001; Prol-García et al.,
2010; Haché and Plante, 2011; Asok et al., 2012; Vadstein et al.,
2013; Interaminense et al., 2014). Section Vibrio species and
Vibriosis in Aquaculture provides an overview of Vibrio spp.
already reported in association with fish live feed.

The pathogenic load in fish larviculture stations is believed to
be determined by the complexity and diversity of the microbial
communities occurring in the microhabitats that constitute
these multifaceted, man-made ecosystems, including the rearing
water itself, particulate organic materials deriving from animal
excretions and dietary foods, the fish host, and the live feed
(Califano et al., 2017). As such, host-microbe, microbe-microbe,
and microbe-environment interactive forces that prevail in
each rearing setting are thought to determine the final state
of aquaculture microbiomes across a theoretical symbiome–
pathobiome continuum. As our ability to catalog the diversity
and function of host-associated microbiomes in a cultivation-
independent manner increases, the molecular mechanisms
underpinning host colonization, persistence and disease
development by opportunistic microorganisms are predicted
to be revealed at a fast pace. It is relevant that the functional
attributes of pathobiomes and symbiomes of fish larvae, juveniles
and live feed are uncovered, so that disease control in aquaculture
can be implemented in a consistent manner (Borges et al., 2021).
Notably, there is currently a demand for the development
of faster, more precise, and accurate molecular methods (see
section Identification of Vibrio Pathogens in Aquaculture),
beyond common rRNA gene amplicon sequencing, to better
identify the microorganisms present in the pathobiome,
opening new avenues to understand pathogenic mechanisms in
aquaculture (Vayssier-Taussat et al., 2014).

VIBRIO SPECIES AND VIBRIOSIS IN
AQUACULTURE

Vibrio species are Gram-negative, asporogenous rods that are
straight or curved, motile in aqueous environments usually
by means of a single, polar flagellum (Kaysner et al., 2004).

Vibrio spp. are mesophilic and chemoorganotrophic, possessing
facultative fermentative metabolism (Kahla-Nakbi et al., 2007).
They are ubiquitous inhabitants of aquatic environments
including estuaries, marine coastal waters and sediments, and
aquaculture settings (Balebona et al., 1998a; Thompson et al.,
2004; Sarjito et al., 2009; Ringø, 2020). Except for V. cholerae
and V. mimicus (Wong and Griffin, 2018), they are considered
halophilic organisms (Wong and Griffin, 2018) commonly
occurring at 30–35 ppt salinity although their aptitude to thrive
in estuarine environments is also well-documented. The first
Vibrio species described was Vibrio cholerae, in 1854, in the
context of a study on cholera outbreaks in Florence (Thompson
et al., 2004), but there are records of cholera-like diseases
occurring in the times of Hippocrates (460–377 BC) (Blake,
1994). Currently, more than 130 species grouped in 14 clades
in the Vibrio genus are recognized (Romalde et al., 2014; Huang
et al., 2020), including commensal, mutualistic, and pathogenic
species (Thompson et al., 2004).

The role of Vibrio spp. in marine organic carbon cycling
(Romalde et al., 2014), particularly in coastal environments and
marginal seas, has been underestimated (Zhang et al., 2018).
Vibrio species are one of the best model marine heterotrophic
bacterial groups, consuming several carbon compounds and
growing with generation times as short as ∼10min (Zhang
et al., 2018). They may represent about 60% of the total
heterotrophic bacteria associated with aquatic organisms (Sonia
and Lipton, 2012), being part of the normal microbiota of
aquatic animals. Vibrio hosts are typically zooplankton, shellfish,
crustaceans, benthic marine invertebrates such as sponges,
corals and bryozoans, and fishes (Liu et al., 2016). Host-Vibrio
relationships in nature may range from mutualistic through
commensalistic to pathogenic (Liu et al., 2016). In general,
Vibrio species proliferate well at warm temperatures, a condition
that may favor their transition from commensal to pathogenic
behavior. Environmental factors, including warming, have also
been suggested to suppress fish immunity and increase their
susceptibility to vibriosis (Haenen et al., 2014; El-Bouhy et al.,
2016; El-Sayed et al., 2019).

In aquaculture, several Vibrio spp. are currently considered
pathogens or opportunistic pathogens of reared finfish, shellfish,
and shrimp (Liu et al., 2016). The most common Vibrionaceae
spp. recorded in association with fish and shellfish diseases
are V. anguillarum, V. ordalii, V. vulnificus, V. alginolyticus
(Vera et al., 1991; Kahla-Nakbi et al., 2007; Korun and Timur,
2008), V. parahaemolyticus (Hamdan et al., 2016), Aliivibrio
(formerly Vibrio; Urbanczyk et al., 2007) salmonicida, V. harveyi
(Kahla-Nakbi et al., 2007; Korun and Timur, 2008), and V.
tubiashii (Richards et al., 2014). Most of these species have
been isolated both from reared and wild marine fish (Abdelaziz
et al., 2017). Although V. cholerae is not referred to as a
primary fish pathogen following Koch’s postulates, it has been
isolated from several freshwater and marine fish, which are
considered a broad reservoir of V. cholerae strains that may
cause infections in humans (Halpern and Izhaki, 2017). More
recently, Devi et al. (2022) reported on a non-O1, non-O139 V.
cholerae serotype (EMM1) capable of inducing high mortality
in the freshwater species Labeo rohita, suggesting that V.
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cholerae strains other than the typical human pathogens shall
be considered relevant aquatic pathogens as well. Vibriosis
caused by the abovementioned species is the most common
and devastating bacterial disease in fish larviculture and
aquaculture, being a public health and economical concern
affecting marine fishes, crustaceans, and bivalves worldwide
(Balebona et al., 1998a; Sarjito et al., 2009; Ringø, 2020).
The symptoms of vibriosis in fish are diverse, and include
haemorrhagic septicaemias with extensive external skin lesions
(haemorrhagic fins and ulcers), focal necrosis of some organs
(liver, spleen, kidney), other tissue necrosis (Kahla-Nakbi et al.,
2007), complete erosion of tail (Haldar et al., 2010), pale kidney,
dark pigmentation, exophthalmic eyes, splenomegaly (Zorrilla
et al., 2003), skeletal deformity (lordosis) (Abdel-Aziz et al.,
2013), loss of appetite and lethargy (Korun and Timur, 2008).

Regarding the presence of Vibrio spp. in association with the
live feed used for fish larviculture, several studies reported the
isolation of the well-known causative agents of disease Vibrio
alginolyticus (Yu et al., 1990), V. anguillarum (Dhert et al.,
2001), V. parahaemolyticus (Balebona et al., 1998b) and V.
rotiferianus (Gomez-Gil et al., 2003) from rotifers. The aquatic
crustacean genus Artemia may also host Vibrio (Igarashi et al.,
1989; Pousão-Ferreira, 2009), Pseudomonas (Igarashi et al., 1989)
andAeromonas (Interaminense et al., 2014) species. For instance,
V. alginolyticus (Soto-Rodriguez et al., 2003; Interaminense et al.,
2014), V. parahaemolyticus (Interaminense et al., 2014; Kumar
et al., 2018), V. anguillarum (Campbell et al., 1993; Skjermo and
Bergh, 2004), V. harveyi (Asok et al., 2012) and V. hispanicus
(Gomez-Gil et al., 2004) have already been isolated fromArtemia.
Luminescent vibriosis (that is, vibriosis caused by luminescent
Vibrio species) was as well-reported in Artemia and found to be
caused mainly by V. harveyi and occasionally by V. splendidus
(Soto-Rodriguez et al., 2003). Moreover, V. campbellii, frequently
misidentified as V. harveyi in the past, was more recently found
to be the etiological agent of luminescent vibriosis in shrimp
hatcheries (Kumar et al., 2021).

VIBRIOSIS AS A WORLDWIDE THREAT TO
HUMANS

Severe vibriosis in humans can be acquired by ingestion
of contaminated water and raw or undercooked seafood
(Wachsmuth et al., 1994; Finkelstein et al., 2002; Arab et al., 2020;
Håkonsholm et al., 2020). Clinically, a few Vibrio species, despite
their prevalently marine/estuarine origin, are able to elicit disease
in humans. These include V. cholerae, V. parahaemolyticus,
V. vulnificus (Wachsmuth et al., 1994; Finkelstein et al., 2002;
Arab et al., 2020), V. alginolyticus (Gomathi et al., 2013; Citil
et al., 2015), V. metschnikovii (Gomathi et al., 2013; Arab
et al., 2020; Konechnyi et al., 2021), V. mimicus (Hernández-
Robles et al., 2021), V. cincinnatiensis (Brayton et al., 1986),
V. fluvialis (Ramamurthy et al., 2014; Kitaura et al., 2020), V.
furnissi (Dalsgaard et al., 1997) and V. harveyi (Arab et al., 2020;
Brehm et al., 2020). Well-documented symptoms of vibriosis in
humans caused by Vibrio species which act as fish pathogens in
aquaculture settings are highlighted below.

Vibrio alginolyticus had been frequently documented
in early studies of gilthead seabream disease outbreaks in
Mediterranean aquaculture (Balebona et al., 1998a). In humans,
this bacterium was found to be associated with gastroenteritis in
immunocompromised patients (Reina et al., 1995; Gomathi et al.,
2013), causing extra-intestinal diseases (Gomez-Gil et al., 2003;
Snoussi et al., 2008), wound infection, cellulitis, seawater-related
otitis media (Abdel-Aziz et al., 2013; Gomathi et al., 2013), soft
tissues and septicemia (Gomathi et al., 2013).

Vibrio parahaemolyticus is a well-known fish pathogen
possessing a broad range of occurrence (Kumar et al., 2018). This
bacterium was first recognized as a seafood borne pathogen to
humans during an outbreak in 1950 in Osaka, Japan, involving
272 patients and causing the death of 20 people after the
ingestion of Shirasu, a semi dried juvenile sardine (Aly et al.,
2020). V. parahaemolyticus is the major food-borne pathogen
worldwide (Bresee et al., 2002; Kawatsu et al., 2006), causing, after
the ingestion of raw or undercooked seafood, acute dysentery
and abdominal pain leading to diarrhea, nausea, vomiting,
fever, chills, water-like stools, and an accentuated decrease of
blood pressure leading to shock (Broberg et al., 2011; Siddique
et al., 2021; Tan et al., 2021). In severe cases, patients become
unconscious, with recurrent convulsions, becoming pale or
cyanotic, eventually resulting in death. Antibiotic treatment and
oral rehydration are the most common procedures to cure
infections caused by V. parahaemolyticus. For individuals with
critical physical or immunodeficiency diseases, the best practice
to avoid severe illness is not to consume seafood at all (Wang
et al., 2015). In the 21st century, increasing human disease
outbreaks attributed to V. parahaemolyticus in Asia (Matsumoto
et al., 2000), North America and Chile (Martinez-Urtaza et al.,
2005), Europe namely France and Spain (Martinez-Urtaza et al.,
2005; Quilici et al., 2005), Africa and Russia (Nair et al., 2007)
have been described.

Vibrio vulnificus is highly pathogenic to humans (Snoussi
et al., 2008). This bacterium causes epizootic outbreaks in
seabream fish and can be transmitted to humans by ingestion,
being a well-known cause of cellulitis and septicaemia in
fishermen (Vinh et al., 2006). Besides, V. vulnificus is also able to
infect the human host through an open cut or wound, in extreme
cases resulting in necrotizing fasciitis, limb amputation and fatal
septicaemia in susceptible individuals (Williams et al., 2014). The
wound infections could start after the handling of infected fish
and seafood, especially shellfish and after the practice of aquatic
activities such as swimming (Hamdan et al., 2016; Baker-Austin
and Oliver, 2018), being the consequences more severe when
associated illnesses such as liver diseases, diabetes, and immune
disorders are documented (Baker-Austin and Oliver, 2018). As
usual among Vibrio spp., V. vulnificus possesses remarkable iron
sequestration capabilities, meaning that the risk of infection is
higher in humans with elevated iron levels (Wong and Griffin,
2018). More than 50% of primary septicaemia result in death
within the first 72 h of hospitalization (Yun and Kim, 2018).
Therefore, when there is a suspicion that the infection is caused
by V. vulnificus, immediate and adequate antibiotic treatment
and surgical interventions must be implemented. V. vulnificus
is responsible for over 95% of deaths associated with seafood
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occurrences in the United States of America (Baker-Austin and
Oliver, 2018). This is the highest fatality rate of any food-borne
pathogen, which is in the range of category Biosafety Level 3 and 4
pathogens, namely anthrax, bubonic plague, Ebola, and Marburg
fever (Baker-Austin and Oliver, 2018).

More recently, a few human infections caused by V. harveyi
have as well been reported, underscoring the need of the public
health sector to be aware of the possibility that wound infections
caused byVibrio species to humans may be becoming more likely
to occur. With global warming, Vibrio-associated diseases will
likely increase in the future (Brehm et al., 2020).

To avoid severe illness in humans caused by the ingestion of
seafood contaminated with Vibrio species, thermal-based food
processing such as low-temperature freezing (−18 or −24◦C) or
a 10min high-temperature treatment (above 55◦C) is common
practice (Wang et al., 2015). Moreover, high-pressure processing
and irradiation (using safety radioactivematerials limits) are used
to eliminateV. parahaemolyticus in oysters, keeping their original
flavor (Wang et al., 2015). Notwithstanding the efficacy of
hygiene measures employed in the preparation and processing of
seafood for human consumption, devising novel, sustainable and
green mechanisms of bacterial disease prevention in intensive
fish farming holds promise in mitigating the impacts of the
aquaculture industry on the environment and the risks posed to
human health.

VIBRIOSIS OUTBREAKS IN FARMED AND
WILD GILTHEAD SEABREAM

In 1997, the World Bank estimated that disease losses in
aquaculture were worth US$3 billion per year, with Vibrio
spp. having an important role in those losses (Laczka et al.,
2014). Two decades later, estimates of disease losses duplicated
(Stentiford et al., 2017). It has been suggested that all cultured
marine fish around the world may, to varying degrees, host
opportunistic vibrio species (Akayli and Timur, 2002), what
does not necessarily imply that disease is always elicited nor
that all vibrio species are pathogenic or will present pathogenic
behavior. Yet multiple vibriosis outbreaks have been reported
in several countries, infecting many fish species (Colorni et al.,
1981; Akayli and Timur, 2002; Korun and Timur, 2008). In the
case of the Mediterranean Sea, which is the primary habitat
of gilthead seabream and a semi-closed water body, there is
a limited rate of water exchange with open oceans. Aquatic
pollution resulting from sewage, industrial effluents, crude oil
refineries, and oil exploration affects the response of cultured
fish to local environmental conditions (Guidetti et al., 2002).
These factors also facilitate the invasion of bacterial pathogens
(Vibrio, Streptococcus, Aeromonas, Pseudomonas) and parasites
(nematodes, digeneans, acanthocephalans) into rearing systems.
The ongoing chronic degradation of the Mediterranean Sea,
thus, is considered to negatively impact the aquaculture industry
in most of the North African coast (Eissa et al., 2017). For
example, it has been suggested that the deterioration of water
quality by sewage and agriculture discharges correlates with high
prevalence of vibriosis in wild fish in the Mediterranean coast

(Abdelaziz et al., 2017). Seawater exposed to higher
anthropogenic pollution was found to display higher
frequencies of Vibrio species, highlighting the importance
of good manufacturing and hygiene practices to prevent
and overcome fish vibriosis, even if innovative and “green”
approaches were applied in industrial and domestic facilities
(Abdelaziz et al., 2017; Arab et al., 2020).

The analysis of ten outbreaks involving Vibrio infections,
affecting both cultured and wild gilthead seabream in the
Mediterranean Sea (Table 1) revealed that V. alginolyticus
was the Vibrio species most frequently isolated from gilthead
seabream, followed by V. harveyi, V. splendidus, V. anguillarum,
V. parahaemolyticus, and V. tubiashii. In these studies, Vibrio
isolates were mainly recovered from seabream liver, spleen, and
kidney, followed by external lesions and gills, but also from
brain, eyes, gut, hepatopancreas, eroded tail and blood (Table 1).
Interestingly,V. ichthyoenteri-like strains were isolated only from
asymptomatic gilthead seabream individuals (Pujalte et al., 2003).

According to the Spanish outbreak (1990–1996) study
performed by Balebona et al. (1998b), the species V. anguillarum,
V. alginolyticus, V. harveyi, and V. splendidus were considered
highly virulent for gilthead seabream by intraperitoneal
inoculation, based on mean lethal dose (LD50) values between
104 and 106 CFU per g body weight. In a further disease outbreak
study, V. alginolyticus and V. harveyi were identified as virulent
to gilthead seabream with LD50 values between 105 and 106 CFU
per g body weight (Kahla-Nakbi et al., 2007). In that study, V.
alginolyticus and V. harveyi were isolated from the skin mucus
of gilthead seabream, and no inhibitory effects of the skin mucus
collected from gilthead seabream against those isolates was
found. In fact, those Vibrio isolates showed remarkable serum
resistance and were also able to adhere to skin mucus and grow
using it as a nutrient source, suggesting high host colonization
ability to eventually become an important infection risk.

Intriguingly, the etiological agents of human seafood-borne
infections V. alginolyticus, V. cholera, and V. fluvialis were
found in tissues of farmed gilthead seabream showing no disease
symptoms (Arab et al., 2020), supporting the notion of a growing
presence of the causing agent of cholera, V. cholerae, in farmed
fish for human consumption (Halpern and Izhaki, 2017; Arab
et al., 2020). Indeed, higher incidence of human pathogenic
Vibrio species in coastal marine waters has been considered to
result from climate change effects on the composition of marine
microbial communities (Vezzulli et al., 2016). In this context,
it is worth noting that vibriosis in cultured gilthead seabream
has already been found to be induced by several factors such as
transport stress, sudden temperature changes, low oxygen levels
in water and handling procedures (Akayli and Timur, 2002). We
posit that the trends observed in this review regarding gilthead
seabream-Vibrio interactions are most likely applicable to a range
of economically valuable fish species.

The continuous study of marine and estuarine microbiomes
in coastal areas is of utmost relevance for a better understanding
of long-term microbial community changes in highly productive
ecosystems in the face of climate change. Such databases can
guide the identification of beneficial microbes that can be
used to mitigate the proliferation of opportunistic pathogens in
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TABLE 1 | Outbreaks caused by Vibrio infections in farmed gilthead seabream.

Outbreak Vibrio species isolated Isolated from References

Spain (1990–1996)

Bacteriological survey

132 fish

V. fischeri (17.0%)

V. harveyi (15.6%)

V. alginolyticus (13.5%)

V. anguillarum (12.8%)

V. splendidus (10.6%)

V. nereis (8.5%)

V. tubiashii (5.0%)

V. campbellii (4.3%)

V. aestuarianus (1.4%)

Vibrio spp. (11.4%)

Liver, spleen, kidney, other affected organs or

tissues

Balebona et al., 1998b

Spain (1997–2000)

25 outbreaks

80 larvae

80 fingerlings (0.05–25 gr)

V. alginolyticus (21.4%)

V. harveyi (13.6%)

V. fischeri (6.8%)

V. splendidus (6.8%)

V. anguillarum (5.8%)

Vibrio spp., 15 strains (15.5%)

Liver, spleen, kidney, external lesions Zorrilla et al., 2003

Turkey (1999–2000)

15 outbreaks

60 fishes

Juveniles (1–2 gr)

Older fish (150 gr)

Vibrio spp. Liver, spleen, kidney, blood, body surface lesions Akayli and Timur, 2002

Spain (2002)

Bacteriological survey

40 larvae (30 DAH)a

40 larvae (60 DAH)a,b

547 fishes (average weight 21.6 gr)

V. harveyi

V. splendidus

V. ichthyoenteri-like

V. fischeri

V. alginolyticus

V. tubiashii

V. pelagius

V. mediterranei

V. diazotrophicus

Vibrio spp.

Head kidney occasionally from the liver in small fish Pujalte et al., 2003

Tunisia (2002–2004)

seven outbreaks

Larvae

juveniles

V. alginolyticus (71.4%)

V. harveyi (28.6%)

Liver, spleen, kidney, external lesions Kahla-Nakbi et al., 2007

Tunisia (2006)

juveniles (7 gr, 8 cm length)

older fish (220 gr, 20 cm length)

V. alginolyticus Juveniles: white nodular skin lesions

Older fish: liver, spleen, kidney, gills

Snoussi et al., 2008

Malta (2009)

one epizootic outbreak

Juveniles (130 gr, 17.7 cm length)

fingerlings

hatchery

V. harveyi Infected eye, eroded tail, gut, gills, hepatopancreas Haldar et al., 2010

Egypt (Feb 2013–Aug 2013)

100 larvae (0.035–0.04 gr)

25 fingerlings (10–29.16 gr)

25 juveniles (83.77–190 gr)

V. alginolyticus

V. parahaemolyticus

Liver, spleen, kidney, gills, brain, external lesions Abdel-Aziz et al., 2013

Egypt (2017–2018)

200 farmed gilthead seabream

commercial size

V. parahaemolyticus Liver, spleen, kidney, gills Aly et al., 2020

Algeria (2017–2018)

No outbreak reported

280 farmed gilthead seabream

70 wild gilthead seabreamb

commercial size (weighing at least 300 g)

V. alginolyticus

V. cholerae

V. fluvialis

Skin, gills, intestinal content Arab et al., 2020

aDAH, days after hatching.
bWith no Vibrio species detected.
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immunocompromised hosts in built and open environments at
large. Gilthead seabream and seabass are the main farmed species
in the Mediterranean basin, and vibriosis was recently reported
as the most common bacterial disease affecting these species
(Muniesa et al., 2020). Based on the current literature, we argue
that the occurrence of vibriosis in humans—and consequently
the threats to human health posed by Vibrio species thriving
in aquaculture settings—may be of a larger magnitude than
previously thought. The frequency of human infections caused
by estuarine and marine Vibrio spp. is likely to increase as
ever-expanding intensive farming and global climate change
synergistically interact to favor the proliferation of opportunistic
microorganisms in livestock production systems (Reverter et al.,
2020).

IDENTIFICATION OF VIBRIO PATHOGENS
IN AQUACULTURE

Species-level identification of members of the Vibrio genus, in
an effective and standardized way, is necessary for a better
bacteriological monitoring of farmed fish and the rearing
environment within aquaculture facilities (Mustapha et al., 2013).
As biochemical methods of identification often misidentify or
are unsuccessful at the species level, molecular approaches
must be implemented as common, accurate procedures for
Vibrio species identification in seafood (Mustapha et al., 2013).
However, it is important to note that, owing to the large genetic
heterogeneity and fast diversification within Vibrio species, often
16S rRNA gene sequencing alone does not suffice for unequivocal
identification of environmental strains at the species level.
Bacterial species belonging to the Vibrio genus can differ in 16S
rRNA gene nucleotide sequence from <1% up to 6% (Montieri
et al., 2010). Particularly in the case of closely related species,
the sequencing of a single marker gene may not be enough for
precise taxon differentiation. For instance, V. parahaemolyticus
and V. alginolyticus show quite similar biochemical properties
(Mustapha et al., 2013) and are nearly identical with regards
to 16S rRNA gene sequences (Montieri et al., 2010), prompting
researchers to develop early DNA-based fingerprinting methods
to discern between strains belonging to these species (Sadok
et al., 2013). Indeed, V. alginolyticus was early designated V.
parahaemolyticus biotype 2 (Aly et al., 2020), bearing testimony
to the close phylogenetic relationship between these species.

Owing to the low discriminating power of highly conserved
marker genes in distinguishing close Vibrio relatives, molecular
identification based on species-specific markers and virulence
genes have been considered adequate methods for species-
level identification of Vibrio isolates (Mustapha et al., 2013).
Because Vibrio spp. are symbiotic bacteria usually living in
the intestine of aquatic species in a facultative way, genomic
factors involved in the establishment of symbiosis and in
the processes of host colonization and persistence may have
evolved to confer adaptive advantage to species thriving in
subtly different micro-niches. Several so-called “virulence
factors”, such as enterotoxins, haemolysins, cytotoxins,
proteases, lipases, phospholipases, siderophores, adhesive factors

and/or haemagglutinins are produced by pathogenic species
(Zhang and Austin, 2005). These traits allow Vibrio strains to
adhere to the epithelial cells of fish juveniles, to break the first
barrier of natural defense and to colonize all internal organs
inducing vibriosis signs (Colorni et al., 1981; Paperna, 1984;
Snoussi et al., 2008). It is important to note, however, that
some of the abovementioned traits are common to several
bacterial species and may likewise constitute adaptive features
of mutualistic symbionts of fish (Borges et al., 2021). Overall,
the use of genes coding for virulence or host-colonization
factors as phylogenetic markers for the molecular detection
of Vibrio species has gained increasing attention lately as
nucleotide heterogeneities within such genes may reveal the
adaptive behavior of different Vibrio species. A few PCR-
based molecular identification systems of Vibrio species are
listed in Table 2. These include protocols targeting genes
coding for virulence factors which have been proved useful in
discerning between closely related Vibrio species or in providing
solid diagnosis of renowned pathogens, as reviewed more
thoroughly in Supplementary File S1. For instance, several
V. alginolyticus identification methods have been established
based on the detection of hemolysin and collagenase encoding
genes (Abdallah et al., 2011; Mustapha et al., 2013), and specific
detection of V. parahaemolyticus and V. alginolyticus has been
achieved through the exploration of nucleotide differences in
genes encoding for the virulence regulatory proteins ToxR and
ToxS (Abdallah et al., 2011; Aly et al., 2020). Also, a conserved
virulence pathogenic island among Vibrio species has been
exploited in the development of specific detection systems for
the pathogen V. vulnificus (Table 2, see Supplementary File S1

for details).
It has been reasoned that the use of gene-targeted molecular

tools may facilitate prevention of an outbreak as they allow
the identification of the potential pathogens present even in
asymptomatic fish (Altinok and Kurt, 2004). Yet it is presumably
challenging to implement multiple gene amplicon sequencing
methods in routine diagnostics for each different pathogen. In
this regard, matrix-assisted laser desorption/ionization time-of-
flight mass spectrometry (MALDI-TOF MS) is an alternative
technique often used in the identification of Vibrio species
that may show advantages over PCR-based detection of
phylogenetic marker genes. Indeed, MALDI-TOF MS is not
labor-intensive, does not require highly trained operators,
and is suitable for the processing of many samples in an
automated, rapid, and cost-effective way (Li et al., 2018;
Mougin et al., 2020). However, for accurate identification of
closely related Vibrio species using MALDI-TOF MS, database
choice is crucial (as in the case of species identification
using phylogenetic marker genes). For instance, Moussa et al.
(2021) found that correct discrimination of isolates belonging
to the species V. tubiashii/V. europaeus and V. owensii/ V.
jasicida/V. campbellii could not be achieved using some of
the commonly available databases for MALDI-TOF MS-based
classification. However, successful identification of diverse Vibrio
isolates was achieved by Mougin et al. (2020) through the
combined use of the Luvibase and Bruker v.9.0.0.0 databases.
Thus, to fully exploit the potential of MALDI-TOF MS in
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TABLE 2 | Target genes, gene functions, and oligonucleotide primer sequences used for specific detection and identification of Vibrio species.

Target gene/

function

Target organism Host samples Primer Oligonucleotide sequences (5′-3′) Product size References

16SrRNA

rRNA

Vibrio species in

general

Fish, shellfish 63f

763r

F: CAGGCCTAACACATGCAAGTC

R: GCATCTGAGTGTCAGTATCTGTCC

700 bp Montieri et al., 2010

Abdelaziz et al., 2017

cola

collagenase

V. alginolyticus Fish, shellfish

Seabass

Gilthead seabream

VA-F

VA-R

F: CGAGTACAGTCACTTGAAAGCC

R: CACAACAGAACTCGCGTTACC

737 bp Abdallah et al., 2011

Moustafa et al., 2015

Abdelaziz et al., 2017

Tdh

thermostable direct

hemolysin

V. alginolyticus Fish and shellfish tdh-F

tdh-R

F: CCATCTGTCCCTTTTCCTGC

R: CCAAATACATTTTACTTGG

373 bp Mustapha et al., 2013

trh

tdh-related hemolysin

V. alginolyticus Fish and shellfish trh-R2

trh-R6

F: GGCTCAAAATGGTTAAGCG

R: CATTTCCGCTCTCATATGC

250 bp Mustapha et al., 2013

toxR

Regulatory virulence

factor protein

V. alginolyticus Seabass

Gilthead seabream

toxR-F

toxR-R

F: TTTGTTTGGCGTGAGCAAGGTTTT

R: GGTTATTTTGTCCGCCAGTGG

595 bp Kahla-Nakbi et al.,

2009

toxS

Regulatory virulence

factor protein

V. alginolyticus Seabass

Gilthead seabream

toxS-F

toxS-R

F: CCACTGGCGGACAAAATAACC

R: AACAGTACCGTAGAACCGTGA

640 bp Kahla-Nakbi et al.,

2009

vpi

Virulence pathogenicity

island

V. alginolyticus Shrimp

Fish, seawater

vpi1

vpi2

F: GCAATTTAGGGGCGCGACGT

R: CCGCTCTTTCTTGATCTGGTAG

680 bp Kahla-Nakbi et al.,

2009

amiB

amidase

V. anguillarum Marine flounder van-ami8

van-ami417

F: ACAT CATCCATTTGTTAC

R: CCTTATCACTATCCAAATTG

409 bp Hong et al., 2007

colA

collagenase

V.

parahaemolyticus

Seawater

Seabass

Gilthead seabream

VP-F

VP-R

F: GAAAGTTGAACATCATCAGCACGA

R: GGTCAGAATCAAACGCCG

271 bp Abdallah et al., 2011

toxR

Regulatory virulence

factor protein

V.

parahaemolyticus

Fish, shellfish

Gilthead seabream

ToxR-4

ToxR-7

F: GTCTTCTGACGCAATCGTTG

R: ATACGAGTGGTTGCTGTCATG

368 bp Abdelaziz et al., 2017

Aly et al., 2020

VvhA

V. vulnificus hemolysin

V. vulnificus Fish, shellfish vvhA up

vvhA dn

F: CGCCGCTCACTGGGGCAGTGGCTG

R: CCAGCCGTTAACCGAACCACCCGC

387 bp Abdelaziz et al., 2017

fast and accurate identification of Vibrio species in aquaculture
facilities, continuous development of comprehensive databases
that allow discrimination between closely related Vibrio species
is fundamental.

In conclusion, the current tools for fast identification of
Vibrio pathogens in aquaculture facilities, or cultured fish,
usually rely on the use of toxin-encoding genes, or other
alternative functional marker genes, in targeted, PCR-based
approaches (Abdallah et al., 2009, 2011; Aly et al., 2020)
as well as on mass spectrometry protocols which have been
gaining momentum in recent years (Mougin et al., 2020;
Moussa et al., 2021). The combination of highly specific
molecular identification of Vibrio pathogens, either by means
of gene-targeted or mass spectrometry approaches, and broad
characterization of total microbial communities via high-
throughput 16S rRNA gene sequencing, for instance, is likely
to become an effective approach to accurately determine
the presence of opportunistic/pathogenic bacteria in complex
microbial communities inhabiting aquaculture facilities, which
may include beneficial bacteria with the ability to supress the
spread of pathogens present in the community. The steady
development of well-curated databases in support of molecular
diagnostic tools will play a decisive role in enabling (i)

the identification of multiple pathogenic agents present in a
sample including understudied organisms, such as the likely
emerging pathogenic species V. chagasii (Sanches-Fernandes
et al., 2021b) and V. jasicida (Sanches-Fernandes et al.,
2021c); (ii) targeting the specific group of pathogenic agents
typical of each facility in a straightforward manner (Stentiford,
2017). Given that each aquaculture facility is unique, with
singular and distinct features (Stickney, 2016), these approaches
shall be used in a complementary way and considered in a
case-by-case manner.

ANTIBIOTIC RESISTANCE OF VIBRIO

SPECIES IN AQUACULTURE SETTINGS

Infections caused by drug-resistant pathogens are responsible
for 700,000 annual deaths in aquaculture, estimated to reach
10 million deaths as of 2050 (O’Neill, 2015). Recent studies
suggest that antibiotic resistant bacteria may not only emerge
in the environment due to the use of antimicrobial agents but
also due to the increase of local temperature (MacFadden et al.,
2018; Reverter et al., 2020; Pepi and Focardi, 2021), since it
can affect bacterial cell physiology and promote mutagenesis,
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allowing antibiotic resistance mutations to take place early
(Pepi and Focardi, 2021). Accordingly, the occurrence of Vibrio
outbreaks is commonly higher during spring and summer
seasons (Aly et al., 2020). Nevertheless, V. anguillarum was
referred to as the etiological agent of fish vibriosis in both
warm and cold waters in aquaculture facilities (Lages et al.,
2019). There is, however, evidence thatVibrio–associated diseases
are increasing in a global manner because of climate change
and human activities (Vezzulli et al., 2016). This highlights
the urgent need for more effective actions to combat not
only the indiscriminate use of antimicrobial agents but also
global climate change and warming (Reverter et al., 2020; Pepi
and Focardi, 2021). The development of multi-resistance traits
among pathogenic Vibrio spp. has been reported steadily across
several aquaculture stations worldwide (Scarano et al., 2014;
Aly et al., 2020; Deng et al., 2020; Dutta et al., 2021; see
Supplementary Table S1), and it may be reasonable to argue that
this trend results from the synergistic effects of past and currently
unsupervised antibiotics use and higher water temperatures.

The common practice and overuse of antibiotic
administration for prophylactic reasons in aquaculture is
an important factor to consider regarding the increase in
transfer of antibiotic resistance genes to land animals and human
pathogens (Costa et al., 2015). This is a global public health
concern exacerbated by the fact that the increment in multiple
antibiotic resistance is also observed in food-borne pathogens,
opportunistic pathogens, and the commensal microbiota
of animals for human consumption, resulting in antibiotic
resistance in the human gastrointestinal tract (Nguyen et al.,
2014). With regards to the most crucial players involved in
horizontal gene transfer among Vibrio cells, along with plasmids,
phages, transposons and integrons are also genomic islands and
integrating conjugative elements (Rodríguez-Blanco et al., 2012;
Costa et al., 2015). The inheritance of resistance traits is often
acquired via conjugation of resistance plasmids (R-plasmids),
which commonly contain genes encoding resistance to multiple
antibiotics. R-plasmids have been reported for Vibrio capable
of transferring drug resistance traits such as V. alginolyticus
(Gomathi et al., 2013).

Resistance profiles of Vibrio species isolated from diseased
gilthead seabream (including the most important Vibrio
pathogens of fish and humans, such as V. alginolyticus, V.
harveyi,V. parahaemolyticus andV. vulnificus) toward antibiotics
frequently used in the aquaculture industry are summarized
in Supplementary Table S1. This meta-analysis reveals that
antibiotic resistance profiles may vary among strains of the
same Vibrio species or across studies of the same species, which
is the case of the data gathered for Vibrio alginolyticus and
V. harveyi. Furthermore, we observed that most Vibrio species
are sensitive to tetracycline, oxytetracycline, chloramphenicol,
and florfenicol. All studies listed in Supplementary Table S1

were performed in gilthead seabream rearing facilities in the
Mediterranean zone. Collectively, the data suggest a trend
for increased antibiotic resistance among diverse Vibrionaceae
species at the Mediterranean basin, possible to observe across
time for species such as V. aestuarius (from 1998 to 2014), V.
alginolyticus (from 1998 to 2014, where studies published in 2007

and 2008 were performed in the same region by the same research
group), A. fischeri (from 1998 to 2003), V. harveyi (from 1998 to
2020),V. parahaemolyticus (from 2013 to 2020) andV. splendidus
(from 1998 to 2003).

A more responsible and prudent use of antibiotics in the
aquaculture sector is important as they are present in all
production stages. In 2011, oxytetracycline was the antibiotic
with the highest prescription for both prophylactic and
therapeutic ends in aquaculture facilities, and also the one that
is most of the times freely available (Bondad-Reantaso, 2018).
There is currently no international uniformization regarding
antibiotics usage approval, which are licensed by each country
in accordance with their own legislation (Guidi et al., 2018). For
an overview of antibiotics currently in use in aquaculture and
existing policies among major producing countries, we refer the
reader to the recent review by Lulijwa et al. (2020). We list some
of the most frequently used antibiotics in the aquaculture sector
and in the Mediterranean area in Supplementary Table S2,
whereby those antibiotics approved for use in Norway, Italy,
Brazil, and the United States are disclosed. We observed that
Vibrio species are sensitive to several antibiotics licensed for
use (Supplementary Table S1), including oxytetracycline and
florfenicol. While this picture is congruent with the need
of applying effective measures to deter vibriosis outbreaks,
it simultaneously raises concerns regarding the development
of broader multidrug resistance traits among Vibrio species.
Perhaps as important as delineating which antimicrobials are
permissible in what quantities and where, surveillance of the
fate of antibiotics in the environment and seafood biomass is
key to ensure adherence of farming stations to local/national
policies. In this regard, it is worth noting that the concentration of
permitted antibiotics in seafood biomass often exceedsmaximum
residual limits in most of the major producing countries (Lulijwa
et al., 2020). This calls for an urgent up-scaling of surveillance
capabilities for better traceability and follow-up of antibiotic use
practices (Schar et al., 2020).

The fact that antibiotics have been usually applied for
prophylactic, therapeutic, and metaphylactic purposes favors the
loss of susceptibility among the target organisms, and hence an
increasing trend of antibiotic resistance among Vibrio species is
likely as suggested by the data present in this review. Although
several antibiotics have been banned or subjected to strict
regulations, particularly in industrialized countries, the legacy
effects of their past and current indiscriminate use turn the
development of multidrug resistance among bacterial pathogens
an important and timely public health concern (Pepi and Focardi,
2021).

MICROBIAL-BASED STRATEGIES TO
PREVENT VIBRIO DISEASES IN
AQUACULTURE

The negative impact of the over usage of antibiotics on
farmed fish species and coastal environments worldwide
urges the development of alternative methods to prevent
disease proliferation and reduce ecosystem deterioration
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caused by emerging, multi-resistant opportunistic bacteria.
The development of strategies that target bacterial pathogens
based on the activation of the host’s immune system (i.e., using
vaccines), on biological interactions such as pathogen predation
(i.e., phage therapy) and on competition/niche displacement
among microbes or beneficial host-microbe interactions (e.g.,
using probiotics), are gaining increasing attention because they
may offer a less hazardous alternative regarding the suppression
of fish pathogens in aquaculture.

For an overview on the use of vaccines to prevent fish diseases,
we refer the reader to the comprehensive reviews of Embregts
and Forlenza (2016) and Ma et al. (2019), the latter on the
promises and challenges of oral vaccine administration. In short,
vaccination programmes are considered an efficient, pathogen-
specific suppressive approach that is best employed for disease
prevention among adult fish, especially when injection methods
of antigen delivery are adopted (Embregts and Forlenza, 2016).
Indeed, the implementation of efficient vaccination programmes
in Norway during the nineties is nowadays considered a
remarkable example of how alternative disease control methods
can sharply reduce the use of antibiotics in intensive fish
farming (Lulijwa et al., 2020). Presently, commercial Vibrio
vaccines such as AquaVacTMVibromaxTM (Wongtavatchai et al.,
2010) and ALPHA JECT 3000 (PHARMAQ AS, Norway; see
Torres-Corral et al., 2021 for an example of application) are
available, which offer efficacy in vibriosis control in shrimp
and finfish, respectively, under different administration methods,
namely incubation of Artemia nauplii prior to shrimp feeding
(AquaVacTMVibromaxTM; see Amatul-Samahah et al., 2020
for a review on vaccination of shrimp against vibriosis) and
intraperitoneal injection of adult fish (AlphaJect 3000).

To improve fish wellbeing under vaccination programmes,
oral administration methods using several modes of antigen
encapsulation in delivery systems such as chitosan, alginates,
and fish live feed such as Artemia and rotifers (bioencapsulation
methods) have been attempted. However, improvements are still
needed to ensure efficacy in antigen delivery in comparison
with injection procedures. The main challenges of oral vaccine
administration using encapsulation methods are to assure that
vaccines reach the digestive tract of fish by ingestion, the
maximum dosage allowed, which is dependent on the daily
live feed intake, the time of exposure to be effective and the
farmed fish tolerance to the vaccine (Embregts and Forlenza,
2016). The use of vaccines has moreover been considered not
applicable to handle fish larvae and bivalves due to the lack of an
adaptive immune system (Bentzon-Tilia et al., 2016), prompting
researchers to consider alternative routes for disease prevention,
such as the use of probiotics (see sub-section The Promise of
Probiotics in Controlling Vibrio Diseases in Aquaculture).

Concerning phage therapy methods to prevent bacterial
proliferation in aquaculture, the review by Richards (2014)
covers pioneering studies on diverse bacteriophage-bacterial host
systems and the efficacy of phage-based treatments to deter
pathogens such as Aeromonas samonicida, Edwardsiella tarda,
and V. harveyi, among others (Richards, 2014 and references
therein). Like the vaccination approach, a key feature of phage
therapy is its usual pathogen-specific nature, although the

extent of specificity of the host-phage interaction may vary
in case-dependent manner (Richards, 2014). In this regard,
the use of phage mixtures has been considered a reasonable
strategy to avoid the development of phage resistance by specific
bacterial hosts while enabling the control of diverse pathogens
(Richards, 2014). As for the use of vaccines and probiotics,
phage dosage and delivery mode (immersion, oral via e.g., live
feed ingestion, or injection) are crucial aspects for successful
implementation of phage therapy (Richards, 2014; Soliman et al.,
2019). To be cost-effective, phase dosage must be the lowest
possible to induce bacterial infection with an associated, high
phage replication rate (Soliman et al., 2019). Therefore, the
use of lytic—instead of lysogenic—phages has been suggested
as an imperative for the development of successful phage
therapy methodologies (Richards, 2014). Since the ability to
isolate and manipulate bacteriophages is strictly limited to the
range of culturable bacterial hosts that can be captivated in
the laboratory, and because the aquaculture pathobiome may
include unculturable, or hard-to-culture, understudied bacteria,
an intrinsic hurdle of the phage therapy approach relates
with the development of novel methodologies leading to the
control of bacterial populations for which no corresponding
bacteriophages are known to date. Finally, large-scale application
of phage therapy approaches in aquaculture shall be taken
with caution, as concerns related with the environmental
release of phages and its associated risks have been raised
(Meaden and Koskella, 2013). The use of probiotics as a
third, microbiome-based therapy approach to disease prevention
in aquaculture is addressed below, as well as its likelihood
to modulate aquaculture microbiomes toward a sustainable
healthy state.

The Promise of Probiotics in Controlling
Vibrio Diseases in Aquaculture
Probiotics can be defined as live bacterial species able to survive
and thrive in the acidic gastric environment whose activity leads
to a beneficial effect on the health of the host by re-establishing
or improving the gut microbiota, when administered in adequate
amounts (Zhou et al., 2020; Moroni et al., 2021), although
less stringent definitions have been proposed (see Borges
et al., 2021). Probiotics are ideally inoffensive and promote
host fitness. A mandatory feature of commercially successful
probiotics is their viability during storage and on/in the animal
host. Their application may follow reasonably standardized
and easy-to-implement methodology if commercial formulations
are deployed (Abareethan and Amsath, 2015). Probiotics may
be administered to the fish host through several mechanisms,
including inoculation of the rearing water, of formulated foods
or of the live feed (Verschuere et al., 2000). The use of
non-pathogenic biological agents as probiotics can be highly
advantageous as they may act successfully as anti-bacterial, anti-
viral and anti-fungal agents (Chauhan and Singh, 2019), thus
presenting the potential to increase reared fish health and rearing
water quality globally (Abareethan and Amsath, 2015). This
attractive way to face, prevent and combat disease among reared
fishes requires (host) species-specific studies to be made on the
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advantages of probiotics application, as symbiotic bacteria may
act as pathogenic or probiotic depending on the aquatic host
species. To properly address the molecular mechanisms of action
elicited by probiotics on the immune system of the host, if any,
further research is needed (Hai, 2015).

Probiotics-based therapies for disease control, when applied
to farmed fish, should ideally consider the use of strains native
to the host. This ensures higher probabilities of effective host
colonization and persistence by the probiotics in use, at the
operational rearing conditions, ultimately promoting nutrient
acquisition by the host and a safer environment to the reared
species, humans, and surrounding ecosystems (Wanka et al.,
2018; Borges et al., 2021). Several modes of action have been
reported for effective probiotics. These comprise the biosynthesis
of inhibitory compounds that avoid pathogen proliferation,
amelioration of the host immune system, competition with
pathogens for adhesion sites in the gut or for essential nutrients,
and even improvement of rearing water quality (Verschuere
et al., 2000; Pérez-Sánchez et al., 2014). Probiotics were also
reported as a source of nutrients, fatty acids, and vitamins to
the fish host, and as possessing the capacity to enhance the
digestibility of foods by the host organism throughmodulation of
the fish gut microbiome (Pérez-Sánchez et al., 2014; Borges et al.,
2021). Best practices to evaluate the potential of novel probiotic
organisms usually involve the performance of in vitro antagonism
tests, exposing pathogens to potential probiotic strains or to
extracellular products synthesized by them in liquid and/or solid
medium. To determine the ability of a probiotic strain to prevent
disease and epizootic outbreaks, it is necessary that in vivo tests
are performed (Verschuere et al., 2000; Pérez-Sánchez et al.,
2014).

The information regarding the use of probiotic approaches
in farmed gilthead seabream is still very scarce and even
absent concerning larviculture facilities. Promising clues to
follow to evaluate the potential of probiotics to prevent, or
even treat, vibriosis in gilthead seabream larvi- and aquaculture
facilities are suggested from the information gathered in Table 3,
which broadens our scope to list studies showing empirical
evidence of the efficacy of probiotics use to supress vibriosis
across a wide range of host organisms. Several benefits were
identified in shellfish aquaculture associated with the use of
diverse probiotics, namely Lactobacillus spp., Enterococcus spp.,
Bacillus spp., Aeromonas spp., Alteromonas spp., Arthrobacter
spp., Bifidobacterium spp., Clostridium spp., Paenibacillus spp.,
Phaeobacter spp., Pseudoalteromonas spp., Pseudomonas spp.,
Rhodosporidium spp., Roseobacter spp., Streptomyces spp. and
even Vibrio spp. (Ringø, 2020, Table 3). The main benefits
include fish growth promotion, improved digestive capacity,
inhibition of adherence and colonization of pathogenic bacteria
in the digestive tract, gut microbiota modulation, and the
improvement of hematological parameters and the immune
response (Ringø, 2020). Curiously, a previous study referred
to many avirulent V. alginolyticus strains that could be used
as probiotics (Akayli et al., 2008). Vibrio alginolyticus was
also reported to possess probiotic effects against Aeromonas
salmonicida (Hoseinifar et al., 2018). The use of Bacillus
cereus isolated from the intestine of shrimps Litopenaeus

vannamei is an example of successful re-colonization of the host
intestine at the post-larval stage, probably due to competitive
exclusion via the secretion of antimicrobial substances, especially
resulting in effective suppression of V. parahaemolyticus and V.
harveyi, justifying Bacillus cereus use as probiotic bacterium in
shrimp larviculture (Vidal et al., 2018). This is an example of
probiotic screening from natural host microbiomes that can be
successfully applied across several aquaculture systems. Several
other Gram-positive and Gram-negative probiotic bacteria
showing suppressive features against Vibrio spp. have already
been identified (Table 3).

Antibiotic-producing bacterial probiotics such as V.
hepatarius P62, Pseudomonas sp., Lactobacillus sp., Bacillus
P64, along with yeast probiotics applied in shellfish and fish
aquaculture have been usually selected from their natural
environment (Cedeño and Rodríguez, 2006). The probiotic
activity of Saccharomyces cerevisiae P13 against V. alginolyticus
was demonstrated through the significant enhancement of
survival rates of Pacific white shrimp Litopenaeus vannamei
(Wang et al., 2019). Bacillus pumilus H2 could be very useful as
an anti-Vibrio probiotic as it was shown to inhibit 29 different
Vibrio strains (Gao et al., 2017). The anti-Vibrio compound
was found to be amicoumacin, whose activity against Vibrio
pathogens is based on the disruption of cell membranes, resulting
in cell lysis. However, the minimum inhibitory concentration
(MIC, expressed in µg/ml) of the purified anti-Vibrio compound
amicoumacin A, isolated from Bacillus pumilusH2, was found to
vary considerably depending on the Vibrio species/strain, from
0.5µg/ml forV. vulnificusCZ-A2 andV. harveyi PH4 to 64 ug/ml
for V. alginolyticus CGMCC 1.1607 and V. parahaemolyticus
CGMCC 1.2164 (Gao et al., 2017).

Probiotic species able to inhibit diverse Vibrio strains or
species in in situ experiments are scarcely documented. Future
research should shed light on the potential use of Bacillus pumilus
as a deterrent of multiple opportunistic species in aquaculture
facilities. Tropodithietic acid (TDA) produced by Phaeobacter
spp. can protect live feed, namely rotifers and Artemia, as well
as turbot larvae and cod larvae against pathogenic Vibrio species
(Rasmussen et al., 2018) such as V. anguillarum (D’Alvise et al.,
2012). It was also found that the probiotic bacterium Phaeobacter
inhibens strain S4Sm inhibited the growth of V. tubiashii and V.
anguillarum in cultured oysters (Zhao et al., 2016). Furthermore,
Phaeobacter inhibens antagonized V. anguillarum in cultures
of copepod and in the copepod live feed Rhodomonas salina
(Rasmussen et al., 2018), emerging as another candidate probiotic
species with the ability to suppress multiple Vibrio species.

A multitude of readily culturable bacteria possessing potential
probiotic features are currently available and well-described.
These can be explored for the implementation of novel and
effective methodologies of pathogen suppression, for example
involving the development of multi-species probiotic inoculants
or of smart delivery systems (e.g., using alginates) that may
enhance the host colonization ability of probiotics. However,
despite all the promising advances mentioned above, only three
probiotic strains - the gut microbiota stabilizers Pediococcus
acidilactici CNCM MA 18/5M and Pediococcus acidilactici
CNCM I-4622 (bacteria), and the digestibility enhancer yeast
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TABLE 3 | Overview of the effects of probiotics against pathogenic Vibrio species in farmed fish and shrimp.

Probiotic strain Pathogen Fish species Beneficial effects Reference

Gram-positive bacteria

Bacillus cereus V. alginolyticus

IAL 1957

Litopenaeus vannamei Significant decrease of pathogens by secretion

of antimicrobial substances; competitive

exclusion.

Vidal et al., 2018

Bacillus licheniformis V. alginolyticus Macrobrachium

rosenbergii

Significant decrease in cumulative mortality;

increased growth and immune response.

Kumar et al., 2013

Bacillus subtilis E20 V. alginolyticus Litopenaeus vannamei Immune modifications, such as increases in

phenoloxidase activity, phagocytic activity, and

clearance efficiency against vibriosis; increased

survival.

Tseng et al., 2009;

Wang et al., 2019

Lactobacillus acidophilus 04 V. alginolyticus SAC 15 Penaeus monodon Effective pathogen inhibition; increased

resistance and survival.

Natesan et al., 2012;

Sivakumar et al., 2012

Lactobacillus acidophilus

NCIM 2285

V. alginolyticus Penaeus indicus Effective pathogen inhibition; increased

immune response and survival.

Ajitha et al., 2004

Lactobacillus bulgaricus

NCIM 2285 (2056)

Lactobacillus bulgaricus

NCIM 2285 (2057)

V. alginolyticus Penaeus indicus Effective pathogen inhibition; increased

immune response and survival.

Ajitha et al., 2004

Lactobacillus fermentum

LW2

V. alginolyticus Litopenaeus vannamei Increased survival. Wang et al., 2019

Lactobacillus pentosus BD6 V. alginolyticus Litopenaeus vannamei Increased survival. Wang et al., 2019

Lactobacillus plantarum V. alginolyticus Litopenaeus vannamei Immune modulation; increased resistance and

survival.

Chiu et al., 2007;

Ramírez et al., 2017

Streptococcus cremoris

NCIM 2285

V. alginolyticus Penaeus indicus Effective pathogen inhibition; increased

immune response and survival.

Ajitha et al., 2004

Bacillus thuringiensis

strain EA26.1

V. anguillarum Litopenaeus vannamei Increased resistance to vibriosis. Dou et al., 2016

Carnobacterium divergens V. anguillarum Atlantic cod Decreased vibriosis. Gildberg et al., 1997

Clostridium butyricum CB2 V. anguillarum Miichthys miiuy Increased phagocytic activity of leucocytes and

therefore disease resistance to vibriosis.

Pan et al., 2008

Clostridium butyricum

MIYAIRI

V. anguillarum Rainbow trout Increased disease resistance. Sakai et al., 1995

Enterococcus gallinarum L1 V. anguillarum

975-1

Seabass Decrease in mortality rates. Moderate

protective effect; Extracellular substance

production with antagonistic effect; Biding

sites’ competition on the intestinal mucus with

a rate of exclusion of 66.2%.

Sorroza et al., 2013

Kocuria SM1 V. anguillarum Rainbow trout Decrease in mortality rates; stimulation of

innate immune parameters.

Sharifuzzaman and

Austin, 2010;

Sharifuzzaman et al.,

2011

Lactococcus lactis subsp.

lactis

V. anguillarum

ATCC 12486

Litopenaeus vannamei Increased growth performance, digestive

enzyme activity, disease resistance and

survival.

Adel et al., 2017

Pediococcus pentosaceus

4012

V. anguillarum Grouper Significant decrease in cumulative mortality. Huang et al., 2014

Rhodococcus SM2 V. anguillarum Rainbow trout Decrease in mortality rates. Sharifuzzaman et al.,

2011

Vagococcus fluvialis V. anguillarum

975-1

Seabass Increased survival rate. Sorroza et al., 2012

Bacillus sp. JL1 V. campbellii

LMG 21363

Penaeus monodon Increased the survival, growth and robustness.

Potential immunostimulatory strategy.

Laranja et al., 2014,

2017

Bacillus sp. NFMI-C V. campbellii BB120

(ATCC BAA-1116)

Macrobrachium

rosenbergii

Decreased quorum sensing-regulated

luminescence of V. campbellii;

Significantly higher survival.

Pande et al., 2015

Lactobacillus pentosus

AS13

V. campbellii Litopenaeus vannamei Higher growth performance and digestive

enzyme activities in the gut;

Significantly lower mortality rate.

Zheng and Wang, 2017

(Continued)
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TABLE 3 | Continued

Probiotic strain Pathogen Fish species Beneficial effects Reference

Bacillus aryabhattai

TBRC8450

V. harveyi 1562 Litopenaeus vannamei Better shrimp innate immunity and antioxidant

capacity; increased survival.

Tepaamorndech et al.,

2019

Bacillus cereus V. harveyi Penaeus monodon Potent growth promoter and immune enhancer. NavinChandran et al.,

2014

Bacillus cereus V. harveyi Litopenaeus vannamei Increased survival. Masitoh et al., 2016

Bacillus cereus (DQ915582) V. harveyi MTCC 3438 Penaeus monodon Increased resistance to vibriosis; Enhance

survival.

Ravi et al., 2007

Bacillus flexus LD-1 V. harveyi Litopenaeus vannamei Increased growth, innate immune and digestive

enzyme activities, stress tolerance, disease

resistance.

Cai et al., 2019

Bacillus licheniformis LS-1 V. harveyi Litopenaeus vannamei Increased growth, innate immune and digestive

enzyme activities, stress tolerance, disease

resistance.

Cai et al., 2019

Bacillus sp. Mk22 V. harveyi Penaeus monodon Effective pathogen control. Ashokkumar and

Mayavu, 2014

Bacillus P64 V. harveyi (S2) Litopenaeus vannamei Significantly higher global immunity index. Gullian et al., 2004

Bacillus S11 V. harveyi D311 Penaeus monodon Shrimp appeared healthy and normal;

competitive exclusion of pathogenic bacteria;

100% survival.

Rengpipat et al., 1998

Bacillus S11 V. harveyi D311

V. harveyi 1526

Penaeus monodon Significantly higher survival; immune response

stimulation, activation of cellular and humoral

immune defenses.

Rengpipat et al., 2000

Bacillus subtilis L10

Bacillus subtilis G1

V. harveyi ATCC 14126 Litopenaeus vannamei Higher immune response; improved growth

performance and disease resistance.

Zokaeifar et al., 2012

Bacillus subtilis S12 V. harveyi Litopenaeus vannamei Significantly lower mortality; higher phagocytic

rate and antibacterial activity.

Effective immunopotentiator.

Liu et al., 2014

Bacillus subtilis P11 V. harveyi 639 Penaeus monodon Increased immunity and survival. Utiswannakul et al.,

2011

Bacillus subtilis P11 V. harveyi 639 Litopenaeus vannamei Increased disease resistance and survival. Sapcharoen and

Rengpipat, 2013

Bacillus subtilis BT23 V. harveyi Penaeus monodon Decrease in cumulative mortality. Vaseeharan and

Ramasamy, 2003

Bacillus subtilis S11 V. harveyi 639 Litopenaeus vannamei Increased disease resistance and survival;

Larger probiotic effect compared with Bacillus

subtilis P11

Sapcharoen and

Rengpipat, 2013

Bacillus thuringiensis V. harveyi Litopenaeus vannamei Increased survival. Masitoh et al., 2016

Clostridium butyricum V. harveyi Macrobrachium

rosenbergii

Significantly higher digestive protease and

amylase activities in the gastrointestinal tract;

increased immune response.

Sumon et al., 2018

Lactobacillus sp

AMET1506

V. harveyi Penaeus monodon

Litopenaeus vannamei

Increased resistance and survival. Karthik et al., 2014,

2016

Lactobacillus plantarum

MRO3.12

V. harveyi Litopenaeus vannamei Increased resistance and survival. Vieira et al., 2010

Kongnum and

Hongpattarakere, 2012

Shefat, 2018

Enterococcus faecalis V. harveyi Macrobrachium

rosenbergii

Higher weight gain and digestive enzymes

activities.

Khushi et al., 2022

Enterococcus faecium

MC13

V. harveyi Penaeus monodon Effective pathogen inhibition; increased survival. Swain et al., 2009

Paenibacillus polymyxa

(DQ915580)

V. harveyi MTCC 3438 Penaeus monodon Increased resistance to vibriosis and survival. Ravi et al., 2007

Paenibacillus spp.

(EF012164)

V. harveyi MTCC 3438 Penaeus monodon Increased resistance to vibriosis and survival. Ravi et al., 2007

Streptococcus phocae PI80 V. harveyi Penaeus monodon Effective pathogen inhibition; increased survival. Swain et al., 2009

Streptococcus phocae PI80 V. harveyi MTCC 3435 Cyprinus carpio Pathogen suppression. Kanmani et al., 2010

(Continued)
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TABLE 3 | Continued

Probiotic strain Pathogen Fish species Beneficial effects Reference

Streptococcus phocae PI80 V. harveyi MTCC 3435 Penaeus monodon Reduced shrimp mortality; shrimp survival rate

of 100%.

Kanmani et al., 2010

Streptomyces strains

CLS-39

V. harveyi Penaeus monodon Higher total length and wet weight. Das et al., 2010

Bacillus thuringiensis

G5-8-3T02

V. mimicus Penaeus monodon Higher disease resistance, weight and length

gain.

Anyanwu and Ariole,

2019

Carnobacteria inhibens V. ordalii Rainbow trout Reduced mortality Robertson et al., 2000

Arthrobacter XE-7 V. parahaemolyticus Litopenaeus vannamei Higher immune response (total hemocyte

counts, percentage phagocytosis, respiratory

burst activity, and serum phenoloxidase

activity); higher resistance to vibriosis.

Li et al., 2008

Bacillus cereus V. parahaemolyticus

ATCC 17802

Litopenaeus vannamei Significant pathogen suppression through the

secretion of antimicrobial substances;

competitive exclusion.

Vidal et al., 2018

Bacillus coagulans V. parahaemolyticus Penaeus monodon Immunomodulatory effect; Higher levels of

superoxide dismutase (SOD) and catalase

activity.

Raghu et al., 2016

Bacillus coagulans ATCC

7050

V. parahaemolyticus Litopenaeus vannamei Improved growth and intestinal morphology;

diverse intestinal microbiota; higher immune

response and resistance to vibriosis.

Amoah et al., 2019

Bacillus firmus V. parahaemolyticus Penaeus monodon Immunomodulatory effect; higher levels of

superoxide dismutase (SOD) and catalase

activity.

Raghu et al., 2016

Bacillus sp. Mk22 V. parahaemolyticus Penaeus monodon Effective pathogen control; higher antioxidant

enzyme activities.

Ashokkumar and

Mayavu, 2014

Ashokkumar et al.,

2016

Bacillus subtilis UTM 126 V. parahaemolyticus

PS-017

Litopenaeus vannamei Effectiveness at decreasing vibriosis. Balcázar et al., 2007

Bacillus subtilis WB60 V. parahaemolyticus

KCCM 11965

Litopenaeus vannamei Improved growth, immunity, histology, gene

expression, digestive enzyme activity;

Increased disease resistance, while

replacing antibiotics.

Won et al., 2020

Clostridium butyricum

CBG01

V. parahaemolyticus Litopenaeus vannamei Improved growth performance, immunity

capacity and resistance against vibriosis;

Positive effect on the intestinal

morphological structure.

Li et al., 2019

Enterococcus faecium

MC13

V. parahaemolyticus Penaeus monodon Effective pathogen inhibition; increased survival. Swain et al., 2009

Lactococcus lactis

SGLAB02

V. parahaemolyticus

(VPAHPND)

Litopenaeus vannamei Immune system modulation; improved

pathogen resistance.

Chomwong et al., 2018

Lactobacillus bulgaricus

E20

V. parahaemolyticus

PS-017

Litopenaeus vannamei Better immune response in shrimp; higher

survival rate and disease resistance.

Roomiani et al., 2018

Lactobacillus pentosus

HC-2

V. parahaemolyticus E1 Litopenaeus vannamei Improved immune responses, growth

performance and disease resistance.

Competitive exclusion of V. parahaemolyticus

E1 in the intestine of shrimp.

Sha et al., 2016a,b

Lactobacillus plantarum

SGLAB01

V. parahaemolyticus

(VPAHPND)

Litopenaeus vannamei Immune system modulations; improved

pathogen resistance.

Chomwong et al., 2018

Lactobacillus plantarum T8 V. parahaemolyticus

XN9 (AHPND)

Litopenaeus vannamei Higher shrimp body length and weight; higher

survival.

Nguyen et al., 2018

Lactobacillus plantarum T13 V. parahaemolyticus

XN9 (AHPND)

Litopenaeus vannamei Higher survival. Nguyen et al., 2018

Lactococcus lactis V. parahaemolyticus

KCCM 11965

Litopenaeus vannamei Improved growth, immunity, histology, gene

expression, digestive enzyme activity;

Improved disease resistance, while

replacing antibiotics.

Won et al., 2020

(Continued)
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TABLE 3 | Continued

Probiotic strain Pathogen Fish species Beneficial effects Reference

Paenibacillus polymyxa

ATCC 842

V. parahaemolyticus Litopenaeus vannamei Higher shrimp growth, serum and

hepatopancreas immune and antioxidant

activities;

Improved digestive enzyme activities and

intestinal morphology; gut microbiota

modulation; higher survival.

Amoah et al., 2020

Pediococcus pentosaceus V. parahaemolyticus

KCCM 11965

Litopenaeus vannamei Improved growth, immunity, histology, gene

expression, digestive enzyme activity;

Higher disease resistance, while

replacing antibiotics.

Won et al., 2020

Streptococcus phocae PI80 V. parahaemolyticus Penaeus monodon Shrimp pathogen suppression. Kanmani et al., 2010

Streptococcus phocae PI80 V. parahaemolyticus Cyprinus carpio Shrimp pathogen suppression. Kanmani et al., 2010

Streptomyces strains N7 V. parahaemolyticus Litopenaeus vannamei Significantly higher survival rate. García-Bernal et al.,

2017

Streptomyces strains RL8 V. parahaemolyticus Litopenaeus vannamei Higher weight gain and survival rates. García-Bernal et al.,

2017

Lactococcus lactis D1813 V. penaeicida Marsupenaeus

japonicus

Improved pathogen resistance and survival;

immunomodulatory activity.

Maeda et al., 2014

Streptomyces strains

CLS-28

V. proteolyticus Penaeus monodon Higher total length and wet weight; higher

survival.

Das et al., 2010

Lactobacillus pentosus

AS13

V. rotiferianus Litopenaeus vannamei Improved growth performance and digestive

enzyme activities in the gut;

Significantly lower mortality rate.

Zheng and Wang, 2017

Lactobacillus pentosus

AS13

V. vulnificus Litopenaeus vannamei Improved growth performance and digestive

enzyme activities in the gut;

Significantly lower mortality rate.

Zheng and Wang, 2017

Gram-negative bacteria

Pseudomonas fluorescens

AH2

V. anguillarum Rainbow trout Improved survival through 46% reduction in

accumulated mortality.

Gram et al., 1999

Phaeobacter gallaeciensis

BS107 (DSM 17395)

V. anguillarum NB10

(serotype O1)

Cod larvae Mortality decreased by approximately 10%. D’Alvise et al., 2012

Roseobacter sp. 27-4 V. anguillarum

90-11-287

(serotype O1)

Turbot Controlled V. anguillarum infection. Planas et al., 2006

Roseobacter sp. 27-4 V. anguillarum

90-11-287

(serotype O1)

Scophthalmus

maximus

Significant reduction in cumulative mortality. Hjelm et al., 2004

Shewanella putrefaciens

Pdp11

V. anguillarum Sparus aurata Lower mortalities. Chabrillón et al., 2006

Pseudomonas sp. W3 V. harveyi PSU 2015 Litopenaeus vannamei Improved survival, growth, and weigh gain likely

through immunomodulatory effects.

Rattanachuay et al.,

2007, 2011

Vibrio hepatarius P62 V. harveyi (S2) Litopenaeus vannamei Significantly higher global immunity index. Gullian et al., 2004

Pseudoalteromonas NC201 V. nigripulchritudo Litopenaeus stylirostris Improved shrimp immune response expression;

higher transcriptional activity of the gene

coding for the antimicrobial peptide Litsty PEN3

in larvae; 2-fold lower cumulative mortality.

Pham et al., 2014 ;

Sorieul et al., 2018

Pseudoalteromonas CDA22 V. parahaemolyticus Litopenaeus vannamei Higher resistance to vibriosis. Wang et al., 2018

Pseudoalteromonas CDM8 V. parahaemolyticus Litopenaeus vannamei Higher resistance to vibriosis. Wang et al., 2018

Roseobacter gallaeciensis

SLV03

V. parahaemolyticus

PS-017

Litopenaeus vannamei Higher survival; effectiveness at decreasing

vibriosis.

Balcázar et al., 2007

Vibrio alginolyticus UTM 102 V. parahaemolyticus

PS-017

Litopenaeus vannamei Higher final weight and survival; Effectiveness

at decreasing vibriosis.

Balcázar et al., 2007

Pseudomonas aeruginosa

PsDAHP1

V. parahaemolyticus

DAHV2 (GFP-

VpDAHV2)

Zebrafish Fish through biofilm formation inhibition and

improved defense mechanisms.

Vinoj et al., 2015

Pseudomonas aestumarina

SLV22

V. parahaemolyticus

PS-017

Litopenaeus vannamei Higher survival and final weight. Effectiveness

at decreasing vibriosis.

Balcázar et al., 2007

Aeromonas media A199 V. tubiashii Crassostrea gigas Improved resistance to vibriosis. Gibson et al., 1998
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Komagataella pastoris DSM 23036 - are authorized by the
European Union to be used as live organisms in aquaculture
facilities [European Commission 2021, Reg (EC) No 1831/2003].
In face of the acute challenges posed by increasing disease
incidence in the aquaculture sector, and of the manifold
possibilities of microbiome-based disease control revealed in the
last three decades, it is reasonable to argue that time is ripe for
advancing new legislation that is on par with current scientific
knowledge regarding the use of environmentally safer, bio-based
methodologies to deter bacterial diseases in this sector.

CONCLUDING REMARKS

Microorganisms are major contributors to nutrient cycling
and functioning within aquaculture facilities yet a fraction
of the total microbiome thriving in these man-made is also
responsible for disease and mortality affecting live feed, fish
larvae, fish, and shellfish. The extent to which solutions to the
pathogenicity problemwithin aquaculture facilities may be found
in the naturally occurring aquaculture microbiome is a matter
of current scientific debate. The effective implementation of
protocols relying on the use of vaccines, phage therapy and
probiotics holds promise in deterring pathogen proliferation in
intensive fish farming. For instance, a wealth of Gram-positive
and Gram-negative bacteria showing remarkable capacities to
supress Vibrio pathogens or mitigate vibriosis symptoms in
farmed fish and shellfish have been identified in the past 30
years. Nevertheless, to move beyond the proof-of-concept stage,
such protocols still face technical and legal challenges that
prevent their wide-range applicability at the production scale.
Better understanding of microbiomes thriving in “healthy” and
“diseased” hosts and aquaculture systems is key to instruct
researchers in the pursuit of techniques leading to efficient
microbiome manipulation and engineering toward safer rearing
systems, eventually decreasing the need of using antibiotics and
hazardous chemicals to control bacterial diseases in aquaculture.

The increasing pollution of coastal ecosystems caused by
sewage and industrial effluent inputs, including oils, fertilizers,
and heavy metals, may also result in a negative physiological
response of reared fish, favoring the invasion of bacterial
pathogens and parasites in rearing systems exposed to such
pollutants. Therefore, proper environmental monitoring and
ecosystem conservation are fundamental to prevent bacterial
disease incidence in aquaculture. Aquaculture facilities may
be in fact “hotspots” for gene transfer, as they contain dense
and highly diverse bacterial communities whose structure and
taxonomic composition result from the combination of current
and past use of antibiotics, probiotics, prebiotics as well as
other kinds of treatments or methods. In this context, it is
important to discern the coding potential present in the mobile
gene pool of Vibrio species and assess the intra- and interspecific
transferability of these genes, as this bears implications to our
understanding to the roles of Vibrio species as disease-causing
agents and of the potential switch from commensal to pathogenic
behavior based on processes of gene gain and loss in the Vibrio-
associated plasmidome. Indeed, Bruto et al. (2017) revealed that

pathogenicity of Vibrio crassostreae toward the cultured oyster
species Crassostrea gigas is mediated by the acquisition of a large
mobilizable plasmid. It is reasonable to argue that such processes
mediate virulence of Vibrio pathogens of fish and may be
promoted by high host densities in intensive rearing conditions.

Vibriosis is one of the most important diseases causing
high mortality rates in the aquaculture industry. According to
the meta-analysis discussed in this review, species such as V.
alginolyticus and V. harveyi are among the main responsible
for epizootic disease outbreaks causing economic losses in this
sector, affecting several fish species, including the production
of reared gilthead seabream in the Mediterranean zone. As
the frequency of antibiotic- and multidrug-resistance Vibrio
spp. is growing, constant surveillance and monitoring of
antibiotic resistance and pollution must be assured to avoid the
development of multi-resistant strains which may pose threats
to both ecosystem and human health. Although certain Vibrio
species from diseased farmed gilthead seabream were found
to be sensitive to tetracycline, oxytetracycline, chloramphenicol
and florfenicol, the development of alternative, cost-effective
and sustainable pathogen suppression methods in aquaculture
is encouraged from an environmental and a human health
standpoint. Particularly worrisome is the current rise of human
infections caused by environmental and seafood-associated
Vibrio species, apparently influenced by climate-change drivers of
microbial community assembly in coastal ecosystems, including
intensive seafood farming systems.

The major goal of aquaculture production is supplying food
for human consumption. Following several decades of heavy
use of antimicrobial drugs and antibiotics to boost intensive
fish rearing, current prophylaxis approaches that contribute to
a more health-oriented management of aquaculture systems
are being increasingly recommended to prevent or suppress
epizootic disease outbreaks. They involve the use of less
dangerous methods such as vaccines, immunostimulants and
probiotics/microbiome therapy. This way, it is believed that
healthier food for human consumption may be produced and
bacterial resistance to antibiotics may be prevented or alleviated,
thus reducing the transfer of acquired antibiotic resistance traits
to human pathogens viamobile genetic elements.
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