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Background: Alzheimer's disease (AD) and sleep disorders are both
neurodegenerative conditions characterized by impaired or absent sleep.
However, potential common pathogenetic mechanisms of these diseases are
not well characterized.

Methods: Differentially expressed genes (DEGs) were identified using
publicly available human gene expression profiles GSE5281 for AD and
GSE40562 for sleep disorder. DEGs common to the two datasets
were used for enrichment analysis, and we performed multi-scale
embedded gene co-expression network analysis (MEGENA) for common
DEGs. Fast gene set enrichment analysis (fGSEA) was used to obtain
common pathways, while gene set variation analysis (GSVA) was applied
to quantify those pathways. Subsequently, we extracted the common
genes between module genes identified by MEGENA and genes of the
common pathways, and we constructed protein-protein interaction (PPI)
networks. The top 10 genes with the highest degree of connectivity
were classified as hub genes. Common genes were used to perform
Metascape enrichment analysis for functional enrichment. Furthermore, we
quantified infiltrating immune cells in patients with AD or sleep disorder
and in controls.

Results: DEGs common to the two disorders were involved in the
citrate cycle and the HIF-1 signaling pathway, and several common
DEGs were related to signaling pathways regulating the pluripotency of
stem cells, as well as 10 other pathways. Using MEGENA, we identified
29 modules and 1498 module genes in GSE5281, and 55 modules
and 1,791 module genes in GSE40562. Hub genes involved in AD and
sleep disorder were ATP5A1, ATP5B, COX5A, GAPDH, NDUFA9, NDUFS3,
NDUFV2, SOD1, UQCRC1, and UQCRC2. Plasmacytoid dendritic cells
and T helper 17 cells had the most extensive infiltration in both AD
and sleep disorder.
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Conclusion: AD pathology and pathways of neurodegeneration participate

in processes contributing in AD and sleep disorder.

Hub genes may

be worth exploring as potential candidates for targeted therapy of AD
and sleep disorder.

Alzheimer’'s disease, sleep disorder, gene expression, bioinformatics analysis,
differentially expressed gene (DEG)

Introduction

Neurodegenerative disease is a general designation for
conditions involving progressive loss of structure or function
of the nervous system, leading ultimately to neuronal death,
including Alzheimer’s disease (AD) and prion disease (1).
These diseases vary in their pathophysiology: some can cause
memory and cognitive impairments, while others affect the
ability to move, speak, and breathe (2, 3). The symptoms of
AD begin to develop with mild memory impairment and evolve
into cognitive impairment and dysfunction in complex daily
activities (4). AD can be ultimately fatal. Cognitive deficits
are ameliorated by reduction in amyloid B accumulation (5).
AD is one of the most common factors of dementia and
frailty (4), which occurs mostly in people over 65 years (6).
The presence of amyloid B and tau proteins is a defining
characteristic of AD, characterized by loss of neurons and
synapses in the cerebral cortex and certain subcortical regions
(7). Nearly half of all AD adults older than 60 years also
report sleep disturbances (8). In addition, disturbed sleep or
lack of sleep has been identified as one of the risk factors
for AD (9).

The pathology of AD may overlap with the pathology
of other diseases; for example, some patients with prion
mutations are initially diagnosed with AD (10). Prion diseases
are neurological disorders characterized by neuronal loss,
spongiform degeneration, and activation of astrocytes or
microglia cells. Although rare in humans, prion diseases can
lead to dementia and ataxia (11). Fatal familial insomnia (FFI)
is a prion disease that involves a mutation in codon 178 of the
gene encoding the prion protein (PRNP) (12). The disease is
characterized by loss of sleep, abnormal autonomic function,
and selective atrophy, usually without spongiform changes (13).
The thalamus is the main brain region affected in this sleep
disorder (6), and FFI has been considered to be dominated by
sleep disorder. The disease is currently incurable and has a mean
course of 18 months, ultimately leading to death (14).

There is growing evidence that poor sleep accelerates the
progression of neurodegenerative disorders and may play a role
in their pathogenesis (15). Since sleep disorders are present
in AD, we need to understand the pathogenic factors and
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mechanisms of AD and sleep disorder in order to design
effective treatments. Although sleep disorders and AD present
different pathogenic factors and clinical features, DNA damage
or accumulation of misfolded proteins may be activated as a
common mechanism in the pathogenesis of both conditions,
ultimately leading to irreversible neuronal loss and cell death
(16, 17).

In our previous studies, we also found several biomarkers
may contribute to AD. CXCR4, EGFR, MAP4K4, IGFIR (18),
and RBMB8A (19) may serve as biomarkers for AD diagnosis.
A study identified significant marker genes, which could be
related to a potential AD molecular type (20). Studies have
shown that REPSI1 serves as a potential biomarker for AD
and Vascular dementia that were both associated with Ras
signaling (21). Furthermore, IncRNAs and miRNAs determining
the progression of AD, including miR-34a (22) and long
ncRNA MALATI (23). Chan has reported that high expression
of PMP2, KIF5B, and ADD3 as common molecule between
AD and sleep disorders that involved in Ras signaling (24).
These genes can be used for the diagnosis and treatment of
neurodegenerative diseases, and we need to further exploration
and verification.

However, relevant mechanisms of AD and sleep disorder are
not well characterized and need to be further explored. In the
present study, we used bioinformatics analyses to investigate the
similarities and differences in gene expression among patients
with sleep disorder or AD in order to identify hub genes and
intersecting pathways. The resulting insights may help guide
experimental studies to elucidate pathways common to both
types of disease.

Materials and methods

Data preprocessing

The workflow of the study is shown in Figure 1. Gene
expression profiles from publicly available datasets GSE5281 and
GSE40562 based on the GPL570 platform (Affymetrix Human
Genome U133 Plus 2.0 Array) were downloaded from the Gene
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Expression Omnibus database (GEO)! (25). The array data
for GSE5281 consisted of 87 AD samples (obtained from six
brain regions as follows: 10 entorhinal cortex, 10 hippocampus,
16 medial temporal gyrus, 9 posterior cingulate, 23 superior
frontal gyrus, and 19 primary visual cortex) and 74 controls
(obtained from the same six brain regions: 13 entorhinal
cortex, 13 hippocampus, 12 medial temporal gyrus, 13 posterior
cingulate, 11 superior frontal gyrus, and 12 primary visual
cortex). The individuals included in this dataset had a mean age
of 79.9 £ 6.9 years (26). A total of eight samples of thalamus
and parietal lobe were analyzed in the GSE40562 dataset, from
three patients with sleep disorder and one normal individual.
The three patients included a 48-year-old man and a 26-year-old
female from the same family (27), as well as a 55-year-old man.

Differential expression analysis

Differentially expressed genes (DEGs) between patients with
AD or sleep disorder and controls were identified in GSE5281
and GSE40562 datasets using the “limma” package in R (28).
DEGs were defined as genes showing adjusted P < 0.05. The
intersecting DEGs common to the two datasets were identified
using the ggVennDiagram package (29), with selection criteria
defined as P < 0.05 and logy(fold change) > 0.5. Only
intersecting DEGs were analyzed further.

Enrichment analysis

We analyzed the intersecting DEGs for enrichment in Gene
Ontology (GO) terms and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways. GO terms, consisting of molecular
functions, biological processes, and cell components, were
analyzed using the clusterProfiler package (30) in R. P < 0.05
was considered to indicate a statistically significant difference.

Fast gene set enrichment analysis (fGSEA) was performed
to obtain common pathways using the expression profiles of
GSE5281 and GSE40562. Gene set variation analysis (GSVA)
is a non-parametric unsupervised analysis method to evaluate
the gene set enrichment of chips and transcriptomes (31). The
GSVA algorithm was applied to quantify pathways common to
AD and sleep disorder. The Cytoscape tool (32) was used to
explore interactions among common pathways and genes.

Co-expression network

We examined the intersecting DEGs using multiscale
embedded gene co-expression network analysis (MEGENA),
which can effectively improve performance over well-
established clustering method. We constructed and analyzed
large-scale planar filtered co-expression networks using the

1 https://www.ncbi.nlm.nih.gov/geo/
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MEGENA package in R (33). Filtered networks were used to
calculate correlations among intersecting DEGs and thereby
identify module genes.

Protein-protein interaction network
construction

PPIs help predict how cells function in health and disease
(34). We identified module genes that also participated in
pathways involved in both AD and sleep disorder, then we used
these genes to construct a PPI network, which was visualized
using Cytoscape (32). Among them, the top 10 genes with
highest degree of connectivity were identified as hub genes in
AD and sleep disorder. Furthermore, common genes to both
disorders were used to explore potential functional aspects using
Metascape tool (35). The expression of common genes was
visualized in a heat map created using “pheatmap” package (23)
and compared with the expression of hub genes, which were
visualized in AD, sleep disorder, and controls.

Calculation of immune cell infiltration

The levels of 24 types of immune cells that infiltrated
tissues of AD patients, sleep disorder patients and controls were
investigated using single-sample gene set enrichment analysis
(ssGSEA) and CIBERSORT'.? We also used the top 10 genes with
highest degree of connectivity in the PPI network and immune
cell infiltration data to perform Pearson correlation analysis
using the “ggstatsplot” package.

Results

Potential functions of differentially
expressed genes in Alzheimer’s disease
and sleep disorder

A total of 2,057 DEGs were identified in AD patients
compared to controls in GSE5281, including 509 upregulated
and 1,548 downregulated genes (Figure 2A). We identified 2,826
DEGs between sleep disorder patients and control individuals in
GSE40562, including 726 upregulated and 2,100 downregulated
genes (Figure 2B).

Among the DEGs, 769 were intersecting DEGs found
in both GSE5281 and GSE40562 (71 upregulated and 698
downregulated) (Figure 2C). Intersecting DEGs were involved
mainly in the hypoxia-inducible family (HIF)-1 signaling
pathway and tricarboxylic acid (TCA) cycle (Figure 2D). The
intersecting DEGs were enriched in the GO biological processes
of cellular respiration and adenosine triphosphate metabolism,

2 https://cibersort.stanford.edu/
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the GO cell components of mitochondrial inner membrane
and mitochondrial protein complexes, and the GO molecular
functions of nicotinamide adenine dinucleotide (NAD) binding
and NADH dehydrogenase activity (Figure 2E).

fGSEA showed that
involved in the activation of signaling pathways regulating

some intersecting DEGs were
the pluripotency of stem cells and breast cancer, while others
were linked to inhibition of AD and Parkinson’s disease
(Figures 3A,B). Our results identified 12 pathways common
to AD and sleep disorder: non-alcoholic fatty liver disease,
diabetic cardiomyopathy, chemical carcinogenesis-reactive
oxygen species, thermogenesis, Parkinson’s disease, prion
disease, Huntington’s disease, amyotrophic lateral sclerosis, AD,
and pathways related to neurodegeneration in multiple diseases.
Twenty pathways were quantified by GSVA, which identified 12
pathways with high scores common to AD and sleep disorder

(Figures 3C,D).

Co-expression network analysis to
identify modules and module genes

We constructed a MEGENA network using the common
genes to obtain module genes in AD and sleep disorder. We
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identified 29 modules and 1,498 module genes in GSE5281
(Figure 4A). The largest modules (C1_3 and C1_4) consisted of
135 genes, followed by module C1_19 with 125 genes. Moreover,
we identified 55 modules and 1,791 module genes in GSE40562.
Each of the three largest modules (C1_2, C1_4, and C1_5) had
135 genes (Figure 4B).

Regulation networks and expression of
genes common to Alzheimer’s disease
and sleep disorder

To identify potential pathways involved in the mechanisms
of sleep disorder and AD, genes of the identified 12 pathways
that were also module genes were selected as genes that may
promote the development of both AD and sleep disorder.

The potential role of gene-regulated pathways was analyzed
by Cytoscape (Figure 5A). Similarly, Figure 5B showed that
interactions among the genes common to AD and sleep
disorder could influence the development of both disorders.
Metascape enrichment analysis showed that common genes
regulated proton transmembrane transport in sleep disorder
and AD (Figure 5C). Heat maps showed the expression of 110
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common genes in GSE5281 and GSE40562 datasets, of which with highest degree of connectivity (ATP5A1, ATP5B, COX5A,
four were upregulated and 106 downregulated (Figure 5D GAPDH, NDUFA9, NDUES3, NDUFV2, SOD1, UQCRCI, and
and Supplementary Figure 1). Furthermore, the top 10 genes UQCRC2) were identified as hub genes in sleep disorder and

o
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and triangles represent key genes in the module.

AD. Interestingly, 10 hub genes were downregulated in patients
with AD or sleep disorder relative to the corresponding controls
(Figures 5E,F).

Immune cell infiltration in Alzheimer's
disease and sleep disorder

Infiltration of immune cells was compared between AD
or sleep disorder patients and controls in both datasets.
Plasmacytoid dendritic cells and T helper 17 (Th17) cells had
the most extensive infiltration in both datasets (Figures 6A,B),
according to ssGSEA. To further verify the correlation between
hub genes and infiltrating immune cells, we performed a
Pearson correlation analysis. We found a significant correlation
between hub genes and infiltrating immune cells in the GSE5281
(Figure 6C) and GSE40562 datasets (Figure 6D). Moreover,
in our CIBERSORT analysis, we found that CD8 + T cells
constituted the highest proportion of infiltrated immune cells
in GSE5281 (Figure 6E) and GSE40562 (Figure 6F), suggesting
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that these cells may play a role in the development of AD
and sleep disorder.

Discussion

AD is frequently characterized by disturbed or absent sleep,
similarly to sleep disorders. In addition, sleep disturbance is a
risk factor for neurodegenerative diseases that are ultimately
fatal. However, few studies have looked in detail at molecular
pathways that may be common to both disorders. In our study,
we integrated transcriptomic data from patients with either
condition and controls and performed bioinformatics analyses
to identify common pathogenic mechanisms.

Enrichment analysis showed that intersecting DEGs in
GSE5281 and GSE40562 were involved in the HIF-1 signaling
pathway and the TCA cycle, which produces energy for the
cell. HIF appears to play a role in brain response to hypoxia
and has been associated with the development of AD (36) and
Parkinson’s disease (37). In neurodegenerative diseases, HIF
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Protein-protein interaction (PPI) network and expression analysis. (A) Interaction of the 12 common pathways and common genes analyzed by
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FIGURE 6

A Different immunity cells in AD VS Control in GSE5281 B Different immunity cells in sleep disorder VS control in GSE40562
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and controls, and (B) between sleep disorder patients and controls, based on ssGSEA. Plots of correlations between hub genes and immune cell
types in (C) AD and (D) sleep disorder. Proportions of 22 types of infiltrating immune cells in (E) AD and (F) sleep disorder, based on the
CIBERSORT algorithm.

signaling may be associated with impaired brain response to in mitochondria may be altered. Enzymes and metabolites

hypoxia. Furthermore, during the development and occurrence involved in these reactions suffer various changes during

of AD and other neurodegenerative disorders, the TCA cycle neurodegeneration (38). Patients with sleep disorder show
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abnormalities in metabolic pathways involving glucose and
amino acids, and these pathways interact with the TCA cycle
(39, 40).

The results of our GSEA showed that DEGs common
to AD and sleep disorder were associated with activation of
signaling pathways regulating pluripotency of stem cells and
breast cancer, as well as associated with inhibition of Alzheimer’s
disease, Parkinson’s disease, and other pathways. Pluripotent
stem cells enable the acquisition of a large number of neural
cells to improve cell recovery after neurodegenerative disorders,
such as AD or Parkinson’s disease (41). Furthermore, women
with breast cancer can also have cognitive problems (42).
Interestingly, there is a possible connection between sleep
disorder and breast cancer (43).

We identified several hub genes common to sleep disorder
and AD: ATP5A1, ATP5B, COX5A, GAPDH, NDUFA9,
NDUES3, NDUFV2, SOD1, UQCRCI1, and UQCRC2. ATP5A1
has been identified as the target of some components of
Lavandula angustifolia extract, suggesting that some extract
components may have therapeutic effects on AD and other
neurodegenerative diseases (44). Downregulated ATP5B was
also previously identified as a hub gene involved in AD
(45). COX5A plays a vital role in aging-related memory
(46).
phosphate dehydrogenase in AD animal models increases

impairment Overexpression of glyceraldehyde-3-
apoptosis of hippocampal cells, neural degeneration, and
cognitive dysfunction (47). NDUFA9, NDUFV2, and NDUFS3
are considered critical genes in oxidative phosphorylation
and Parkinson’s disease, Huntingtons disease, and AD
pathways (48). SOD1 (49) and UQCRC2 (50) have been
linked to neurodegeneration. ATP5B (51), GAPDH (52),
and SOD1 (53) were reported as sleep deprivation and sleep
disorders related genes. One study showed an association
among DNA methylation, UQCRC1 expression and risk
of AD in a Chinese population (54). Notably, these genes
may be potential markers or key genes in AD or other
neurological diseases, but they have rarely been investigated in
sleep disorders.

In our ssGSEA analysis, plasmacytoid dendritic cells
and Thl7 cells showed the most extensive infiltration in
both AD and sleep disorder patients. Plasmacytoid dendritic
cells in the central nervous system have been identified as
the primary infiltrating cells in experimental autoimmune
encephalomyelitis (55). Additionally, Th17 cells have been
associated with cognitive impairment in multiple sclerosis
and AD (56). Thl7 cells strongly contribute to chronic
thus
processes (57). However, Th17 cells also have a role in

neuroinflammation, perpetuating neurodegenerative
barrier protection in many inflammatory diseases (58).
Notably, when we applied the CIBERSORT algorithm, the
abundance of CD8 + T cell infiltration was the highest in
both AD and sleep disorder patients. A previous study found
increased numbers of CD8 + T cells in the cerebrospinal
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fluid in AD patients (59). Differences in the results of the two
immune infiltration analyses may be due to differences among
individual patients.

This study presents several limitations. The main limitation
is that our results are based purely on bioinformatics of small
samples. Our analyses should be validated and extended in
experimental studies. Furthermore, the infiltration of different
immune cells may vary among patients, so we need to validate
our results in large samples.

Conclusion

In the present study, ATP5A1, ATP5B, COX5A,
GAPDH, NDUFA9, NDUEFS3, NDUFV2, SOD1, UQCRCI,
and UQCRC2 were identified as hub genes differentially
expressed in AD and sleep disorder relative to healthy
individuals. These genes may be involved in AD and sleep
disorder through pathways related to neurodegeneration and
multiple diseases, and they may be candidate biomarkers
to facilitate diagnosis and therapy. We also identified some
immune cell populations that strongly infiltrate tissues
in both disorders and which therefore may contribute
to pathogenesis.
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