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Construction of DNA methylation-based 
nomogram for predicting biochemical-recurrence-
free survival in prostate cancer
Jiayu Zhu, MDa, Le Zhang, MDa,* 

Abstract 
This study aimed to develop a DNA methylation-based nomogram for predicting biochemical recurrence in patients with prostate 
cancer. A DNA methylation signature was obtained via univariate, lasso, and stepwise multivariate Cox regression models. A 
11-DNA methylation signature yielded a high evaluative performance for biochemical-recurrence-free survival. Cox regression 
analysis indicated that 11-DNA methylation signature and Gleason score served as independent risk factors. A nomogram 
was constructed based on the 11-DNA methylation signature and Gleason score, and C-index as well as the calibration plots 
demonstrated good performance and clinical application of the nomogram. A DNA methylation-associated nomogram serve as a 
prognosis stratification tool to predict the biochemical recurrence of prostate cancer patients after radical prostatectomy.

Abbreviations: BCR = biochemical recurrence, BRFS = biochemical recurrence-free survival, K–M = Kaplan–Meier, MAPK8 = 
mitogen-activated protein kinase 8, NA = not available, PCa = prostate cancer, PHF17 = plant homeodomain protein Jade-1, RP 
= radical prostatectomy.
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1. Introduction
Prostate cancer (PCa) is the most frequently diagnosed can-
cer and the fifth leading cause of cancer-related death world-
wide.[1] Currently, the curative treatment for localized PCa 
include radical prostatectomy (RP) and radical radiation,[2,3] 
which significantly reduced the mortality. However, biochemi-
cal recurrence (BCR) occurs about 20 to 40% of PCa patients 
who undergo RP treatment.[4–6] BCR was considered as a deci-
sive risk factor for PCa-specific mortality and overall mortal-
ity.[7] Without secondary treatment, a round 30% of patients 
with BCR would develop local recurrence or distant metasta-
sis within 5 to 8 years, and 32 to 45% of these patients with 
clinical progression would suffer PCa-specific mortality within 
15 years.[8] Hence, it has great clinical value to develop novel 
biomarkers for evaluating the BCR risk early and accurately.

DNA methylation is a typical epigenetic modification mod-
ulating gene transcription, and aberrant DNA methylation was 
reported to be closely associated with tumor progression.[9] 
Growing evidence demonstrated that DNA methylation is impli-
cated in the initiation, development, and progression of human 
cancers and may serve as potential prognostic biomarkers. For 
instance, in prostate cancer, hypermethylation of RASSF1 in 
cancerous tissue and urine was reported to be a potential prog-
nostic indicator for BCR after RP.[10] PCDH8 methylation in 
plasma predicted worse prognosis of prostate cancer patients 

with low Gleason score after surgery.[11] However, these stud-
ies focused on few specific genes were limited by small sample 
size and generally generated unstable predictive robustness. 
Recently, DNA methylation signatures were identified to pre-
dict recurrence risk based on the whole-genome methylation 
profiles from the TCGA database for a variety of cancers, 
including lung cancer,[12] thyroid papillary carcinoma,[13] and 
gastric cancer.[14]

In the current study, we aimed to identify the prognos-
tic DNA methylation sites for PCa patients by analyzing the 
whole-genome DNA methylation profiles that retrieved from 
public database, and established a risk model for biochemical 
recurrence-free survival (BRFS) prediction by combining the 
prognostic DNA methylation signature and clinicopathological 
parameters of PCa patients.

2. Material and Methods

2.1. Data resource

We obtained the DNA methylation data and corresponding 
clinical data from the Cancer Genome Atlas (TCGA, https://
cancergenome.nih.gov/) database by using R TCGAbiolinks 
package.[15] All DNA methylation data were generated from 
the Illumina Infinium Human Methylation 450 platform and 
the levels of DNA methylation were expressed as β values, and 
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calculated as M/(M + U + 100). M and U represent the signal 
from methylated beads and unmethylated beads at the targets 
CpG sites, respectively. The methylomic data from patients 
whose recurrence survival information was complete were 
selected to evaluate the relevance between DNA methylation 
levels and the BRFS in PCa. The clinical information and meth-
ylation data of a total of 480 PCa samples were download and 
analyzed in this study, and the samples were randomly classified 
into training cohort (320 samples) and validation cohort (160 
samples) randomly. Prognostic DNA methylation signature was 
identified based on the training cohort data, and the evaluation 
of the predictive ability was performed on the basis of the vali-
dation cohort data.

2.2. Preprocess of DNA methylation data

Preprocess of the DNA methylation data was essential before the 
statistical analyses and predictive model establishment. First of 
all, we count the number of the methylation sites with not avail-
able (NA) beta value, and removed the sites (>10% of the total 
samples). The remaining NA data was assumed with “impute.
knn” function from impute package.[16] Then, the methylation 
β values were normalized using “betaqn” function from wateR-
melon package,[17] and transformed to M value according to the 
formulation: M = log(β/(1-β)) All the samples were divided into 
recurrence and no recurrence group, and the methylation sites 
with significant different level between the recurrence and no 
recurrence group were identified based on M value by using 
“dmpFinder” function from minfi package.[18]

2.3. Statistical analyses

BRFS was defined as the time from the beginning of treatment to 
the BCR. The univariate Cox proportional hazard analysis was 
implemented in the training cohort to screen methylation sites 
that are significantly (P < .05) related to PCa patients’ BRFS. 
Then, the LASSO Cox regression analysis was performed using 
“glmnet” R package to screen the key methylation sites affecting 
the BRFS of PCa(17). Subsequently, key methylation sites from 
LASSO analysis were further included in the multivariate Cox 
regression analysis. Finally, a 11-DNA methylation signature 
was identified to construct risk prediction model. The risk score 
(RS) for every patients was calculated as follows: RS=∑(βi*coefi) 

(“i”=the number of prognostic methylation site, “βi” represents 
the beta value of each methylation site, “coefi” represents the 
coefficient of each methyaltion site. Then, PCa patients were 
divided into the high-risk and low-risk groups according to the 
median score. The differences in BRFS between the high-risk 
and low-risk group were analyzed using Kaplan–Meier (K-M) 
method, and K-M survival curves were generated using the a 
public R package “survival.”[19] A receiver operating characteris-
tic (ROC) curve was used to evaluate the RS model performance 
with the “survivalROC” package.

2.4. Construction and validation of the nomogram

To elucidate a quantitative method to predict a patient’s proba-
bility of BRFS, we constructed a nomogram based on the “rms” 
R package.[20] The univariate Cox proportional hazard analysis 
and multivariate Cox proportional hazard analysis were per-
formed to identify the independent prognostic factors of PCa 
patients’ BRFS, and the factors with P ≤ .05 from multivari-
ate Cox proportional hazard analysis were applied to develop 
nomogram. C-index and calibration plots were executed to 
weigh the predictive performance of the established nomogram.

3. Results

3.1. Clinical characteristics of the study populations

In total, 480 PCa patients with complete methylation and clini-
cal data were included in this study. The median age at diagnosis 
was 61 years (range, 41–78) and the median occurrence time of 
BCR were 652.5 days. The 5-year BCR rate of all patients was 
14.10%. The T stage of PCa patients ranged from II to IV, and 
184 (38.33%) patients were in stage I, 286 (59.58%) patients 
were in stage III, and 10 (2.08%) patients were in stage IV. Race 
of the study patients included white 398 (82.92%), Asian 12 
(2.50%), Black 56 (11.67%) and uncertain race 14 (2.92%), 
respectively. Patients were divided into 3 groups according to 
Gleason score, that is < 7 43 (8.96%), =7 241 (50.21%), >7 196 
(40.83%). In addition, laterality of PCa patients included left/ 
right (unilateral) group and both (bilateral) group. The both 
group was the most common type 418 (87.08%) (Table 1). All 
patients were randomly divided into the training cohort and val-
idation cohort at a 2:1 ratio. Figure 1 showed the overall design 
and flowchart of the present study.

Table 1

Clinical characteristics of included patients.

Characteristics 

Total (n = 480) Training dataset (n = 320) Testing dataset (n = 160)

n % n % n % 

Age
≤55 108 22.50 75 23.44 33 20.63
>55 372 77.50 245 76.56 127 79.38
Race
White 398 82.92 272 85.00 126 78.75
Asian 12 2.50 9 2.81 3 1.88
Black 56 11.67 31 9.69 25 15.63
Not reported 14 2.92 8 2.50 6 3.75
Laterality
Left/right 62 12.92 41 12.81 21 13.13
Both 418 87.08 279 87.19 139 86.88
Gleason score
<7 43 8.96 23 7.19 20 12.50
=7 241 50.21 167 52.19 74 46.25
>7 196 40.83 130 40.63 66 41.25
T stage
T2 184 38.33 123 38.44 61 38.13
T3 286 59.58 190 59.38 96 60.00
T4 10 2.08 7 2.19 3 1.88
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3.2. Identification of methylation signature associated with 
BRFS

A total of 262 differentially expressed methylation sites were 
identified between the recurrence and no recurrence group, and 
241 of these DNA methylation sites identified to be related to 

BRFS of PCa patients (P < .05) according to the univariate Cox 
regression analysis. Subsequently, LASSO Cox regression analy-
sis further screened 35 key methylation sites as prognostic factors 
for BRFS (Fig. 2A and 2B). Finally, multivariate Cox regression 
model was performed based on the 35 DNA methylation sites 
and a risk score formula of 11 methylation sites was constructed 

Figure 1.  Flowchart of the present study.

Figure 2.  Candidate methylation site selection using the LASSO Cox regression model and construction of the methylation-related signature. (A) 10-fold 
cross-validation for tuning parameter selection in the LASSO model via minimum criteria (the 1-SE criteria). (B) LASSO coefficient profiles of the 242 methylation 
sites. A coefficient profile plot was produced against log(lambda) sequence. Vertical line was drawn at the value selected using 10-fold cross-validation, where 
optimal lambda resulted in 35 non-zero coefficients. (C) Methylation risk score distribution against the rank of risk score. Median risk score is the cutoff point. 
(D) Recurrence status of PCa patients against the rank of risk score.
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according to their methylation level and coefficients: Risk score 
= 173.923632*cg01223512 + 21.340183*cg05241265 - 10.02
5613*cg08005809 + 21.447533*cg09129050 + 58.818317*cg
16046505 - 8.338201*cg17183215 - 17.669399*cg18770149 
- 32.874199*cg19527159 + 93.486761*cg24250070 + 79.609
362*cg26108999 - 105.900271*ch.1.159725313. As a result, 
the hypermethylation levels of cg01223512, cg05241265, 
cg09129050, cg16046505, cg24250070, and cg26108999 
were correlated with a higher risk of BCR. Nevertheless, 
the hypomethylation levels of cg08005809, cg17183215, 
cg18770149, cg19527159, and ch.1.159725313 were associ-
ated with a higher risk of BCR (Fig. 3). Furthermore, the risk 
scores were ranked and the patients were divided into the high-
risk and low-risk groups (Fig.  2C), and the patients’ survival 
status were also drew in Fig. 2D.

K–M analysis was performed in the training and valida-
tion cohort as well as the entire cohort to determine the BRFS 
of patients in the low- versus high-risk group. Intuitively, the 
patients in the high-risk group had worse BRFS in training 
cohort (P = 4.983e−10) (Fig. 4A), similar results were discov-
ered in the validation cohort (P = 2.757e−02) (Fig.  4C) and 

entire cohort (P = 1.597e−10) (Fig. 4E). To evaluate the pre-
dictive ability of the risk model, a time-dependent ROC curves 
were drew based on risk score and the AUC values were cal-
culated. The results showed that the risk model yielded a high 
predictive ability in the training, validation and entire cohort. 
In the training cohort, the AUCs for 1, 3, and 5 years BRFS 
rates in were 0.94, 0.911, and 0.877, respectively (Fig. 4B). 
In the validation and entire cohort, the AUCs for 1, 3, and 
5 years BRFS rates were (0.828, 0.717, 0.706) (Fig. 4D) and 
(0.912, 0.851, 0.836) (Fig. 4F), respectively. These data indi-
cated that the risk model had good predictive accuracy and 
may serve as a biomarkers to predict the BRFS of patients 
with PCa.

3.3. Nomogram development and assessment

Univariate Cox survival analysis demonstrated that Gleason 
score, t stage and 11-DNA methylation signature were prog-
nostic factors (P < .05), and the results of multi-Cox regres-
sion analysis demonstrated that the 11-DNA methylation 

Figure 3.  Boxplots of methylation β values against risk group in the entire TCGA dataset. “high risk” and “low risk” represent the high-risk and low-risk group, 
respectively. The median risk score was taken as a cutoff. Y-axis represents the β-value of 11-DNA methylation sites, respectively. The differences between the 
2 groups were estimated by Mann–Whitney U test.
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signature (P < 2e–16, HR 1.461, 95%CI: 1.342–1.591) and 
Gleason score (P = .0176, HR 2.068, 95%CI: 1.135–3.7680) 
were still significantly associated with PCa patients’ BRFS 
(Table  2). A nomogram (Fig.  5A) was developed by inte-
grating the risk score model and Gleason score to predict 
BRFS. The concordance index (C-index) of the nomogram 
was 0.868 (95%CI: 0.822–0.914) in the entire cohort. 
Simultaneously, the calibration curves also exhibited a 
good predictive accuracy simultaneously (Fig. 5B–D). These 
results revealed that the established nomogram provided a 
high reliability to serve as a tool for predicting the BRFS of 
PCa patients.

4. Discussion
BCR has been considered as a decisive risk factor for clinical 
recurrence and the metastasis of PCa, about 20–40% of patients 
with PCa yield a BCR after RP, which brings a huge challenge 
for public health worldwide. The accurate prediction of BCR 
risk will help to access the prognosis and tailor patient-specific 
follow-up and management. However, the accuracy of the tra-
ditional clinicopathological parameters, such as TNM staging 
and Gleason scores required further to be improved for predict-
ing the prognosis of PCa. A variety of molecular markers have 
been developed to forecast the prognosis in various tumors, and 
the application of DNA methylation as a prognostic biomarker 

Figure 4.  Kaplan–Meier and ROC analysis of patients with PCa in the training and validation cohort as well as entire cohort. (A, C and E) Kaplan–Meier analysis 
with 2-sided log-rank test was performed to estimate the differences in BRFS between the low-risk and high-risk group patients. (B, D and F) 1-, 3- and 5-year 
ROC curves of the 11-DNA methylation signature were used to demonstrate the sensitivity and specificity in predicting the BRFS of PCa patients. “High” and 
“Low” represent the high-risk score group and low-risk score group, respectively. The median risk score was taken as a cutoff. BRFS = biochemical recur-
rence-free survival, PCa = prostate cancer.



6

Zhu and Zhang  •  Medicine (2022) 101:49� Medicine

has a few merits over other molecular biomarkers, including 
higher stability,[21] smaller sample size requirement,[22] and rela-
tive higher accuracy.[23] Accumulating evidence has reported that 
DNA methylation signatures achieved satisfactory results in the 
prognostic prediction of multiple types of cancer. For example, 

a 13-DNA methylation signature was discovered to yield a high 
evaluative performance in the RFS prediction in stage I lung can-
cer.[12] Another recent study revealed that a 6-DNA methylation 
signature display a better value for predicting recurrence-free 
survival of thyroid papillary cancer.[13] In gastric cancer, Ma et al 

Table 2

Univariate Cox regression analysis and multivariate Cox regression analysis outcome based on methylation risk score and other 
clinical factors.

Characteristics 

Univariate Cox analysis Multivariate Cox analysis

HR HR.95L HR.95H P value HR HR.95L HR.95H P value 

Age 0.612 0.299 1.255 .18     
Race 1.035 0.752 1.424 .834     
Laterality 0.864 0.369 2.02 .736     
Gleason score 3.406 1.985 5.842 8.57e−06 2.068 1.135 3.7680 .0176
T stage 3.085 1.801 5.283 4.08e−05 1.366 0.700 2.664 .3608
Risk score 1.484 1.368 1.609 <2e−16 1.461 1.342 1.591 <2e−16

Figure 5.  Methylation nomogram for the prediction of PCa patients’ BRFS and validation of methylation nomogram in entire cohort. (A) The nomogram was 
developed in the entire TCGA cohort, with the methylation risk score and Gleason score. B, C, and D, represent the 1-, 3-, and 5-year nomogram calibration 
curves, respectively. The closer the dotted line fit to the ideal line, the better the predictive accuracy of the nomogram is. BRFS = biochemical recurrence-free 
survival, PCa = prostate cancer.
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found that DNA methylation signature performed well in prog-
nostic prediction and established a nomogram model based on a 
11-DNA methylation sites and clinicopathological indicators.[14] 
However, a quantitative method to predict a PCa patient’s prob-
ability of BRFS based on DNA methylation signature was not 
developed yet.

By analyzing whole-genomic methylation profiles in 480 
samples, we found that 11 DNA methylation sites was related to 
BRFS in patients with PCa. Higher levels of 6-DNA methylation 
sites (cg01223512, cg05241265, cg09129050, cg16046505, 
cg24250070, cg26108999) were associated with better survival, 
while, higher level of 5 DNA methylation sites (cg08005809, 
cg17183215, cg18770149, cg19527159, ch.1.159725313R) 
were associated with worse survival. Previous similar study 
reported a 10-DNA methylation signature which showed bet-
ter accuracy in predicting disease-free survival of PCa, includ-
ing cg02801786, cg00516513, cg21938261, cg06945936, 
cg08814105, cg20081453, cg22583065, cg01139508, 
cg25741646 and cg23258881.[24] These methylation sites were 
projected into 11 genes (KIF20A, SPAG5, FOXM1, CDCA5, 
TPX2, PLK1, PRC1, KIF4A, CDKN3, UBE2C, and MYBL2), 
which were demonstrated to promote the progress of PCa, 
except for CDCA5 and MYBL2. Obviously, there was no over-
lapped sites between our findings and the 10-DNA methylation 
sites. Although the methods used in the 2 study were basically 
the same, we failed to draw a accurate conclusion in term of the 
reason for the absence of overlapping sites due to certain differ-
ences in the data sets used. This may be due to the differences 
in the molecular mechanisms behind the different outcomes 
(disease-free survival vs BRFS). This is consistent with the high 
specificity of the methylation signature as prognostic hallmark. 
In this study, the 11-DNA methylation signature was capable to 
distinguish patients with low- or high-risk BCR, and it was also 
an independent factors for PCa patients’ BRFS after adjusting 
by race, age, laterality, Gleason score, and T stage. Moreover, 
we constructed a risk model on the basis of the 11 DNA meth-
ylation sites, which yielded good accuracy in predicting the PCa 
patients’ BRFS.

DNA methylation regulates the transcription of target 
genes. In the present study, the 11 DNA methylation sites were 
associated with ten genes, including plant homeodomain pro-
tein Jade-1 (PHF17), MAPK8, NRXN2, SMYD3, C8orf59, 
COQ10B, SCRIB, SKI, MTMR11, and SIL1. Some of these 
genes have been reported to involved in cancer progression. For 
instance, PHF17 is a candidate suppressor which was stabilized 
by pVHL in renal tumor.[25] Mitogen-activated protein kinase 
8 (MAPK8), known as c-JUN N-terminal kinase (JNK), is a 
member of the MAPK family.[26] Numerous studies reported the 
various roles of MAPK8 in cancer progression, such as chemo-
resistance[27] and recurrence.[28] SMYD3 is an oncogenic driver 
and independent prognostic factors of PCa, and was found to 
stimulate androgen receptor transcription[29] or targets Cyclin 
D2 through H4K20me3[30] to provide a more aggressive phe-
notype of PCa. SCRIB is a lysine methylase which plays a 
important role in cancer progression and invasion. In PCa, the 
deregulation of SCRIB was revealed to be associated with poor 
survival. Mechanistically, Scrib can negatively regulate MAPK 
to suppress tumorigenesis.[31] SKI is a corepressor of Smad2/3, in 
Nodal and TGF-β signaling in prostate cancer cells, regulating 
the proliferation and migration of PCa cells.[32] SIL1 is a cochap-
erone of BiP, it functions as an oncogene accelerate the progres-
sion of breast cancer[33] and glioma.[34] Except for these reported 
genes, the remained genes may also play crucial roles in the PCa 
progression which required further investigation.

Apart from the inspiring results, there are also several limita-
tions in our study. Firstly, the 11-DNA methylation signature 
were identified from the TCGA database, lacking of exter-
nal validation cohort. This may generate hazard of selection 
bias. Secondly, high cost of methylation test limits its clinical 

application, but this is being resolved with the advancement 
of technology. Despite the above-mentioned limitations, 
our study still provided some valuable implications. Firstly, 
employing LASSO method to identify BRFS-related methyl-
ation sites in the study solved the multicollinearity problem 
and generated more reliable results. Secondly, the 11-DNA 
methylation signature of PCa was capable to separate PCa 
patients into high- and low-risk groups and predicted BRFS 
with robust accuracy. Thirdly, Due to the insufficient sample 
size, we cannot perform subgroup analysis of different races. 
Taking into account the natural environment, diet, medical 
conditions, and other reasons, different DNA methylation pro-
files are anticipated in different racial groups. Therefore, with 
the continuous update and expansion of the database, it is very 
necessary to conduct subgroup analysis among different races 
in the future. Moreover, the established nomogram by inte-
grating clinical indicators and methylation signature provided 
a quantitative method for accurate BRFS prediction of PCa 
patients, which will contribute to development of the field of 
personalized medicine for PCa.

5. Conclusion
In this study, we identified a 11-DNA methylation signature 
that may serve as a independent prognostic biomarker for pre-
dicting the BRFS of PCa patients and constructed a risk model 
based on the 11-DNA methylation sites to discriminate high- 
and low-risk of BCR patients. A nomogram that integrated the 
11-DNA methylation signature and Gleason score were also 
established with satisfactory performance to predict BRFS of 
PCa. Our results shed light on methylation biology of PCa and 
promote the development of effective prognostic biomarkers 
for PCa.
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