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The reduction of greenhouse gas emissions and future perspectives of circular econ-

omy ask for new solutions to produce commodities and fine chemicals. Large-scale

bubble columns operated by gaseous substrates such as CO, CO2, and H2 to feed aceto-

gens for product formations could be promising approaches. Valid in silico predictions

of large-scale performance are needed to dimension bioreactors properly taking into

account biological constraints, too. This contribution deals with the trade-off between

sophisticated spatiotemporally resolved large-scale simulations using computation-

ally intensive Euler–Euler and Euler–Lagrange approaches and coarse-grained 1-D

models enabling fast performance evaluations. It is shown that proper consideration

of gas hold-up is key to predict biological performance. Intrinsic bias of 1-D models

can be compensated by reconsideration of Sauter diameters derived from uniquely

performed Euler–Lagrange computational fluid dynamics.

K E Y W O R D S
1-D model approach, bubble column reactor, computational fluid dynamics, pseudo-stationary gas gradient,

two-phase Euler–Euler simulation

1 INTRODUCTION

The Paris Climate Agreement that entered into force in

November 2016 created the framework for national con-

tributions to limit the global temperature rise well below

2◦C. As such, the reduction of greenhouse gas emissions

became part of responsible chemical industry leadership, now

aiming to establish a circular economy [1], that is, preventing

any carbon losses and ensuring economic and ecological

sustainability [2, 3].

Accordingly, using CO2, H2, and CO gas mixtures either

from gasification of municipal waste, biogenic sources or

as off-gas (e.g., from steel industry) is an attractive source

of reduced carbon (CO) and H2. The so-called syngas

fermentations with acetogens such as Clostridiae sp. are

Abbreviation: CFD, computational fluid dynamics.
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highly promising to access not only natural products (ethanol,

acetate, or 2,3-butanediol) [4, 5] but also recombinant com-

pounds such as acetone and butanol [6–8]. Those commodi-

ties require for simple, continuously operating large-scale

bioreactors that could be designed as bubble columns.

Dimensioning needs thorough in silico parameter analysis

to ensure proper, large-scale production. However, large-scale

bubble columns are very challenging to simulate, actually

comprising three phases (liquid, bubbles, and cells), turbu-

lent flows, mass transfer of poorly soluble gases (CO, H2),

microbial reaction kinetics, and—last but not least—proper

bubble population models for predicting mass transfer areas.

With the advent of gaseous substrates for large-scale single

cell protein production in the 1970 s, the attraction of bubble

columns peaked but somewhat leveled out during the last
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decades. Intensive studies in 6–10 m pilot scales [10, 13]

unraveled correlations between gas velocities and kLa and

even succeeded to develop 1-D models for predicting gas

transfers properly [11]. The applicability of the well-known

k-𝜀 model for bubble columns was questioned [12, 14] out-

lining the need to consider turbulent flow regimes properly.

Nevertheless, 1-D modeling of bubble columns should be

possible, in particular when iterative optimization cycles are

taken into account [9, 13].

Ideally, large-scale simulations should consider spatiotem-

poral heterogeneities and their impact on cellular performance

[9–12]. But related simulations not only require thorough

mechanistic models but also sufficient computational power

[13]. Accordingly, simplifications are often made either by

assuming ideal mixing, 1-D gas gradients [14] or dissembling

the large bioreactor into numerous volumes [15–19].

Recent highly valuable examples are given by Chen

et al. [20, 21] who evaluated the performance of large-scale

Clostridiae fermentations with the help of a genome-scale

metabolic model applying spatiotemporal bioreactor simula-

tions based on homogenously mixed volumes. The authors

applied flux balance analysis to estimate flux distributions for

each 1-D discretization. However, despite successful applica-

tion, growth rates were overestimated by trend and physical

criteria such as gas hold-up were not integrated, yet. The lat-

ter may have affected the large-scale prediction accuracy, too.

Without doubt, such 1-D models require less computational

efforts than sophisticated Euler–Lagrange computational

fluid dynamics (CFD). They offer relatively easy-to-

implement use but may hide intrinsic drawbacks hampering

prediction quality. Furthermore, their predictions might be

biased because model granularity is intrinsically coarse. Nev-

ertheless, they are the method of choice in conceptual design

to search in operational parameter spaces. This contribution

exactly deals with the trade-off between properly simulat-

ing large-scale bubble column performance and screening

operational parameter spaces with reasonable computational

effort. Special emphasis will be put on the impact of gas

hold-up on the expected biological performance, that is,

product-per-biomass yield. This relation is considered of

particular importance as it links a key operational parameter

with the most important biological readout.

2 MATERIALS AND METHODS

2.1 Geometry, reactor set-up, and biological
system
Both simulation approaches were conducted for equal

reactor geometry using the same biological system, that is,

Clostridium ljungdahlii DSM 13528 that grows on carbon

monoxide as C-source. The choice of CO simplifies the com-

PRACTICAL APPLICATION
Transferring biochemical processes from the labora-

tory to industrial scales is very challenging. Physi-

cal properties may change drastically and may cause

nonwanted performance losses. Accordingly, tools

are needed to predict large-scale conditions leading

to an optimum design with minimized performance

losses.

This study presents a computational tool for con-

ceptual reactor design of an industrial-scale bubble

column bioreactor. Time-consuming and computa-

tionally challenging design parameter studies were

performed with a simplified 1-D model. Notewor-

thy, key settings including gas hold-up were derived

from spatially resolved, computational fluid dynam-

ics (CFD). The interaction of both approaches repre-

sents the optimum trade-off between computationally

intensive CFD and the essential probing of a broad

design parameter space performed via 1-D modeling.

parison with the previous publication [11] and represents the

preferred carbon and electron source for alcohol production.

A cylindrical reactor with 25 m liquid height and diameter

𝐷𝑅 = 2.52 m was chosen resulting in a 𝐻𝐿∕𝐷𝑅-ratio of

about 10. Consequently, the setup imposed high hydrostatic

pressure gradients. For 1-D modeling, the bubble column

simulations considered continuous countercurrent mode with

liquid recycling and medium feed at the top of the reactor.

At the bottom, synthesis gas was continuously provided via

the total cross-sectional area 𝐴𝑅. The media density 𝜌𝐿
was assumed to be similar to the properties of water with

𝜌L = 1,000 kg m−3. Isothermal process conditions were

assumed with an operating temperature of 310.15 K. Heat

generation was neglected. Nevertheless, in large-scale biore-

actors temperature control might be necessary. No additional

pressure was applied beside the ambient pressure of 1 atm

and the hydrostatic pressure due to the column height.

State variables such as gas concentrations and gas hold-up

were partially differentiated following the scheme presented

by Chen et al. [14].

2.1.1 1-D approach
This approach is similar to the publications of Chen et al. [14,

20, 21]. The new mass balance equations are described in

this section. Growth and production formation are calculated

as described in Siebler et al. [11]. Spatial and temporal

discretization was kept the same as in Chen et al. [14, 21] and

is described in more detail in the Supporting Information.

According to the reactor set-up outlined in the previous

section, four partial differential equations and four ordinary
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differential equations need to be set. Dissolved and gaseous

synthesis gas components, the gas hold-ups, and the bubble

number density are local, time dependent variables, and

serve as input values for calculating dynamics of growth and

product formation.

The mass balance for the liquid phase of one discretization

volume is derived including convective and diffusive trans-

port, phase-to-phase mass transfer, and consumption terms.

The volume of each section is written as: Δ𝑉𝐿 = Δ𝑧𝐴𝐿,

where Δ𝑧 is the section height and 𝐴𝐿 is the liquid surface

area between the sections. The cross-sectional area of the

reactor 𝐴𝑅 is the sum of 𝐴𝐿 and the gaseous interface 𝐴𝐺.

The gaseous and liquid volume fractions are indicated by 𝜀𝐺
and 𝜀𝐿 (see Figure S2). It follows

Δ𝑧 d𝑐𝐿𝐴𝐿

d𝑡
= 𝐴𝐿𝑐𝐿𝑣𝐿,slip

|||𝑧+Δ𝑧 − 𝐴𝐿𝑐𝐿𝑣𝐿,slip
|||𝑧

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
transport

+ 𝐴bubbles𝑘𝐿
(
𝑐∗
𝐿
− 𝑐𝐿

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

mass transfer

−Δ𝑧𝐴𝐿𝑞𝑐𝑐𝑋
⏟⏞⏞⏞⏟⏞⏞⏞⏟
consumption

+ 𝐷𝐿𝐴𝐿

d𝑐𝐿
d𝑧

||||𝑧+Δ𝑧 − 𝐷𝐿𝐴𝐿

d𝑐𝐿
d𝑧

||||𝑧
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

dif fusion

(1)

with 𝐴bubbles as the mass transfer area between the liquid and

gaseous phase that leads to 𝑎 = 𝐴bubbles∕(Δ𝑧𝐴𝐿) and the

well-known 𝑘𝐿𝑎 term for modeling the mass transfer term

with the equilibrium concentration 𝑐∗
𝐿

and the soluble gas

concentration 𝑐𝐿. The liquid slip velocity 𝑣𝐿,𝑠𝑙𝑖𝑝 multiplied

by 𝜀𝐿 = 1 − 𝜀𝐺 gives the liquid velocity 𝑣𝐿, which can be

assumed to be constant. The diffusion term with the liq-

uid phase dispersion coefficient 𝐷𝐿 with 4.5 m2 h−1 [21]

is included as well as the consumption term consists of the

uptake kinetic qc and biomass concentration 𝑐𝑋 . By divid-

ing equation (1) by 𝐴𝑅 and Δ𝑧 and using the correlation

1 − 𝜀𝐺 = 𝐴𝐿 ∕𝐴𝑅, the final partial differential equations for

the dissolved gases (𝑚 ∈ [CO,CO2,H2]) can be formulated.

𝜕𝑐𝐿,𝑚𝜀𝐿

𝜕𝑡
= 𝑣𝐿,slip

𝜕𝑐𝐿,𝑚𝜀𝐿

𝜕𝑧
+ 𝑘𝐿,𝑚𝑎

(
𝑐∗
𝐿,𝑚

− 𝑐𝐿,𝑚

)
− 𝑞𝑚𝑐𝑋𝜀𝐿 +𝐷𝐿

𝜕2𝑐𝐿,𝑚𝜀𝐿

𝜕𝑧2
(2)

Each balance of the gas phase only needs to consider con-

vective mass transport and phase-to-phase mass transfer that

leads to

𝜕𝑐𝐺,𝑚𝜀𝐺

𝜕𝑡
= 𝑣𝐺,𝑠𝑙𝑖𝑝

𝜕𝑐𝐺,𝑚𝜀𝐺

𝜕𝑧
− 𝑘𝐿,𝑚𝑎

(
𝑐∗
𝐿,𝑚

− 𝑐𝐿,𝑚

)
(3)

Because the gas phase is compressible, the gas hold-ups

depend on the local pressure that correlate 𝜀𝐿 and 𝜀𝐺 with

the liquid height 𝐻𝐿. The total molar density 𝜌∗ is introduced

using the ideal gas law 𝑃𝑉 = 𝑛𝑅𝑇 and the hydrostatic pres-

sure 𝑃𝐻 = 𝑃0 + 𝜌𝑔ℎ with ℎ = 𝐻𝐿 − 𝑧

𝜌∗ =
3∑

𝑚=1

𝜌𝑚 (𝑧)
𝑀𝑚

=
𝑃0 +

(
𝐻𝐿 − 𝑧

)
𝑔𝜌𝐿𝜀𝐿

𝑅𝑇
(4)

with the gravitational acceleration 𝑔, liquid density 𝜌𝐿, uni-

versal gas constant 𝑅, and the operating temperature 𝑇 . The

index 𝑚 = 1, 2, 3 always represents the synthesis gas com-

position with CO, CO2, and H2. Considering the total molar

gas density, the following equation can be derived:

𝜕𝜀𝐺𝜌
∗

𝜕𝑡
= 𝑣𝐺,slip

𝜕𝜀𝐺𝜌
∗

𝜕𝑧
−

3∑
𝑚 = 1

𝑘𝐿,𝑚𝑎
(
𝑐∗
𝐿,𝑚

− 𝑐𝐿,𝑚

)
(5)

It is further assumed that the number density 𝑛𝐺, that is,

the number of bubbles 𝑁𝐵 divided by the reactor volume 𝑉𝑅,

only depends on convection. No further bubble breakage or

coalescence occurs.

𝜕𝑛𝐺
𝜕𝑡

= 𝑣𝐺,slip
𝜕𝑛𝐺
𝜕𝑧

𝑛𝐺 (𝑡, 𝑧) = 𝑁𝐵

𝑉𝑅
= 𝜀𝐺

4
3𝜋𝑅

3
𝐵

(6)

Nevertheless, the bubble radius 𝑅𝐵 is a function of the gas

hold-up and hydrostatic pressure. If the number of bubbles in

a section 𝑖 is multiplied with the bubble volume 𝑉𝐵,𝑖, the gas

hold-up 𝜀𝐺,𝑖 is derived. Therefore, all balance equations are

intertwined by the gas hold-up. Noteworthy, this also affects

the volumetric surface area 𝑎, which is the sum of all bubble

surfaces 𝐴𝐵 divided by the reactor volume.

𝑎 =
∑

𝐴𝐵

𝑉𝑅
= 3

𝑅𝐵

𝜀𝐺 (7)

Product formation and growth are formulated as ordinary

differential equations (see Equations 8) using the growth rate

𝜇 and the dilution rate D = 0.055 h−1.

d𝑐𝑋
d𝑡

= 𝜇𝑐𝑋 −𝐷𝑐𝑋

d𝑐𝑘
d𝑡

= 𝑀𝑘 𝑞𝑘𝑐𝑋 −𝐷𝑐𝑘

(8)

Because biomass and product concentrations 𝑐𝑘 are in

g L−1, the molecular weight 𝑀𝑘 is needed with 𝑘 ∈
[acetate, ethanol, 2, 3−butanediol]. For the sake of simplic-

ity, individual production rates q𝑘 represent mean values of

the section-specific q𝑘,𝑖 that consider local gas uptake kinet-

ics q𝑚,𝑖 (see Supporting Information).

2.2 Computational fluid dynamics
Recently, the set-up of the simulation framework including

results has been published in Siebler et al. [11]. Accordingly,

only a draft explanation is given. For details, readers are
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A B C

F I G U R E 1 Refinement study. In (A) and (B), the gaseous and dissolved (liquid) mass of CO over times is shown. Exemplary, four

discretization steps are depicted N = 10, 20, 100, and 200. In (C), the relation between total CO leaving and entering the column is illustrated

revealing that N = 100 closes the mass balance with less than 5% gap

referred to the publication. Euler–Euler two phase simulations

were conducted with the CFD tool ANSYS Fluent 18.0. The

Reynolds-averaged Navier–Stokes equations combined with

the re-normalization group k-𝜀-model were solved to derive

pseudo-stationary gas gradients similar to the 1-D approach.

Drag and lift forces, wall lubrication, turbulent dispersion,

and interaction as well as breakage and coalescence were

enabled. For mass transfer, the same correlation as in Equa-

tion (9) was used except for the bubble diameter 𝑑𝐵 , which

was exchanged by the Sauter mean bubble diameter 𝑑32. For

the solubility of the gas, the Henry law was also applied.

Pressure was considered as static. The initial bubble size

was 4 mm. To model CO uptake kinetics, the correlation of

Mohammadi et al. [22] was used (see Supporting Information

eq. 13). The analyzed fermentation “snap-shot” operation

window was defined by chosen the biomass concentration of

10 g L−1.

As indicated for the 1-D approach, the uptake kinetics of

CO were translated into production rates according to the

approximation described in Siebler et al. [11]. So far, there

is no comprehensive model for the prediction of production

rates of C. ljungdahlii. The simple correlation used does nei-

ther include internal redox and energy balances nor mainte-

nance. It is solely based on the element balances of carbon,

hydrogen, and oxygen. Nevertheless, the correlation allows to

compare both modeling approaches.

3 RESULTS

3.1 Basic settings of 1-D
The bubble column was divided in N slices each consisting

of a liquid L and a gaseous G fraction with the uprising

superficial gas velocity 𝑣𝑆 and the downcoming liquid

velocity 𝑣𝐿. Homogenous conditions were assumed in each

liquid and gaseous phase. For identifying the number N of

essential volumes (sections), simulations were performed

probing N between 10 and 200 (Figure 1).

Physical state variables were simulated according to Equa-

tions (1)–(8). Biochemical reaction rates reflecting microbial

metabolic activity were set as described in “Materials and

Methods” section and in Siebler et al. [11].

As presented in Figure 1, the mass balance for the chosen

discretization does not close but gives reasonable results for

N ≥ 100. No significant improvement of simulation accuracy

and convergence could be achieved increasing N from 100 to

200. With respect to computational efforts, N = 100 was used

for all calculations.

3.2 Probing the parameter space
For evaluating a proper parameter setting, key impact factors

defining the performance of a biotechnological bubble

column need to be specified. To characterize the biological

output, YPX(SS) and Cfix(SS) were chosen indicating the

product per biomass yield and the metabolized amount of

carbon under steady-state operating conditions, respectively.

The physical operation was qualified by the total mean gas

hold-up 𝜀̄𝐺, the mean bubble diameter 𝑑𝐵 , the mean oxygen

transfer coefficient 𝑘𝐿𝑎, and the bubble number density

𝑛𝐺.

The simulation of the said performance criteria crucially

depends on the proper prediction of 𝑘𝐿𝑎 and their interaction

with the gas hold-up 𝜀𝐺 and the superficial gas velocity

𝑣𝑆 . The well-known Higbie correlation [23] was used for

estimating 𝑘𝐿 as

𝑘𝐿 = 2√
𝜋

(
𝑣𝑇𝐷𝐶𝑂

𝑑𝐵

)0.5
(9)
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A B

C

F I G U R E 2 Comparing model predictions with experimental observations. In (A), the gas hold-up 𝜀̄𝐺 as a function of superficial gas velocity

𝑣𝑆 for demineralized water, yeast solution, and ethanol solution is shown [27]. The average mass transfer rate 𝑘𝐿𝑎 as a function of 𝜀̄𝐺 for different

column diameters is depicted in (B) [28]. In (C), the 𝑘𝐿𝑎 is shown as a function of superficial gas velocity 𝑣𝑆 for water–salt solution, pure water, and

water detergent mix [26]

with 𝐷𝐶𝑂 as the diffusion coefficient of CO in water [24, p.

127] and 𝑑𝐵 as the bubble diameter. According to Tomiyama

et al. [25], the steady-state uprising bubble velocity 𝑣𝑇 can be

estimated as

𝑣𝑇 =
√
2

(
𝜎g

(
𝜌𝐿 − 𝜌𝐺

)
𝜌2
𝐿

)0.25

(10)

for 2 × 10−3 ≤ dB ≤ 10 × 10−3 m and Eötvös number 𝐸𝑜 =
(𝜌𝐿 − 𝜌𝐺) 𝑔𝑑𝐵∕𝜎 ≤ 16. With the measured surface tension

of the cultivation medium 𝜎 = 0.0724 ± 0.0063 N m (iden-

tified via bubble pressure tensiometer), the medium density

𝜌L = 1000 kg m−3 and the air density 𝜌G = 1.2 kg m−3

vT = 0.23 m s−1 is calculated, which is pretty similar to the

distilled water value vT = 0.25 m s−1 [26]. The volume spe-

cific gas/liquid mass transfer area a was estimated assuming

spherical bubbles:

𝑎 =
6𝜀𝐺
𝑑𝐺

(11)

For evaluating bubble diameters ≤ 10 × 10−3 m, the fol-

lowing equation was applied:

𝜀𝐺 =
𝑣𝑆

𝑣𝑇
(12)

with vT = 0.23 m s−1 [26]. Furthermore, the impact of media

components such as organic acids, salts, and alcohols on 𝜀𝐺
and 𝑣𝑆 were considered using the experimental findings of

Schügerl et al. [27] as reference. By analogy, experimental

observations of Heijnen and van’t Ried [26] outlining the cor-

relation between 𝑘𝐿𝑎 and 𝑣𝑆 regarding media compositions

were used. Figure 2 provides an overview of the experimental

measurements.

To challenge the plausibility of experimental findings,

the model case of 0.06 vvm (i.e., superficial gas velocity

vS = 0.025 m s−1 in a 0.6 m bubble column) can be studied

in Figure 2. For demineralized water, 𝜀𝐺 = 0.1 is indicated

(Figure 2A, dashed line), which leads to 𝑘𝐿𝑎 of about 130 h−1

(Figure 2C, dashed line). This is in agreement with the find-

ings of Akita and Yoshida [28]. Accordingly, Figure 2 shows
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the framework for further simulations. To be precise, the

ethanol plot in Figure 2A is chosen as C. ljungdahlii also pro-

duce alcohols such as ethanol and 2,3-butanediol. Although

the settings of 𝑣𝑇 , 𝐷𝐶𝑂, 𝜌𝐿, 𝜌𝐺, and 𝜎 could be fairly assumed

as constant, 𝜀𝐺, 𝑑𝐵 , 𝑘𝐿, and 𝑘𝐿𝑎 are intertwined according

to Equations (9)–(12). Each simulation allowed the indepen-

dent setting of two parameters, while the remaining two were

calculated. The simulation scenarios A–E were performed

using the following setting as reference (dashed black line):

yCO = 0.55, 0.06 vvm, 𝜀̄𝐺 = 0.1 (𝜀𝐺,0 = 0.06), and 𝑘𝐿𝑎 =
130 h–1 (𝑘𝐿𝑎 = 90 h−1 with 𝑑𝐵,0 = 5 × 10−3 m and kL = 3.4

× 10−3 m s−1).

1. Variation in CO gas fraction with 0 ≤ yCO ≤ 0.9.

2. Different gassing rates with 0.004 ≤ 𝑣𝑆 ≤ 0.063 m s−1

(15 ≤ 𝑉̇𝐺 ≤ 225 m3 s−1, 0.01–0.15 vvm).

3. Variations of 𝑘𝐿𝑎 (𝜀G = const.) with initial settings of 40–

180 h−1 resulting in mean steady state values of 𝑘𝐿𝑎 rang-

ing from 60 to 250 h−1.

4. Variation of initial gas hold-up 0.02 ≤ 𝜀𝐺,0 ≤ 0.19 with

fixed 𝑘𝐿𝑎 resulting in 0.03 ≤ 𝜀̄𝐺 ≤ 0.31 (and variable 𝑑𝐵 ,

see Figure S3 for explanation).

5. Same variation as in D but considering variable 𝑘𝐿𝑎 yield-

ing equal 𝜀̄𝐺 as in D and constant 𝑑𝐵 (see Figure S3 for

explanation).

6. Final parameter study with new reference set-up according

to findings in A to E: yCO = 0.55, 0.15 vvm and 𝜀̄𝐺 = 0.31
(𝜀𝐺,0 = 0.19). Initial 𝑘𝐿𝑎 settings ranged from 100 to 425

h−1 finally reaching mean steady state 𝑘𝐿𝑎 between 140

and 580 h−1.

Figure 4 illustrates the observed sensitivities of the sim-

ulation scenarios A–E focusing on the readouts YPX(SS),

Cfix(SS), 𝜀̄𝐺, 𝑑𝐵 , 𝑘𝐿𝑎, and 𝑛𝐺. Values are normalized with

respect to the maximum (1) and the minimum (−1) with the

baseline (0) indicating the reference. Figure 3 provides an

overview of the underlying data that were used for the sen-

sitivity analysis in Figure 4.

The key observations are as follows:

(i) The physical parameters 𝜀̄𝐺, 𝑑𝐵 , 𝑘𝐿𝑎, and 𝑛𝐺are neither

dependent on the CO fraction yCO nor on the gassing rate

vvm (A,B). Rising CO fractions cause increasing CO fix-

ation Cfix(SS), whereas reduction of yCO leads to poor

Cfix(SS) and production biomass yields YPX(SS). Inter-

estingly, lowering gassing rates do not cause as severe

reduction of YPX(SS).

(ii) Increasing 𝑘𝐿𝑎 keeping 𝜀̄𝐺 constant leads to increasing

bubble diameters and bubble numbers as indicated in C.

As expected, Cfix(SS) and YPX(SS) improve with rising

𝑘𝐿𝑎 and show lowered values for minimum settings.

(iii) Varying 𝜀̄𝐺 keeping 𝑘𝐿𝑎 constant is responded by strong

variations of bubble sizes and somewhat minor changes

of bubble numbers. Impacts on the biological perfor-

mance criteria are less pronounced.

(iv) Varying 𝜀̄𝐺 and liberating 𝑘𝐿𝑎 caused the strongest

amplitudes of the biological and the physical criteria

except for the mean bubble diameter.

3.3 Spatial and temporal results of 1-D
approach
Simulation results of the 1-D approach applying the new

reference setup are depicted in Figure 5. The time courses

of biomass, acetate, ethanol, 2,3-butanediol, outlet gas (CO

and CO2), and mean dissolved CO and CO2 clearly indi-

cate steady-state process conditions after approximately 800

h. Notably, CO is completely consumed, whereas CO2 is pro-

duced. The products acetate, ethanol, and 2,3-butanediol are

constantly formed mirroring the experimental observations of

C. ljungdahlli formulated in the stoichiometric model. Dur-

ing the first 2 h, the gas accumulates in the medium, since

initial estimations of dissolved gas concentrations had not yet

considered CO consumption and CO2 formation with growing

biomass.

The spatial analysis (B) reveals changing gas compositions

over the column height. Dissolved CO levels are the highest at

the bottom of the column, the only zone where growth inhi-

bition (dissolved CO > 0.1 mmol L−1) occurred according

to Mohammadi et al. [22]. At about 11 m height, the car-

bon uptake rate severely dropped due to limiting CO levels

(𝑐𝐿,𝐶𝑂 ≤ 0.014mmol L−1). The model-based threshold value

of qc = −14 mmol g−1CDW h−1 was fallen below. Consequently,

by-product and biomass formation slow down. Notably, all by-

product and biomass rates were spatially distributed that out-

lines their strict dependence on gas hold-up and mass transfer.

Nevertheless, integral rates corresponded to the steady-state

scenario of the entire bubble column.

3.4 Comparison of 1-D with CFD results
Following the key motivation of this study to compare coarse

grained 1-D modeling (F) with CFD, Table 1 provides an

overview of the main results. As clearly depicted, almost all

criteria reveal severe differences between 1-D (F) and CFD.

By trend, the gas transfer simulated via 1-D (F) is much higher

than via CFD. This is reflected by larger values of gas hold-up,

mean bubble surface, 𝑘𝐿, and smaller mean bubble diameter.

As a consequence, the mean 𝑘𝐿𝑎 of 1-D (F) outnumbers the

CFD values by factor 14 approximately. Noteworthy, mean

dissolved CO values are predicted to be higher via 1-D (F)

than via CFD. The 1-D model with set-up F overestimates the

biological efficiency and predicts 40% more product biomass

yield than CFD.
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A

B

C

D

E

F I G U R E 3 Steady-state results of parameter study. Variation of (A) gas composition, (B) gassing rate, (C) initial 𝑘𝐿𝑎 value, (D) initial gas

hold-up 𝜀𝐺,0 with constant 𝑘𝐿𝑎 value, and (E) initial gas hold-up 𝜀𝐺,0 with variable 𝑘𝐿𝑎 value. The reference set-up is indicated with a black dashed

line. Gray points in (A) are simulation results without consideration of diffusion

In CA (F), the bubble diameter is way off too small in par-

ticular in the down part of the column. For this reason, a sec-

ond run of the 1-D model (G) was conducted replacing the

value by the Sauter mean diameter derived from CFD simula-

tions. Results are indicated in Table 1 as 1-D (G) and in Fig-

ure 6 as red dashed line. This adaptation of the 1-D approach

was further adjusted by approximating the initial gas hold-up

and mass transfer rate according to the findings in the CFD

approach.

Figure 6 illustrates the differences of 1-D (F), 1-D (G),

1-D*, and CFD simulation as a function of the column height.

The trend of divergence depicted in Table 1 is clearly visible
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A

D E

B C

F I G U R E 4 Parameter sensitivity analysis for conceptual design. The following scenarios are studied: (A) variation of gas composition

(excluding wash-out results), (B) gassing rate, (C) initial 𝑘𝐿𝑎 value, (D) initial gas hold-up 𝜀𝐺,0 with constant 𝑘𝐿𝑎, and (E) initial gas hold-up 𝜀𝐺,0
with variable 𝑘𝐿𝑎. Variables with a bar indicate the mean steady-state value. Additionally, the steady-state production biomass yields YP,X(SS), total

steady-state carbon fixation Cfix(SS) and bubble number density 𝑛𝐺 are depicted. All values are normalized to the maximum (1) as well as minimum

(−1) value to allow comparability. The black solid line indicates the first parameter set thereby defining the baseline (0) of each radar graph. Areas of

light gray (as well as small arrow in (D)) contour the set of minimum values, and dark gray areas encode maximum values

in the height-specific predictions using 1-D and CFD. Only

within a small zone close to the bottom of the column 1-D and

CFD, calculated gas hold-ups are equal. For all other cases,

the above-mentioned criteria differ severely following the

same trend as indicated in Table 1 (1-D (F) and CFD). Fur-

thermore, Figure 6 also indicates the heterogeneity of the said

values at each column height. In particular, CFD predicted

bubble size distributions are very heterogeneous at each

height, which also induces variations of gas hold-up. Addi-

tionally, using the gas hold-up and mass transfer value of CFD

simulations improved the prediction quality of the 1-D model

by 32% and 70% for bubble surface and volumetric mass

transfer coefficient, respectively (see Table 1, 1-D (G) and

1-D*). The finding is in agreement with the observations of

Bauer and Eigenberger [29] who suggested an iterative opti-

mization strategy to optimize prediction quality of a so-called

“zone” model. Notably, the statement holds equally true when

additional biological readouts are considered: Acceptable 1-D

model predictions can be achieved when Sauter diameter, gas

hold-up, and mass transfer are derived from CFD simulations.

Figure 7 complements the comparison of the initial simu-

lation results of 1-D (F) and (G) with CFD. The difference

in percentage of the most diverging parameters, namely dis-

solved CO concentration, gas hold-up, and bubble diameter,

is illustrated. By trend, CO levels are heavily overestimated

almost everywhere using 1-D (F). Gas hold-ups of 1-D (F) and

CFD are similar in the lower part of the column but are over-

estimated in the upper part. Figure 7 also provides detailed

insights in the heterogeneities at each column height. Color-

ing indicates that severe discrepancies may even occur on the

same height. The bottom and the upper part are particularly

prone to heterogeneous conditions with respect to gas hold-

up and bubble sizes.

4 DISCUSSION

Intrinsically, 1-D modeling is a coarse-grained approach

lumping local heterogeneities, thereby reducing the modeling

complexity to a minimum. On contrast, CFD aims to unravel

spatial particularities exploiting the local resolution. The

latter is restricted by the maximum mesh size as well as

the general model approach (e.g., multiphase) and therefore

the resulting computational effort. For instance, resolving

mixing and mass transfer of a 200-L stirred tank reactor

with 500 k mesh yields a mean resolution of 0.5 mL and
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A

B

F I G U R E 5 Temporal and spatial results for final parameter set-up. In (A), the average concentrations are pictured over time until the process

reaches a steady state. (B) Spatially resolved steady-state results of the liquid and gaseous concentrations are shown on the left side. The right side

illustrates the related consumption and production rates (acetate qa, ethanol qe, and 2,3-butanediol qb and the growth rate 𝜇)

T A B L E 1 Average results of both simulation approaches in comparison

Average Variable 1-D (F) CFD 1-D (G) 1-D* Units
CO concentration 𝑐𝐿,𝐶𝑂 0.018 0.002 0.016 0.0015 mmol L−1

Gas hold-up 𝜀̄𝐺 0.31 0.34/0.21
a

0.31 0.21 –

Diameter 𝑑𝐵 4.4 20.9
b

20.9 20.9 Mm

Bubble surface 𝑎̄ 408.3 61.8 86.9 59.1 m−1

Mass transfer rate 𝑘̄𝐿 3.93 × 10−4 1.75 × 10−4 3.93 × 10−4 1.75 × 10−4 m s−1

Mass transfer 𝑘𝐿𝑎 577 39 123 37 h−1

Product-biomass yield ȲP,X 1.5 0.9 1.3 1.4 –

a
Second value with breakage, coalescence, bubble expansion, and mass transfer.

b
Sauter mean for CFD.

Both approaches, 1-D (1-D(F), (G) and *) and computational fluid dynamics (CFD) simulation used the same initial conditions with superficial gas velocity of 0.0625 m

s-1 and initial bubble diameter of 4 mm. 1-D (G) used the Sauter mean diameter of the CFD simulation as mean bubble diameter. In the final simulation 1-D*, besides

the Sauter diameter, the gas hold-up and mass transfer rate were adjusted accordingly. The product-biomass yield was calculated spatially with the correlation described

in Siebler et al. [11].

requires about 2–3 days computing using state-of-the-art

personal computers (here: calculation on 16 cores with

double precision). However, demanding the same resolution

for a 125 m3 bioreactor calls for high-performance computing

with supercomputers. As a consequence, evaluating tests

probing different design sets for large-scale application

need be performed in a less computationally challenging

framework. Still, the same set of essential design parameters

should be evaluated but computational speed allows for the

identification of a preliminary design optimum that should
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A B

DC

E F

F I G U R E 6 Profiles over reactor height in comparison. Each graph depicts profiles of CFD (dots) and 1-D (red lines) simulation. In case of

CFD, each dot represents values of individual numerical cells, thereby visualizing the varying conditions at each column height. (A)–(F) Dissolved

CO concentration 𝑐𝐿,𝐶𝑂, bubble area 𝑎, gas hold-up 𝜀𝐺, mass transfer rate 𝑘𝐿, bubble diameter 𝑑𝐵 , and volumetric mass transfer 𝑘𝐿𝑎 are compared

be further investigated by CFD approaches. It is exactly this

scenario that is exemplified in this study.

4.1 Parameter space analysis
As indicated in Figs. 3 and 4, increasing CO fraction finally

improves the biomass and the (by-)product formation indi-

cated by the readouts Cfix and YPX. This observation reflects

predominately low CO levels in the column which do not (yet)

cause growth inhibition. Accordingly, any measure to improve

CO levels is responded by rising Cfix and YPX. Noteworthy, the

physical parameters 𝜀̄𝐺, 𝑑𝐵 , 𝑘𝐿𝑎, and 𝑛𝐺 are not affected by

CO fractions, which allows their independent fine-tuning.

In agreement, variations of the gassing rate vvm support

the necessity to install proper CO supply. Additionally, the

important minimum threshold value of about 0.06 vvm is

outlined (see Figure 4). Below, the biological readouts Cfix

and YPX increase with strong positive correlation on vvm

raise, whereas higher vvm settings improve biological perfor-

mance only marginally. Accordingly, any gassing rate limita-

tion beyond 0.06 vvm can be ruled out that renders this value

an important design parameter. Noteworthy, low vvm settings

may even cause maximum dissolved CO2 levels, which reflect

the counteracting mechanisms of gassing input, hold-up, and

stripping.

The improvement of 𝑘𝐿𝑎 values (variation C) is always

beneficial for the biological readouts. Again, the finding mir-

rors the fact that most CO levels are far below inhibiting

thresholds, which highlights the necessity to improve CO

mass transfer.

One possibility to improve mass transfer is to increase gas

hold-up. Equations (9)–(13) show that the set of related phys-

ical parameters is intertwined, linking changes of gas hold-up

𝜀𝐺 to changes of 𝑎, 𝑘𝐿, 𝑑𝐵 , and 𝑘𝐿𝑎. For the sake of simplicity,

large-scale simulations may exclude putative impacts of gas

hold-up 𝜀𝐺 [14, 21]. However, this study aims to light related

impacts by investigating two possible simulation regimes (see

Figure S3): variation D keeps 𝑘𝐿𝑎 constant; variation E allows

flexible 𝑘𝐿𝑎 (setting 𝑘𝐿 and 𝑑𝐵 constant with characteristic

values, see Section 3.2).

The increase of 𝜀𝐺 (variation D) results in minor changes

of the biological readouts (see Figure 4D). This reflects

the fact that gas hold-up rise is responded by 𝑘𝐿 reduction,

which in turn reduces CO availability. However, the regime
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F I G U R E 7 Differences between 1-D and CFD simulation over reactor height. Concentration 𝑐𝐿,𝐶𝑂 (A), gas hold-up 𝜀𝐺 (B), and mean

diameter 𝑑𝐵 (C) deviation profiles are demonstrated in percentage over the reactor height. Additionally, horizontal section planes (dashed lines, top

and bottom) are graphically shown on the right side for each deviation profile. In (A), 100% − 𝑐𝐶𝐹𝐷
𝐿,𝐶𝑂

(𝑧)∕𝑐1𝐷
𝐿,𝐶𝑂

(𝑧) ⋅ 100% is shown, which translates

high similarity into low values. By analogy, graphic (B) is set. In (C), the criterion 100% − 𝑑1𝐷
𝐵

(𝑧)∕𝑑𝐶𝐹𝐷
𝐵

(𝑧) ⋅ 100% was applied to avoid negative

values. Still, high percentages encode large deviations

of variable 𝑘𝐿𝑎 allows to transfer 𝜀𝐺 raise proportionally to

rising 𝑎, which improves 𝑘𝐿𝑎 and leads to alleviated process

performance (see Figure 3E). Both cases illustrate that gas

hold-up impacts have to be considered properly to get valid

design values for further analysis.

Based on this evaluation, the setting of the reference pro-

cess as the new optimal setting F was chosen as follows: The

CO fraction was not adjusted since converter gas of metallur-

gical production processes rather not exceeds this value [30].

However, a moderate gassing rate of 0.15 vvm was chosen

that responds to the gas hold up of 𝜀G = 0.31 (𝜀G,0 = 0.19).

According to Bailey and Ollis [31, p. 611], this is the crit-

ical threshold value of starting heterogeneous bubbly flow

in air–water systems. Finally, moderate to high mean steady-

state 𝑘𝐿𝑎 values range (140–580 h−1) was rerun. The setting

yielded the final simulation results in Figure 5.

4.2 1-D versus CFD
Figures 6 and 7 depict the discrepancy between 1-D and CFD

modeling. Not only spatial differences are shown (Figure 7)

but also discrepancies in fundamental trends (Figure 6). The

first may have been expected as they reflect the missing

granularity of 1-D modeling. However, the second clearly

pinpoint to the lacking mechanistic details of modeling

bubble size distributions with the 1-D (F) approach. Appar-

ently, simply considering gas fractions and bubble numbers

leads to severe overestimation of 𝑎 values, which in turn

reflect too small bubble diameters 𝑑𝐵 . As a consequence,

1-D (F) overestimates 𝑘𝐿𝑎, which creates too high CO levels

and increases biological performance. Consequently, 1-D

modeling should already consider proper approaches to

simulate bubble sizes. Simply estimating bubble numbers

creates biased simulation results. This trend was already

indicated in the gas hold-up analysis and is clearly visible in

Figure 6. Noteworthy, the consideration of the Sauter diam-

eter of the CFD simulation improved the prediction quality

of 1-D (G) with respect to physical and biological readouts.

Additionally, using the gas hold-up and mass transfer value of

CFD simulations enhanced simulation quality even further.

Predictions of 1-D (G), 1-D*, and CFD converged but average

rates and constants of mass transfer are still too high in 1-D

(G). Nevertheless, the biological readouts approximated to

approximately 40% deviation of the CFD value.

5 CONCLUSIONS

Without doubt, CFD simulations inherently offer the most

accurate prediction of physical and biological readouts, spa-

tially resolved, in large-scale bioreactor fermentations. How-

ever, they also require detailed mechanistic understanding
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and—equally challenging—proper computational power for

dealing with industrial scale multiphase, mass transfer, mix-

ing, and reaction problems. Conceptual design approaches

need to search through parameter spaces of putative opera-

tional windows. Although CFD simulations would be ideal to

fulfill the task, limited computational power constraints cal-

culations on the use of 1-D models. Users must be aware that

physical readouts are most likely overestimating bioreactor

performance because impacts of bubbles are reflected poorly.

Nevertheless, the use of properly estimated Sauter mean

diameters from CFD helps to improve model predictions,

in particular for highly relevant biological readouts such as

product-biomass yields.

NOMENCLATURE

𝑎 [m−1] Interfacial area concentration

𝐴 [m2] Cross-sectional area

𝑐𝑘 [g L−1] Product concentration

𝑐𝑚 [mmol L−1] Gas concentration

Cfix(SS) [-] Total steady state carbon

fixation

𝐷 [h−1] Dilution rate

𝑑32 [m] Sauter mean bubble diameter

𝑑𝐵 [m] Bubble diameter

𝐷𝐶𝑂 [m2 s−1] Diffusion coefficient

𝐷𝐿 [m2 s−1] Liquid phase dispersion

coefficient

𝐷𝑅 [m] Reactor diameter

𝐠 [m s−2] Gravitational acceleration

𝐻𝐿 [m] Liquid height

𝐻
𝑐𝑝
𝑚 [mol L-1 atm−1] Henry coefficient

𝑘𝐿 [m s−1] Mass transfer coefficient

𝑀 [g mol] Molecular weight

𝑛 [-] Numerical volumes

𝑁 [-] Number of sections

𝑁𝐵 [-] Number of bubbles

𝑛𝐺 [m-3] Number density

𝑛𝑚 [mol] Number of moles of gas

𝑃 [atm] Pressure

q𝑘 [mmol g−1CDW h−1] Production rates

𝑄̇𝐿 [m3 h−1] Media flow

q𝑚 [mmol g−1CDW h−1] Gas consumption rates

𝑄̇𝑅 [m3 h−1] Back flow

𝑅 [kg⋅m2⋅s−2⋅K−1⋅mol−1] Universal gas constant

𝑅𝐵 [m] Bubble radius

𝑡 [s] Time

𝑇 [K] Temperature

𝑣 [m s−1] Velocity

𝑉 [m3] Volume

𝑦𝑚 [-] Gas fraction

YPX(SS) [-] Steady-state production

biomass yields

𝑧 [m] Direction and unit of length

Δ𝑧 [m] Section height

Greek
symbols

𝛼 [-] Combined back and media flow

𝜀 [-] Volume fraction

𝜇 [h−1] Growth rate

𝜌 [kg m−3] Density

𝜌∗ [mol m−3] Total molar density

𝜎 [N m] Surface tension

Indices
∗ Equilibrium concentration

0 Initial value

A Acetate

B 2,3-Butanediol

𝐵 Bubble

C Indices for CO uptake rate

E Ethanol

𝐺 Gaseous

𝑖 Section counter for 1-D

approach

𝑘 Product 𝑘 ∈ [acetate, ethanol,
2, 3 − butanediol]

𝐿 Liquid

𝑚 Gas composition

𝑚 ∈ [CO,CO2,H2]
𝑅 Reactor

𝑠 Indices superficial gas velocity

bubbles Mass transfer area between the

liquid and gaseous phase

slip Slip velocity

𝑇 Indices for terminal velocity

𝑋 Biomass
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