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Abstract

Cells adjust their metabolism in response to mutations, but how this reprogramming

depends on the genetic context is not well known. Specifically, the absence of individual

enzymes can affect reprogramming, and thus the impact of mutations in cell growth. Here,

we examine this issue with an in silico model of Saccharomyces cerevisiae’s metabolism.

By quantifying the variability in the growth rate of 10000 different mutant metabolisms that

accumulated changes in their reaction fluxes, in the presence, or absence, of a specific

enzyme, we distinguish a subset of modifier genes serving as buffers or potentiators of vari-

ability. We notice that the most potent modifiers refer to the glycolysis pathway and that,

more broadly, they show strong pleiotropy and epistasis. Moreover, the evidence that this

subset depends on the specific growing condition strengthens its systemic underpinning, a

feature only observed before in a toy model of a gene-regulatory network. Some of these

enzymes also modulate the effect that biochemical noise and environmental fluctuations

produce in growth. Thus, the reorganization of metabolism induced by mutations has not

only direct physiological implications but also transforms the influence that other mutations

have on growth. This is a general result with implications in the development of cancer thera-

pies based on metabolic inhibitors.

Author summary

Identical genetic changes do not always lead to the same phenotype and can thus contrib-

ute in different ways to phenotypic variation. These context-dependent effects are usually

associated with the presence, or absence, of elements identified as genetic modifiers.

Highly specific proteins with global action in the cell, like the molecular chaperone

Hsp90, were initially recognized as modifiers. Later work showed that this context depen-

dence is a general characteristic of molecular networks. This was demonstrated with a toy

model of a gene-regulatory network. Here, we use genome-scale metabolic network

modeling to examine for the first time the latent function of enzymes as modifiers that

can suppress (buffer) or amplify (potentiators) the impact of mutations in the phenotype

(in this case growth rate). Our results emphasize how context dependence is an intrinsic

feature of the system generating the phenotype rather than of its constituents. We also
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discuss the implications of this analysis for our understanding of the consequences of met-

abolic reprogramming in cancer progression.

Introduction

Cells experience mutations in different ways. The direct importance of these on the phenotype

has been the focus of substantial basic and applied research [1, 2]. It is much less known, how-

ever, how specific genetic contexts modify the phenotypic impact of mutations [3, 4], and the

many consequences that the alterations could have on disease progression [5].

One can expect two broad situations. In the first one, the presence of particular genetic vari-

ants buffers the effect of mutations. This result helps explain the robustness observed in biolog-

ical phenotypes and was already discussed–under the notion of canalization–in early studies of

development [6–8]. Canalization, or robustness, also leads to the accumulation of cryptic

genetic variation [9, 10], which does not reveal under typical conditions. Therefore, the unveil-

ing of this hidden variation after perturbation was reported as a decline of robustness. How-

ever, this is not necessarily so [11, 12]: two systems presenting the same robustness can

nevertheless expose cryptic variation linked to mutations which are neutral depending on the

system they emerge (conditional neutrality) [10–12]. Moreover, a second general scenario cor-

responds to the case in which some genetic variants potentiate the functional consequences of

mutations what can eventually promote the rapid evolution of new traits [13, 14].

This wide range of implications encouraged the search for the genetic underpinnings of

buffering or potentiation. And thus, the chaperone Hsp90 was the first described protein

deemed to be a canalization agent whose altered function leads to more significant phenotypic

variation, a result initially demonstrated in Drosophila [15] and later generalized across species

[16–18]. Hsp90 represents in this way a buffer or capacitor (because its influence resembles the

storage and subsequent release of electrical charge by a capacitor in electrical circuits). Indeed,

its consequences on the folding and stability of other proteins fit well with the notion of a

global element contributing to the canalized phenotype, a role also attributed to a few addi-

tional molecular agents, like the prion [PSI+] [19].

But later studies raised some doubts on the action, definition, and uniqueness of particular

proteins as capacitors. For instance, in the precise case of heat shock proteins, part of the asso-

ciated variation is linked to their control of the mutagenic activity of transposons [20]. Besides,

these proteins can not only reduce but also amplify the impact of mutations by making them

produce immediate phenotypic consequences. The same molecular element is then modifying

the impact of mutations in two contrasting ways [13, 14]. Other uncertainties indicate con-

straints on the conventional experimental approach to examine these issues, in which selection

sieves the mutations commonly assayed. Mutation accumulation experiments [21] reduce the

strength of selection and thus provide a more accurate sample instead [22].

Beyond these objections, a more important criticism is the evidence that buffers, or potenti-

ators, are not fundamentally connected to special molecular agents with distinct biochemical

properties but that they emerge as an intrinsic feature of complex biological networks. Many

genes could accordingly modify the effect of mutations [23]; a prominent conclusion if one

were to bring in the earlier results as part of the representative methodology of genetics [1] but

maybe less unexpected in the broader framework of the architecture of complexity [24].

The main focus of this manuscript is to consider metabolism as a representative model sys-

tem to examine whether buffering and potentiation is indeed a common phenomenon in bio-

logical networks. While this result has been shown with the use of toy gene-regulatory
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networks [23], and the finding of new genes acting as capacitors appears to confirm this con-

clusion [12], its validation in realistic biological networks is still lacking. Moreover, and given

that the experimental manipulations accompanying this question are challenging, we contem-

plate instead an in silico representation of metabolism. These genome-scale metabolic models

have become a standard in systems biology, contain all of the known metabolic reactions in an

organism, and the genes encoding each enzyme. They can be used to compute the flow of

metabolites through the metabolic network and predict the growth rate [25]. Earlier work on

robustness and evolution of metabolic networks confirms the soundness of this approach [26–

28].

We thus consider a genome-scale reconstruction of Saccharomyces cerevisiae [29] to exam-

ine if the architecture of metabolic networks facilitates buffers and potentiators. To this aim,

we examine to what extent the presence of a particular enzyme changes the influence on the

growth rate of a compendium of mutations altering the metabolic fluxes. We thus generate a

collection of mutant metabolisms (mutation accumulation lines) derived from the wild-type,

which displays a well-defined variability in the growth rate. We then quantify if these very
same lines manifest a different variability depending on the absence of a single enzyme. This

led us to identify a set of genes acting as buffers and potentiators whose influence depends on

the particular working conditions of the metabolism (i.e., type of available nutrients), and the

sources of variability considered. Therefore, buffering and potentiation do not only depend on

the structure of the metabolic network but also on its mode of operation. We finish evaluating

how this fundamental phenomenon could have practical implications in the development of

metabolic-based cancer therapies and the wide-ranging use of modifiers genes to control

disease.

Results

Buffers and potentiators in metabolism

We examined the significance of each metabolic enzyme on how mutations impact the growth

rate, which is regarded here as a case study of a complex phenotype. To this aim, we generated

a collection of mutant metabolisms simulating the production of spontaneous mutations in

independent cell lines, like those obtained in mutation accumulation (MA) experiments [21].

These kinds of collections help characterize the response of biological systems to new muta-

tions that did not experience any purge by selection [11].

In this metabolic setting, we first derived the mutant compendium by limiting the flux of

5% of the total reactions chosen randomly in the wild-type metabolism (Fig 1A). We obtained

in this way 10000 different mutant lines, a feasible number to generate in silico, but a challeng-

ing one to reproduce experimentally (a typical MA collection contains about 100 lines [21]).

For each member of the compendium, we compute its growth rate (“fitness”) by minimizing

the metabolic adjustment caused by the mutations on the fluxes of the wild-type metabolism,

an approach that is known to successfully predict growth rates and fluxes upon mutation [30].

Each line included in the collection presents nonzero fitness (see Methods for details).

We then computed the relative effect of the former MA lines in any metabolism in which

an individual enzyme has been deleted, i.e., the mutations constituting the MA lines are fixed

(Fig 1B). The difference in phenotypic (growth-rate) variation in the presence or absence of an

enzyme reveals how it modifies the consequences of flux mutations on fitness. We quantified

this difference with a score defined by the change between standard deviations θ = (stdmutant−
stdwild-type)/stdwild-type, with θ< 0 indicating that the enzyme works as a potentiator (presence

of the enzyme increases variability) and θ> 0 indicating that it acts as a buffer [presence of the

enzyme decreases variability, Methods [11, 22]].
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Under a nutrient-rich condition (YPD), and after filtering out enzymes with no effect and

isoenzymes, we identified 14 enzymes that significantly modify the response to mutations (Fig

2, S1 Table, Methods). Within this set, we also recognized five cases of particularly strong

Fig 1. Influence of global modifiers in metabolism. A) An in silico representation of yeast metabolism can experience two types of mutations: 1)mutations in

metabolic fluxes, which define the mutation accumulation lines, and 2)mutations in the enzymes, which define the particular backgrounds. The complex

phenotype considered is growth rate (relative to the corresponding growth rate of each reference metabolism). B) We score the variability of the growth rates in

a group of different lines (arrows) in which mutations in the metabolic fluxes are accumulated. We compute this variability in the presence (wild-type) and the

absence (mutant metabolism) of a particular enzyme i. Here the difference between growth rates and metabolic backgrounds is represented by the colors of the

fill and the border of the yeast cartoons, respectively.

https://doi.org/10.1371/journal.pcbi.1008185.g001

Fig 2. Buffers and Potentiators in yeast metabolism. For each enzyme, a θ score is computed, which is proportional

to the difference in variability between the mutant and wild-type backgrounds. The shadow denotes the normalized

null probability distribution of getting a particular score for each metabolic background. We added the names of the

most significant modifiers (buffers with θ>0 and potentiators with θ<0).

https://doi.org/10.1371/journal.pcbi.1008185.g002

PLOS COMPUTATIONAL BIOLOGY Genetic buffering and potentiation in metabolism

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008185 September 14, 2020 4 / 15

https://doi.org/10.1371/journal.pcbi.1008185.g001
https://doi.org/10.1371/journal.pcbi.1008185.g002
https://doi.org/10.1371/journal.pcbi.1008185


effects, which are all related to the glycolysis/gluconeogenesis pathway: PGK1 (potentiator)

and TPI1, PGI1, FBA1 and PFK1 (buffers). Deletion of these enzymes leads to particularly

strong flux rewiring (observed rewiring = 76% of the total flux in the wild-type, mean rewiring

expected randomly = 2%, random permutation test, p< 1e-4, with 10000 permutations) low

fitness of the associated mutated metabolism (observed relative fitness by FBA = 0.2, mean rel-

ative fitness expected randomly = 0.98, random permutation test as before, p< 1e-4) and a

more extensive number of MA lines with no growth (observed number of lethal MA

lines = 1016, mean number of lethal lines expected randomly = 36, random permutation test

as before, p< 1e-4; total number of lines = 10000); all features denoting the occurrence of very

strong metabolic readjustments due to the enzyme deletion (Methods).

Metabolic rationale underlying buffers and potentiators

The advantage of in silico models is that one can uncover these readjustments. Thus, an

enzyme works as a potentiator when its absence frequently disables the costs of mutating a sig-

nificant number of reactions, included in the MA lines, which decreases variability in growth

rate (stdmutant < stdwild-type). To evaluate this, we identified those reactions enriched in MA

lines whose impact on growth rate decreased in the ΔPGK1 background. The top five belong

to the glycolysis-gluconeogenesis system and pyruvate metabolism. This is reasonable consid-

ering that PGK1 (3-PhosphoGlycerate Kinase) is a central enzyme whose mutation inactivates

the fluxes on these pathways. The cost in growth of a mutation on these reactions is, therefore,

smaller than in the wild-type background.

Enzymes working as buffers have the opposing effect. In this case, the absence of a buffer

amplifies the weight of a substantial number of mutations found in the MA lines, increasing

the variability in growth (stdmutant > stdwild-type). Which type of mutations show this amplifica-

tion depends again on the effect of the specific background. If we first consider the top four

buffers with a strong effect, we identify several reactions that considerably increased the flux in

the corresponding metabolic background, like those related to alternative carbon metabolisms,

e.g., glycerol, sorbitol, etc. Note also that a difference in flux variability relates to the explana-

tion of when an enzyme works as a buffer or potentiator (Methods).

Beyond the specifics of the metabolic readjustments, both epistasis and pleiotropy have

been argued to be relevant features to interpret buffers and potentiators. They quantify the

number of interactions, with other mutations, and the functional role of these elements,

respectively [12]. We consequently examined both features by computing the epistatic network

between every pair of enzymes [31] (but note that higher-order interactions are also important

[32, 33]) and a recently introduced metabolic pleiotropic score that quantifies the contribution

of an enzyme to every biomass precursor [34, 35]. Global modifiers show strong pleiotropy

and epistasis (S1 Table). This indicates overall their multifunctionality character, as illustrated

in Fig 3, which shows pleiotropy and the number of weak negative genetic interactions. This

type of genetic interaction appears when there exists an additional less efficient metabolic solu-

tion to the two main functional alternatives represented by the interacting genes. The multi-

plicity of alternatives with different efficiency usually reflects the presence of (qualitatively)

different ways to perform a specific function [36] (Methods).

Buffers and potentiators are condition dependent

These results confirm the intrinsic presence of buffering and potentiation elements modulat-

ing the response to mutations in biological networks, a result discussed before only with the

use of simple gene-regulatory network models and that we extend here to a representative met-

abolic setting. Moreover, and given that the function of metabolic networks strongly depends
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on the precise growing conditions [37], we could expect that most enzymes modify the

response to mutations in a condition-dependent manner. To examine this, we studied two

complementary situations (Methods). One in which we modify the carbon source comple-

menting YPD conditions (that includes glucose by default), and a second one in which we

studied a range of random nutrient conditions (from poor to rich media), and also minimal

medium.

As projected, the list of enzymes acting as buffers or potentiators generally changes, with

some enzymes precisely related to the specific growing conditions (S2 Table). For instance,

GAL1, GAL7, and GAL10 (related to galactose metabolism) act as potentiators in YPG

medium (galactose as carbon source), while glycerol utilization enzymes (GUT1 and GUT2)

are potentiators in YPGly (glycerol as carbon source). Other enzymes switch their role, e.g.,

TPI1 (Triose-Phosphate Isomerase) functions as a buffer when growing in minimal medium

or a potentiator in YPGly. In contrast, COX1, COBB, and ATP8 consistently buffer variation.

Besides, and while there is a general tendency to exhibit more buffering than potentiation,

there exist situations in which potentiation is dominant and others in which the number of

enzymes acting as buffers is severely reduced. This emphasizes that the role of a particular

enzyme in modifying the impact of mutations is a systemic feature of metabolism that depends

on its regime of activity, i.e., alteration of environmental conditions matters.

Are there enzymes acting as universal modifiers?

All the previous analyses distinguish a set of genes that can modify the amount of growth rate

variability caused by the accumulation of mutations. We were also interested in studying to

what extent these enzymes represent “universal” modifiers, i.e., their absence also changes the

Fig 3. Buffers and potentiators correspond to multifunctional enzymes. We computed the pleiotropy and number

of weak negative genetic interactions as proxies of enzyme multifunctionality (see main text and Methods). Modifiers

(both buffers and potentiator) show stronger pleiotropy (mean pleiotropy modifiers = 0.65, mean pleiotropy

nonmodifiers = 0.05, two-sample Kolmogorov-Smirnov test p = 1.6e-6) and number of weak negative genetic

interactions (g.i.) (mean number of weak g.i. modifiers = 23.38, weak g.i. nonmodifiers = 0.6, KS p = 6.9e-8).

https://doi.org/10.1371/journal.pcbi.1008185.g003
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response to other sources of phenotypic variation. If this were the case, it would suggest a sin-

gle mode of canalization, i.e., the presence of broad mechanisms to alter the effect of perturba-

tions [38]. Recent results argued though against this congruence [12, 39]. The debate is still

open and surely depends on the level of the biological organization considered. We tried to

examine this issue here with regards to two additional sources of variability; biochemical noise

(related to the low copy number of molecules) and environmental fluctuations.

To generate the variability coupled to biochemical noise, we need first to compute the noise

corresponding to the flux of each metabolic reaction in the network. We followed a previously

established approach [40] (Methods), which uses data on expression noise of the enzymes

(obtained in YPD medium) and explicit knowledge about the metabolic logic to subsequently

estimate the reaction noise [40]. We can consider 10000 independent realizations where the

flux of metabolic reactions is randomized depending on its noise (Methods). We thus obtain a

distribution of growth rates for the wild-type metabolism and for those genetic backgrounds

in which each of the enzymes is deleted. This permits us to compute a θ score as previously,

but concerning the variability in growth rate due to biochemical noise: θnoise.

We noticed that the five strongest modifiers for mutations also appear as modifiers regard-

ing noise; PGK1 as potentiator and PFK1, FBA1, TPI1, and PGI1 as buffers (although PGI1

emerges as a very strong buffer in this case instead of TPI1, the strongest buffer to variability

caused by mutations). Three other “mutational” buffers remain as such: SOR1, RPE1, and

GLT1, while new enzymes merely buffering variability due to noise also appear: GRE3, MAE1,

CTT1, etc. (S1 Table).

We next examined the response to fluctuations in the environmental conditions [39]. By

this, we mean deviations on the import fluxes that characterize YPD. To generate a fitness dis-

tribution, we computed growth rate in 10000 different environments in which the import of

the corresponding nutrients fluctuates 10% of its fixed YPD value (Methods). Fitness distribu-

tions were computed for the wild-type and for all metabolisms in which one enzyme has been

deleted to compute θenvironment. This θ score is proportional to stdmutant−stdwild-type as before.

In this setting, we find again that PGK1 acts as a potentiator and that PGI1, COBB, COX1,

and ATP8 remain as buffers (S1 Table). Thus, two central enzymes act as a potentiator (PGK1)

or buffer (PGI1) to all three sources of growth rate variability. Moreover, we computed the cor-

relation of all three scores obtained (for every enzyme) as a measure of the similarity in the

mode of canalization. We detect the strongest correlation between the mutational and the

noise-induced variability (R = 0.77, p = 1.74e-101; mutational and environmental, R = 0.45,

p = 6.58e-14, noise and environmental, R = 0.35, p = 1.76e-08).

Discussion

The interconnectedness of biological systems, as revealed by the widespread identification of

pleiotropic and epistatic effects [33], suggests that the presence of genetic modifiers of pheno-

typic variability should be a prevalent phenomenon [8, 11]. Simple gene-regulatory models

[23] and morphometrics experiments in both yeast [41] and Drosophila [42] appear to confirm

such a view. But finding additional cases to validate this principle is challenging given the

insufficiency of large-scale experimental approaches to examine phenotypic variation with

high resolution.

Here, we propose a complementary approach. We introduce the use of genome-scale meta-

bolic models to generate large-scale quantitative phenotypic data. These models are not just

simple toy models. They represent accurate representations of metabolism and also revealed as

valid tools to provide predictions to be later confirmed experimentally, e.g., [43]. We show
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that many enzymes work as buffers or potentiators of phenotypic variability originated by

mutations in the reaction fluxes, with growth rate representing the complex phenotype.

This set is contingent on the precise working regime of the metabolism, e.g., the growing

medium, emphasizing that this is an intrinsic property of the system generating the phenotype

rather than of its constituents. In most of these regimes, we detected suppression of variation

(buffering) as projected with simpler models [23], but there exist certain conditions in which

potentiation predominates.

A particular enzyme might similarly be a modifier for other sources of variability [38]. We

explicitly studied variability generated by the presence of biochemical noise or fluctuating

environmental (nutrient) conditions. We find coinciding modifiers, i.e., congruence, between

mutational and noise perturbations. However, given that our protocol to generate these two

types of variability affects fluxes in a qualitatively similar manner, it is not surprising that we

encounter similitude between the corresponding set of modifiers. Metabolism may neverthe-

less represent a particular biological system where different perturbations eventually lead to

the same response, but some disparities could be observed.

To better appreciate the rationale behind buffers and potentiators, we studied a specific

condition (YPD). The most influential modifiers in this setting, which comprise the main

enzymes of the glycolysis and respiratory chain, corroborate the significance of the multi-func-

tionality of these elements within the network. Both sets of enzymes showed strong pleiotropy,

which also correlates with the extent of metabolic rewiring and the amount of change of

genetic interactions experienced when these enzymes are mutated [36]. That we uncover a

similar set if we consider a different metabolic model (Methods) validates our exploration.

More work on metabolic models would, of course, improve the individual predictions for a

given condition [44].

Note that some of the most active modifiers mentioned before are enzymes of the glycolysis

pathway (PGK1, FBA1, PGI1, PFK1, and TPI1) whose mutation considerably rewires metabo-

lism (and consequently the impact of mutations on additional pathways). These enzymes also

catalyze reactions needed for growth in non-sugar carbon sources, which can explain their

repeated role as modifiers. Besides, four of them (except PFK1) are essential yeast genes for

which the model also predicts substantial fitness costs (S1 Table). This hints to previous reports

presenting essential genes as principal agents in regulating phenotypic variance [41]. The result

was based on morphometric characterization of cells, so we chose to examine whether the

modifiers we obtained here might represent modifiers to these additional traits. Variability is

summarized in this case by introducing a phenotypic potential [both in nonessential [41] and

essential genes [45], see Methods]: how much a mutation changes morphological variation.

We plot the distribution of these scores in Fig 4, together with the precise value corresponding

to the (metabolic) modifiers to fitness. Only two of them remain as modifiers.

Finally, our work has implications for the understanding of the consequences of phenotypic

heterogeneity in tumors, emphasizing its very dynamic nature. Specific acquired mutations

cause metabolic reprogramming (e.g., oncogenic drivers leading to characteristic metabolic sig-

natures) that impacts growth. But the current knowledge of this reprogramming is somehow

coarse; one mutation, or sequence of mutations, points to specific variations. Other recent work

already hinted, however, to more context-specific results where the tissue of origin, or cell line-

age, etc. [46, 47] alters the metabolic adjustments created by the same mutation. We have seen

here an additional context effect. We showed how mutations influence the fitness effects of

added mutations, and how they decisively shape the amount of heterogeneity in a population.

Furthermore, the tumor microenvironment could change the role of a precise gene muta-

tion as buffer or potentiator of phenotypic variability [48], again as we have appreciated here

with the dependence on nutrient conditions. These feedbacks eventually influence cancer
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progression and might have consequences in several therapies that are targeting different parts

of metabolism, normally the glycolysis pathway. While the consequences of acting on certain

targets might depend on the characteristic metabolic reprogramming linked to the genetic

lesion and tissue type [49], this work accentuates that the outcome of metabolic inhibitors goes

beyond the alteration of metabolism to the modification of the consequences in growth of sub-

sequent mutations (see also S1 Note). Work is needed to assess the influence of this compo-

nent in the application of effective interventions based on gene modifiers [50] to prevent

disease.

Materials and methods

Models

We mostly worked with Saccharomyces cerevisiae iND750 [29] with a total number of 1266

reactions that incorporates all necessary complexity from yeast metabolism, while enabling us

Fig 4. Phenotypic potential to morphological variation. The phenotypic potential scores the amount of

morphological variation linked to a specific mutation (Methods). We show a kernel density plot of the distribution of

scores for a collection of nonessential (A) and essential (B) genes, and the corresponding values for the set of modifiers

to growth rate as phenotype (obtained in YPD; see Fig 2). MIR1 (nonessentials) and FBA1 (essentials) significantly

exhibit a larger and smaller phenotypic potential than expected (p< 0.05, randomizing test), respectively.

https://doi.org/10.1371/journal.pcbi.1008185.g004
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to moderate the substantial computational load associated with our analysis. Standard condi-

tions correspond to YPD rich medium (with 20 mmol gr-1h-1 of glucose and 2 mmol gr-1h-1 of

O2 import and an assortment of amino acids introduced at a rate of 0.5 mmol gr-1h-1). Reac-

tions in the model are part of 56 subsystems linked to different metabolisms, e.g., fatty acids,

glutamate, etc. Two of these subsystems correspond to exchange and biomass reactions (117

reactions) and bicarbonate (HCO3) equilibration reactions. To validate the general appearance

of buffers and potentiators in metabolism, we examined an additional Saccharomyces cerevisiae
model (iAZ900 [51], in YPD medium). Using this model, we identified three potentiators

(including PGK1), and sixteen buffers (including, ATP8, RPE1, SOR1, GLK1, COBB, COX1,

TPI1, PGI1, FBA1, and PFK1) (S3 Table).

FBA and MOMA

FBA is a mathematical tool for metabolic network analysis that allows the prediction of growth

rate, i.e., fitness, and fluxes under the assumption of maximization of biomass production

given a set of constraints. We use the Gurobi linear programming optimizer (www.gurobi.

com) and the Cobra toolbox [52] in Matlab (www.mathworks.com). We also minimize the

absolute value of fluxes to avoid loops in the solutions. We compute all reference metabolisms

(wild-type and single-enzyme deletions, see below) with FBA. To obtain the fitness for each of

the components of a MA mutation line, we used MOMA. A procedure that minimizes the

deviation in fluxes from the corresponding metabolism without the mutations. MOMA out-

performs the standard FBA approach in the prediction of growth rate and fluxes upon muta-

tion. It relies on the assumption that after genetic perturbations, the organism’s metabolic and

regulatory responses favor a new steady state close to the original operating region, rather than

maximizing cellular growth [30]. Note that both FBA and MOMA are extensively used to com-

pute growth rate and mutant growth rates, respectively. These methods have some limitations,

of course, which are always present to any modeling approach. E.g., the incorporation of gene

regulation (this is part of current research in the flux balance community). However, none of

these limitations make FBA or MOMA inadequate for our work.

Generation of mutation accumulation lines

We produced 10000 independent “mutation accumulation lines” by fixing for each line the

flux of 5% of the constituent biochemical reactions of the wild-type metabolism chosen at ran-

dom (S1 Script, S4 Table). For each designated reaction, we assigned a random value obtained

from a uniform distribution between 0 and 20 mmol gr-1h-1 to the corresponding lower

(reversible reactions) and upper bounds of the associated flux. External exchange reactions

(116 reactions) are not incorporated in the generation of the MA lines to maintain the nutrient

conditions. One could explore, of course, other means to implement mutations, but this does

not invalidate our approach and the results we found.

Protocol to identify buffers and potentiators

Our goal is to quantify to what extent the accumulation of a fixed set of mutations (“MA

lines”) causes a different response in growth due to the presence or absence of a particular

enzyme. We begin with a compilation of “reference” metabolisms that includes the wild-type

and all possible variants with a single enzyme removed. The growth rate of these metabolisms

is computed with FBA. After this, each reference metabolism experiences the very same set of

mutations in the fluxes (the MA lines defined previously). For each line, fitness is calculated

with MOMA with regards to deviations to the respective reference metabolism and normal-

ized by the fitness value of the reference (all lines with the wild-type as a reference has nonzero
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fitness). We calculated the variability on the (relative) fitness observed in the 10000 MA lines.

If the variability observed in a specific mutant is bigger than that observed in the wild-type, we

say that the corresponding enzyme is a buffer; if smaller, we say that it is a potentiator. We use

the relative difference with respect to the wild-type value θ = (STD fit_mutant–STD fit_wild-

type)/STD fit_wild-type [11, 22] as score. Different measures that we tested led to comparable

results, like the genotype-by-line interaction variance [12] (S1 Table).

Flux variability

Change of flux variability could also describe when an enzyme works as a buffer or potentiator.

Flux variability maximizes and minimizes each flux of the metabolic network while satisfying

all the other constraints that fix a given growth rate. This is equivalent to the experiments of

the accumulation of mutations. Imagine those mutations constraining a particular flux. The

associated fitness values represent a measure of how much flux variability can be tolerated. If

one compares the very same mutations in a different genetic context (where a specific enzyme

is deleted), one is quantifying again the flux variability, this time in that particular context.

Flux rewiring

For each reference metabolism, we computed the Euclidean norm of the vector defined by the

difference between the optimal FBA fluxes of the mutant background and the wild-type. We

divided this value by the Euclidean norm of the optimal wild-type FBA flux. This measure

indicates the degree of metabolic reprogramming experienced by a given mutant.

Random environments, environments with a carbon source other than

glucose and minimal medium

Random environments were aerobic (2 mmol gr-1h-1 of O2 import; ammonia, phosphate, sul-

phate, sodium, potassium, CO2, and H2O unbound), with the specific set of nutrients being

selected from an exponential distribution probability [53] (with mean = 0.1). After defining

this set, their dosage was randomly obtained by applying a uniform distribution between 0 and

20 mmol gr-1h-1 (S2 Table). We also examined some YPD variants, i.e., YPE, YPGal, YPGly,

and YPLac, in which the import of glucose at 20 mmol gr-1h-1 as a carbon source is substituted

by ethanol, galactose, glycerol, and lactate, respectively. Minimal medium provided uncon-

strained ammonium, phosphate, and sulphate with glucose import at 10 mmol gr-1h-1 and O2

at 2 mmol gr-1h-1.

Buffering-potentiation protocol regarding biochemical noise variability

We followed a procedure grounded on the one presented by Wang and Zhang [40] to simulate

the noise in the flux of a reaction. Flux noise incorporates experimentally measured gene

expression noise data [54] that largely excluded extrinsic noise (noise measured in YPD condi-

tions) and approximates the metabolic network as a linear pathway of length n (S1 Table). For

a fixed n, we run 10000 simulations in which we constrain fluxes according to the noise and

compute the corresponding fitness with MOMA (deviation to a noiseless metabolism) to

obtain the variability associated with intrinsic noise (we presented n = 4 in the main text [40]).

We apply this procedure for each reference metabolism (wild-type and mutants) so that we

can define a θ score for the variability in growth rate associated with noise: θnoise.
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Buffering-potentiation protocol regarding environmental variability

We generated 10000 different environments by randomly modifying the bounds of the nutri-

ent reactions defining the YPD medium while maintaining ammonia, phosphate, sulphate,

sodium, potassium, CO2, and H2O unbound and the import of O2 to 2 mmol gr-1h-1. Fitness

of the new environmental conditions was computed with MOMA with the corresponding

metabolic solution in YPD as a reference and normalized by the fitness value of that reference

metabolism. We computed the variability on this (relative) fitness to then define a θ score as

before: θenvironment.

Pleiotropy and Epistasis

We applied FBA to compute the production rate of each biomass precursor for a given growth

medium and genetic environment. To simulate the production of a given metabolite, we

added a new exchange reaction to the model representing the secretion of this metabolite, and

maximize the flux through this reaction [34, 35]. For the single-knockout annotation, we sys-

tematically deleted each gene and considered that it contributed to the production of a certain

metabolite if its loss reduced the metabolite’s production rate by more than 20%. We divided

the number of metabolites for which a gene contributes by the total number to obtain a nor-

malized score between 0 and 1. This number describes the multifunctionality at the network

level, and hence, the pleiotropy of the corresponding gene [34, 35]. To compute the epistatic

network, we calculated with FBA the growth rates of all single and double deletion mutants

encompassing all nonessential genes. The mutant/ WT growth ratios obtained are used to

compute an epistatic score (ε), which incorporates a multiplicative model and posterior scaling

[31, 36]; interactions with |ε| < 0.01 were not considered.

Phenotypic potential

Morphological phenotypes of individual cells are available for two sets of knockout strains of

nonessential [41] and essential [45] genes, in which a single measure of phenotypic variance–

termed the phenotypic potential–was obtained. Note, however, that this measure is not

completely equivalent in the two sets.

Supporting information

S1 Note. Genetic modifiers and expression variability in cancer.

(PDF)

S1 Fig. Mutations characterizing specific tumors increase the enzyme expression variabil-

ity as compared to normal tissues. We used gene expression data of pairs of control and

tumor samples to quantify the variability (standard deviation) in the expression of metabolic

genes within each sample (see S1 Note for details). With these scores, we estimated the fraction

of enzymes with more variation within the tumor sample than the control (this ratio is indi-

cated by the orange bars, in increasing order). We also computed the expected null value of

this score by randomization of expression data between tissue and control. We plot the mean

null value of these randomizations (blue curve) and the +/- 2 std (blue shading, 1000 randomi-

zations).

(TIF)

S1 Table. List of enzymes features including 1/ θ scores of changed fitness variability associ-

ated with mutations, noise and environment, 2/ variances of wild-type, mutant and interac-

tion, and 3/ number of lines which are lethal, 4/ pleiotropy, number of genetic interactions,
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