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Abstract: Advances in molecular biology including genomics, high-throughput sequencing,
and genome editing enable increasingly faster and more precise cultivar development. Identifying
genes and functional markers (FMs) that are highly associated with plant phenotypic variation is
a grand challenge. Functional genomics approaches such as transcriptomics, targeting induced
local lesions in genomes (TILLING), homologous recombinant (HR), association mapping, and allele
mining are all strategies to identify FMs for breeding goals, such as agronomic traits and biotic and
abiotic stress resistance. The advantage of FMs over other markers used in plant breeding is the close
genomic association of an FM with a phenotype. Thereby, FMs may facilitate the direct selection of
genes associated with phenotypic traits, which serves to increase selection efficiencies to develop
varieties. Herein, we review the latest methods in FM development and how FMs are being used in
precision breeding for agronomic and quality traits as well as in breeding for biotic and abiotic stress
resistance using marker assisted selection (MAS) methods. In summary, this article describes the use
of FMs in breeding for development of elite crop cultivars to enhance global food security goals.

Keywords: functional markers; functional sequence characterization; precision plant breeding;
elite cultivar

1. Introduction

At the core of traditional plant breeding is phenotypic selection of superior genotypes. In reality,
selections are the product of genetic recombination (genotype) and environment interactions. In plant
breeding, genetic variability is the base for the improvement and the development of new cultivars.
Genetic variability is repetitively produced in crosses and selections for desired traits. As we select
beyond morphological traits to include genetic markers such as cytological and biochemical markers,
more than 12 years may be needed to develop a variety. Herein, cataloging new genes and allele
variants was initially accomplished using these markers and tracked in subsequent crosses. These days,
these traditional markers have largely been supplanted by those from genomics approaches [1–3].
Genomic markers are not affected by environmental factors, sample collection stages, and the
developmental stages of the plant [4].

Under a 50% higher demand for food by 2030 [5] from limited genetic and environmental resources,
plant breeders are challenged to increase their output of superior varieties that are adapted to changing
climates [6]. Further, the genetic base has narrowed with the introduction of high yielding varieties
with a commensurate yield plateau [7]. Under these circumstances, plant breeders must explore and
implement a wide range of genomic resources. There is a plethora of new breeding technologies
and approaches that address global food security challenges, which simultaneously include both
sustainability and humanitarian goals [8].

Precision breeding is a plant breeding approach in which a phenotypic trait of interest is selected
by means of identifying a functional marker (FM) that is directly derived from the genomic region of
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a trait-controlling gene [9]. In precision breeding, selections are based on the polymorphic genic regions
linked with a trait of interest. Availability of genomic resources are of utmost important for development
of FMs and their use in precision breeding [10]. At the core of genomic innovations are complete
genome sequences of cultivated crop species. In addition, systems biology approaches are used to
infer relationships among transcripts, genes, proteins, and phenotypes [11]. Hence, hosts of molecular
markers have been developed and are being used in plant breeding programs for genotype identification,
phylogenetic studies, population structure and diversity analysis, and to better understand genome
evolution [12,13].

2. Brief History of Molecular Marker Development

The genomics revolution during the 1990s greatly improved our understanding of the genetic
make-up of a wide array of living organisms, including plants. With the advent of molecular marker
technology, plant breeding became more efficient, including identifying quantitative trait loci (QTL)
for use in genetic mapping [13]. Different types of molecular markers have been developed: restriction
fragment length polymorphism (RFLP) [14], random amplification of polymorphic DNA (RAPD) [15,16],
amplified fragment length polymorphism (AFLP) [17], microsatellite or simple sequence repeat
(SSR) [18,19], sequence characterized amplified region (SCARs) [20], cleaved amplified polymorphic
sequences (CAPS) [21], single nucleotide polymorphism (SNP) [22], and diversity arrays technology
(DArT) markers [23]. Among these, SNP markers have gained the widest use [24]. Most of these
marker types are random DNA markers (RDMs), which may be lost during recombination. In contrast,
if candidate trait genes are known, then DNA markers (functional markers; FMs) within the gene or
closely linked to the gene can be developed and used in agricultural crops. Herein lies the power of FMs.

FMs are defined as DNA markers that have been derived from functionally characterized sequence
motifs [25]. Therefore, SNPs as FMs are more useful in plant breeding compared with RDMs and genic
molecular markers (GMMs) (Figure 1). Although GMMs may be present within a gene of interest,
functionally, they may not be linked to the phenotypic trait of interest, which may lead to false selection
in MAS. FMs have been called “perfect markers” in contrast with RDMs as “non-perfect markers” such
as RFLPs, AFLPs, or SSR markers [26]. Thus, this review assesses the state-of-the-art of FMs and their
use in plant breeding.
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3. Functional Markers

FMs in genic regions are optimally directly linked with a phenotypic trait, i.e., one that functionally
characterizes the observed phenotypic variation [25]. FMs are also known as precision markers or
diagnostic markers. FMs enable efficient and quick characterization and screening of germplasm for
allelic diversity with accuracy since they are not subjected to recombination. Once genetic effects have
been assigned to functional sequence motifs, FMs can be used for fixation of beneficial alleles in the
breeding population [26]. As the polymorphism occurs within the target gene and fixes the favorable
allele in the breeding population, the utility of FMs can also be made in selection of complex traits [27].

The development of FMs first requires the identification of a gene of interest affecting the
phenotypic trait, its nucleotide sequence, and functional characterization [13]. Gene identification may
be attained by a number of approaches such as expression profiling, map-based cloning, QTL mapping,
expression profiling, and transposon tagging [28,29] (Figure 2). Plant transformation for overexpression
or knockdown analysis is necessary for functional characterization of a candidate gene [30]. The second
step towards FM development involves the study of allelic variation within characterized genes.
Then, allele sequencing must be performed between genotypes to identify those polymorphisms that
underlie causative variation of the phenotypic trait [31]. The development of FMs requires critical
understanding about the sequence of allele/gene linked to the trait. These polymorphisms among
alleles for genes of interest may be due to insertions or deletions (InDels), SNPs, different number of
repeat motifs within SSRs, and partial or complete loss of the gene [28]. Hence, FMs may be based on
a wide range of types of coding and non-coding DNA [32].

Over the last two decades with advancement of different next generation sequencing (NGS)
platforms, numerous QTLs have been identified by developing various mapping populations such as
recombinant inbred lines (RILs), near isogenic lines (NILs), doubled haploids (DHs), etc. Development
of mapping population by crossing two diverse parents is time and cost consuming. To overcome these
barriers, an alternate approach, association mapping, has been used for detecting QTL in natural or
breeding germplasm. Association mapping (AM) is a powerful approach that identifies polymorphisms
near or within a gene of interest that controls the phenotypic differences between genotypes [33].
Linkage disequilibrium (LD) tends to be maintained over many generations between loci that are
genetically linked to one another, which enables marker assisted selection (MAS) [34]. Association
mapping also facilitates the search for functional variation in genes of interest; the larger and more
diverse the samples are, the greater the potential associations are [35]. Genic SNPs and maintenance of
LD are quite helpful for FM development and subsequent marker-assisted backcross breeding (MABB)
activities [36].

High-throughput genotyping technologies and large-scale genomic resources have led to ample
SNP candidates for high-resolution linkage map production [37]. Furthermore, genome-wide association
studies (GWAS) are now a viable alternative to QTL mapping for dissecting important quantitative traits.
GWAS may provide efficient assessment representative sets of individuals and genes. GWAS leverage
LD to enable high density genotyping that spans the entire genome of an organism to identify
genomic regions linked to the phenotypic traits. Recently, GWAS have been successfully applied for
identification of genomic regions associated with important traits in rice, barley, corn, wheat, and other
crop species. GWAS in these crops have provided important information about the marker-trait
associations, which can be successfully used in plant breeding programs [37]. Recently, GWAS have
also been used in an association mapping population for identification of SNPs associated with total
sugar content and sorbitol for improving fruit quality of lettuce [36] and peaches [38].
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Advances in next-generation sequencing technologies have driven the costs of DNA sequencing
down to the point that genotyping-by-sequencing (GBS) is now feasible for plant species with both
high genetic diversity and large genomes [39] to the degree that they have become breeding tools.
GBS involves the use of restriction enzymes for targeted complexity reduction of the genome followed
by multiplexing and sequencing. GBS can generate numerous SNP markers covering much of the
genome in a cost-effective manner [39,40]. Therefore, these genome-wide SNPs can be used in genomic
selection, GWAS, and genetic diversity studies. In one example, GBS-derived SNPs associated with the
functional allele E3Ha for maturity in soybean has been identified [41].

Similarly, transcriptome sequencing provides a new tool for genomic studies on model or
non-model organisms. RNA-sequencing (RNA-Seq) is a powerful tool for transcription profiling,
providing rapid access to a collection of expressed sequences. Transcriptome sequencing of an organism
provides facile insights into the gene space, enabling gene discovery and FM development as well
as study gene expression patterns and comparative biology [42]. RNA-Seq may enable molecular
marker development, including FMs in non-model plant species that may not have a reference genome
yet sequenced [43]. RNA-Seq has been successfully applied in different domains of life from yeast
to plants. SNP detection is an important part of molecular genetic research because SNP loci can be
exploited to construct high-density genetic maps and enable GWAS [44–49].

Functional SNPs are useful for improving breeding efficiency. With the progress in functional
genomics research, increasing numbers of FMs responsible for agriculturally important traits have been
identified, which provide valuable genetic resources for molecular breeding. Resequencing and SNP
genotyping are two key strategies used in GWAS for identification of functional SNPs and development
of FMs (Figure 3). Mapping populations (RILs, DHs, segregation, etc.) are used for appropriate QTL
identification, in which genome resequencing of different lines generates saturated SNPs. The SNPs
located at the QTL are regarded as GWAS SNPs, because the candidate genes at the QTL locus are
predicted according to GWAS analysis. On the other hand, in association mapping, diverse germplasm
is useful, and SNP genotyping on the basis of genomic resequencing provides a strong tool for the
detection of SNPs in large accession collections. The comparison of GWAS SNPs from populations
helps identify functional SNPs linked to the phenotypic trait.
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Functional genomic techniques such as RNAi, site-directed mutagenesis, gene knockout analysis,
and transposon tagging are useful in gene discovery [50]. With the possible exception of naturally
occurring transposon systems in maize, most methods (transposon, T-DNA, antisense, and RNAi)
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rely on transgenic introduction of foreign DNA, which is not possible in most of the important crops.
The development of transgenic is the main impediment in the use of functional genomics in the
development of FMs in crops. However, RNAi has been exploited in the functional analysis of the
22-kD maize zein storage protein [51] and lysine rich in maize [52], the functional role of GhACT1 gene
in fiber elongation in cotton [53]. However, RNAi generates unpredictable outcomes, and the whole
procedure is laborious, as it requires vector construction, transformation, and transgenic analysis [54].
RNAi has several limitations such as partial and short-term suppression of genes rather than rendering
a complete loss-of-function. In addition, off-target effects may cause false positive observations [55].
Still, RNAi experiments with a range of target gene suppression, which enables knowledge about the
effect of gene expression in target tissues, i.e., gene function [56].

The emergence of different genome editing tools such as clustered regularly interspaced short
palindromic repeat (CRISPR-Cas9), zinc finger nucleases (ZFNs), and transcription activator-like
effector nucleases (TALENs) is important, as these are breakthrough technologies to knock-out genes.
CRISPR-Cas9 approaches are especially relatively facile, affordable, and efficient research tools [57].
CRISPR-Cas9 produces double stranded breaks (DSBs) to the target loci, which can be repaired via
homology directed repair (HDR) or non-homologous end joining (NHEJ) mechanisms. In most of the
cases, NHEJ causes deletion mutations or random insertion of variable lengths, resulting in knockout
mutants with frameshift mutations. Most often, coding regions of genes are disrupted, leading to a loss
of an endogenous protein. This tool has numerous advantageous compared with RNAi technology,
such as complete loss of function with relatively low off target activities [56], heritable and permanent
or stable knock outs, and efficient characterization of non-coding RNAs (ncRNAs) by disrupting their
DNA coding sequences. In addition, CRISPR-mediated knockouts in various crops [56,58] are likened
to natural mutants and can be used directly in breeding and rapid crop domestication.

Point mutations for knock-in mutations may also result in gene gain-of-function; thus, using
CRISPR-Cas9 in this way is also a breeding tool. HDR-mediated knock-ins have been achieved in rice,
cotton, tobacco, poplar, sweet potato, and several other plant species [59].

Compared to different functional genomic approaches, targeting induced local lesions in genomes
(TILLING) is a non-genetically modified organism (GMO) techniques and applied to any plant species
regardless of genome size, ploidy level and mode of propagation. TILLING offers many advantages in
cases where the transformation is difficult or if the investigation of a continuing series of unknown
genes in a specific crop is desired. This technique requires no complicated manipulations or expensive
apparatus. It enables one to screen the mutant pools easily for investigating the functions of specific
genes, avoiding both confounding gene separation steps and tedious tissue culture procedures as
are involved in anti-sense RNA and RNAi. It allows rapid and inexpensive detection of induced
point mutations in populations of mutagenized individuals. Moreover, TILLING involves a series
of alleles in a targeted locus compared to functional genomic approaches. In TILLING, the use of
ethyl methanesulfonate (EMS) chemical mutagen produces G/C to A/T transition, which provides
high frequency of point mutations distributed randomly in the genomes. Endonuclease cut effectively
with the multiple mismatches in a DNA duplex and the heteroduplex DNA of unknown sequence
to that of a known sequence reveals the positions of polymorphic sites. Therefore, both nucleotide
changes and small insertions/deletions are identified. It can be performed with fewer expenses than
the full sequencing methods currently used for most SNP discovery. Moreover, a well developed and
tested protocol of TILLING is available for a number of crops, such as lotus [60], barley, common bean,
field mustard, maize [61], oat, pea, peanut, potato, rice [62], rape seed, sorghum, soybean, Medicago spp.,
tomato, and wheat [63]. TILLING is an attractive strategy for a wide range of applications from the
basic functional genomic study to practical crop breeding.

Regardless of the source of DNA, once FMs are developed, the next step is the functional validation
of markers regarding the link to a gene of interest [64]. The validation of newly developed FMs for their
functionality can be carried out by gene expression studies, including virus induced gene silencing
(VIGS) and gene knock-down and knock-out analyses as noted above [65–67]. However, the VIGS
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technique has an advantage over the other techniques when it is useful to silence multiple genes within
gene families, which has additional power in the analysis of polyploid species [65,68,69].

4. Advantages of FMs over Other Markers

RDMs are the most prevalent DNA markers used for indirect selection. RDMs are derived from
the DNA sequence polymorphisms in the regions adjacent to the gene of interest; they do not always
lead to predictive selection for traits of interest. However, the problems associated with the use of
RDMs can now be overcome by the use of FMs that are 100% predictive of the corresponding phenotype.
Once genetic effects have been assigned to functional sequence motifs, FMs fix alleles in several genetic
backgrounds without additional calibration [70,71]. This is advantageous in marker applications,
particularly in plant breeding, to select parental materials to build segregating populations as well as
subsequent selection of advanced breeding lines [25].

FMs reside within the target genes themselves and are directly linked to the morphological
traits that can be used with great reliability and efficiency to identify favorable alleles in a breeding
program [36]. FMs also reduce the chances of loss and false selection of information using MAS [65,72].
Additionally, in MAS, QTL validation is needed when applied to different genetic backgrounds; however,
FMs avoid this validation [30,65,73]. FMs can facilitate the selection of exceptional phenotypic traits
that would enable a breeder to identify rare recombinants in a large population [74]. In addition,
FMs are useful for screening for alleles in natural as well as breeding populations, fixation of alleles in
the population, construction of linked FM haplotypes, and combination of FM alleles associated with
complex traits [25].

5. FMs in Precision Plant Breeding

Genome sequencing costs continue to decrease, which has facilitated FM development. Since FMs
outperform RDMs, FMs are increasingly being used in MABB activities for quantitative and quality
traits [74,75]. In precision breeding, FMs can be used in germplasm evaluation, genetic diversity
analysis, MAS, MABB, marker assisted recurrent selection (MARS), and genomic selection (GS) for
improvement of important traits [29,76–78].

5.1. Germplasm Evaluation and Genetic Diversity

Plant genetic resources (PGR) are the basic material required for the improvement of crop species.
These are the important sources of gene(s) for yield enhancement, quality improvement, disease and
insect pests, as well as abiotic stresses. Before the advent of plant genomic approaches, the main genetic
markers for evaluation of germplasm were various morphological traits [17]. Sequencing revolution
enables the development of numerous molecular markers such as RDMs, GMMs, and FMs [79].
To screen the germplasm for allelic variation for particular phenotypic traits, FMs enable direct
linkage with the gene of interest and can be used directly in breeding programs [80]. FMs enable the
characterization and screening of the germplasm for allelic diversity with more accuracy. Compared
to RDMs, FMs identify agronomically important genes directly from germplasm such as landraces,
traditional cultivars, wild relatives, and plant genetic resources. The identified traits in the germplasm
are linked with particular FMs and can be utilized in crossing programs for development of new
cultivars. This also enables the plant breeder to develop new genetic resources to act as bridging
genotypes for transferring the valuable genes to cultivated ones [81]. Besides this, the International
Union for the Protection of New Varieties of Plants (UPOV) also endorsed the use of FMs for
trait-specific characterization of germplasm and varieties for distinctness, uniformity, and stability
(DUS) characters [82].

The knowledge of genetic variability present within and among the germplasm is the basis
for the improvement and the development of crop varieties [83]. Genetic diversity information of
PGR is essential and prerequisite for breeding programs. Today, vast PGRs that are available are
characterized based on the phenotypic traits, but few of these have been characterized at the molecular
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level. Availability of high throughput genotypic techniques made large-scale use of molecular markers
in genetic diversity analysis, identification of variety, conformity of F1 hybrid, and in plant variety
protection [84,85]. For identification of potential and diverse genotypes for breeding, a broad genetic
base is required [2,86]. The genomics era has provided several genomic resources such as RDM, GMM,
and FM to assess the genetic variability in the available genetic resources [87]. Trait-specific FM genetic
diversity is essential to broaden the genetic base to enable precision breeding [88]. FMs hold the promise
for identification of alleles/genes involving polymorphisms causing functional genetic variation [89].
FMs can be effectively used to characterize the genetic diversity among closely related plant species
based on functionally characterized genes linked with the phenotypic traits [90]. Alternatively, genetic
diversity among genotypes can be assessed in the functional parts of the genome by DNA-based
profiling methods [91–93].

5.2. Marker Assisted Selection

MAS is a molecular breeding technique in which direct and indirect phenotypic selections of
a genotype are made on the basis of a molecular marker that may consist of RDMs, GMMs, and/or
FMs [2]. MAS is used in crop improvement to overcome the difficulties that arise from the conventional
plant breeding methods [94,95]. FMs used in MAS help in selection and identification of genotypes in
a segregating population, which are directly linked with morphological traits (Figure 4). FMs have the
uniqueness for confirmation of candidate genes governing the desired phenotypic traits, which can be
used directly in the plant breeding methods through MAS. Several FMs have been developed and used
for improvement of important morphological, quality, and biotic and abiotic stress resistance traits in
different crops such as wheat, maize, rice, fruits, and vegetables. In these crops, FMs have aided in
the improvement of various qualitative and quantitative traits such as flowering time, photoperiod
response, plant height, seed length, seed weight, aroma, amylose content, oil content, and resistance to
various diseases and insect pests [64,96,97]. These traits may be controlled by recessive or dominant
alleles of a gene of interest.
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MABB is used to transfer a phenotypic trait controlled by a recessive or dominant allele into
an elite crop variety through repeated backcrosses and selections using molecular markers. In MABB,
selection is operative both at genotypic as well as phenotypic levels. In MABB, the desired traits are
transferred from the donor parent (non-recurrent parent) to a widely-adapted variety (recurrent parent).
Repeated backcrossing and selection are practiced on the basis of molecular markers and the phenotypic
traits until most of the genes stemming from the donor are eliminated. In MABB, FMs are used to
target the gene controlling the desired trait of interest (foreground selection) and in recovering the
genome of an elite variety (background selection) if a sufficient number of markers are available.
FMs have been successfully employed to select for a number of genes controlling desired traits that
have been transferred to adapted varieties via MABB [72]. The efficiency of MABB can be enhanced
by using FMs to transfer the desired gene(s) controlling simple or complex trait(s) into cultivated
varieties [98]. Moreover, FMs can be used for multiplex screening assays for foreground selection to
identify introgressed genes [99,100].

MARS plant breeding methods for transferring complex traits into varieties take a long time under
continuous recurrent selection. The phenotypic selection of complex traits may be difficult because of
ambiguous phenotypic selection and analysis of complex traits owing to the large number of genes
that contribute to the traits. In MARS, favorable alleles of complex traits are accumulated with the help
of genetic markers and are thus made more efficient. Among the various genetic markers, FMs help
the accumulation of favorable alleles of a complex trait most efficiently [101]. For improvement of
complex traits, several recurrent selection cycles are required to accumulate favorable QTL alleles in
the breeding population [102], which is aided by use of FMs. MARS thus decreases the number of
needed breeding cycles while increasing the precision of selecting complex traits. When parents used
in MARS are crossed when informed by FMs, an ideal genotype is possible after only a few successive
generations of backcrossing. FMs enable genetic gain for the improvement of complex traits and the
development of inbred lines of a hybrid [98].

5.3. Gene Pyramiding

Gene pyramiding is a method of assemblage of different desirable genes from various donor parents
into a single plant (Figure 5). In gene pyramiding, genes controlling different traits are simultaneously
transferred into a single cultivar. Gene pyramiding is used for improving few unsatisfactory traits of
a widely-grown elite variety, and these unsatisfactory genes are replaced with better genes. Although
gene pyramiding is possible through conventional plant breeding methods, phenotypic selection and
identification of a single plant containing more than one gene are very difficult. There are chances
of loss of gene of interest from recombination and number of meiotic cycles, which may convolute
plant breeding [103]. FMs can improve the prospects of gene pyramiding for different traits [104] as
demonstrated by the plethora of FMs linked with a multitude of morphological traits, quality traits,
and resistance to biotic and abiotic stresses for use in many crops (Table 1) [64,105].

5.4. Genomic Selection

Genomic selection (GS) was developed by Meuwissen et al. [106], which is an advanced method
of MAS. GS has aided the improvement of complex traits such as grain yield and its components,
quality traits, and abiotic stress resistance, which vary rapidly with generation of desired phenotypes
by selection [107]. GS is also known as genomics-assisted breeding (GAB), which uses phenotypic
data, genotypic data, and modeling to predict the genomic estimated breeding values (GEBVs) for
each individual [108,109]. In this method, GEBVs are used to predict the genetic values of selected
candidates predicted from high density of markers that depends on all the major and the minor
molecular effects [110]. GS requires: (i) a diverse population used for development of a training
population; (ii) genotypic as well as phenotyping analysis of the training population; (iii) genotypes
with high values of GEBV to be selected on the basis of their genotypic data; (iv) a testing population
composed of progeny of the genotypes used as study material that are taken as input for the GS model
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to yield GEBVs; (v) high GEBV values are selected again in genotypes; and iv) the selected genotypes
are used as parents for continuous crossing and selection [111]. In GS, FMs have advantages over other
markers as few numbers of trait-specific FMs are required for predicting GEBV values. GS has been
used in several crops including wheat [112], maize [113], and Brassica rapa [114]. Increased prediction
of GEBVs is facilitated by using FMs [115].
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6. FMs for the Improvement of Agronomic Traits, Quality Traits, and Stress Resistance

Advances in sequencing techniques enable the identification of SNPs and indels linked with
various economically important traits; FM development is thus enabled [64]. Indels may cause
phenotypic variation from extensive genomic effects, which are accompanied by chances of elimination
from natural selection [116]. Hence, SNP-derived FMs have advantages over indel-derived markers
because the widely distributed nature of FMs throughout the genome [117,118]. FMs have been
developed for various agronomic, quality traits, and biotic and abiotic stress resistances, which have
been pyramided in different crops using MAS, MABB, MARS, and GS approaches [64] (Table 1).

6.1. FMs for Agronomic Traits

FMs perfectly discriminate alleles of a targeted gene, and FMs have been deployed for improvement
of important agronomic traits through MABB. In wheat, more than 97 FMs have been developed and
used in MAS [119]. Two FMs for TaSUS2-2B and TaZds-D1 genes encoding grain weight have been
developed, which can be used in MABB for wheat improvement [120]. Similarly, FM markers that are
based on SNPs present in the eighth exon of the TaGW2 gene have been developed for enhancing grain
weight in wheat [121]. In wheat, the pre-sprouting of spikes results in low grain yield production and
development of low quality products. An SNP-based CAPS marker was developed for TaSDr gene
responsible for low spike sprouting in wheat crop under field conditions [122]. Two semi-dwarf genes,
such as Rht1 and Rht2, encode a protein involved in GA-signal transduction located on chromosome
4B and 4D of wheat and played a significant role in the Green Revolution. Rht1 and Rht2 are the result
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of point mutations to change the tall genotypes of wheat to semi-dwarf ones. FMs were developed for
screening the semi-dwarf genotypes in wheat germplasm [123].

In rice, the erect panicle trait significantly contributes to increased yield for which an FM
has been developed that is transferable to other rice varieties through molecular breeding [118].
Similarly, the semi-dwarf gene sd1 on chromosome 1 in rice also played a role in the Green Revolution.
This is the most widely deployed gene in modern rice breeding programs in the world for development
of semi-dwarf varieties. The sd1 gene FM was developed owing to a 280 bp deletion within the
coding region of the Os20ox2 gene that encodes the non-functional protein that leads to reduction
in gibberellic acid (GA3) production in dwarf rice plants [124]. An FM enabled the transfer of sd1
gene in Ranbir Basmati rice through MABB [125]. In the two-line system of hybrid rice production,
photoperiod-thermo-sensitive genic male (PGMS and TGMS) sterility is essential. An FM has been
developed for the pms3 (p/tms12-1) gene to transfer male sterility in other rice varieties using MABB [126].

In maize, an FM for reduced plant height along with early flowering has been developed for
the Dwarf 8 gene from a deletion of bases in the coding region of the gene. This marker has been
used for screening of maize germplasm for early flowering time and reduced plant height [31].
In barley, an FM has been developed because of deletions in the intron region in VRN-H 1 gene.
This gene is responsible for regulation of spring growth habit and vernalization in barley [127].
In mustard crops, trichomes provide protection against number of insect pests and diseases. An FM
for BrpHL1, a trichome-related gene, is used in mustard breeding [128]. Similarly, FMs have been
developed for agronomically-important traits of legumes and vegetable crops (Table 1).
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Table 1. Candidate genes for functional markers (FMs) development for different traits.

Trait Gene (s) Chromosomal Location Sequence Crop References

Agronomic traits

Semi-dwarf stature Rht-B1 and
Rht-D1 4B, 4D

F-TCTCCTCCCTCCCCACCCCAAC
R-CCATGGCCATCTCGAGCTGC

&
F-CGCGCAATTATTGGCCAGAGATAG
R-CCCCATGGCCATCTCGAGCTGCTA

Wheat [129]

Grain weight TaSus2-2B 2 F-CGCCCTGAGCCG CATCCACA
R-CGCTCGCCCGC CATTTATTTCTCT Wheat [118]

Grain weight TaGW2 6 F-ATGGGGAACAGAATAGGAGGGAGGA
R-CGAGTATGCCTAGAATGGAAAGAC Wheat [130]

Photoperiod response Phd-H1 2 F-ACGCCTCCCACTACACTG
R-CACTGGTGGTAGCTGAGATT Wheat [131]

Vernalization Vrn-D4 5 F-CATAATGCCAAGCCGGTGAGTAC
R-ATGTCTGCCAATTAGCTAGC Wheat [132]

Semi-dwarf sd1 1 F-CACGCACGGGTTCTTCCAGGTG
R-AGGAGAATAGGAGATGGTTTACC Rice [123]

Wide-compatibility gene S5
n 6 F-CGTCTTGCTTCTTCATTCCC

R-GTAGGTAAACACAGGCAGAG Rice [133]

Photoperiod-thermo-sensitive genic
male (PGMS and TGMS) sterility

pms3
(p/tms12-1) 12 F-GAATGCCATCTAAACACT

R-ATTTTACTCTTGATGGATGGTC Rice [126]

Plant stature tb1 1 F-CACATGAGCCCATGCCTCTC
R-AAAGCGGTAAGTCCATGGGG Maize [134]

Plant height Dwarf8 1 F-ACACTATCACCGCTCTATTG
R-ACTCTTTCCCTGACTTCATT Maize [31]

Photoperiod response Phd-H1 7 F-CCTCTTCGCTATTAC GCCAG
R –GCCCTTCCCAACAGTTGCG Barley [135]

Vernalization requirements VRN-H 1 5 F-TTCATCATGGATCGCCAGTA
R-AAAGCTCCTGCCAACTACGA Barley [127]

Vernalization requirements VFR2 A8 F-CTCGTAGCCCCGAGAACATC
R-ACTCAAGCAACTTACCAAGTGGA Brassica [136]
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Table 1. Cont.

Trait Gene (s) Chromosomal Location Sequence Crop References

Agronomic traits

Leaf hair number BrpHL1 A9 F-TACTCCTCGTTCCCTCTGGG
R-GGGGGAAATGCAGATTCCGA Brassica [128]

Seed development PvMIPSs and
PvMIPSv 1 F-TTGCCACGCACCTGCTAATA

R-CCTGCAGCTGCGATTTTCAA Common bean [137]

Controlling flowering time

MADS-box,
Constants and

Flowering locus
T/Terminal Flower1

16

F-ATGCACCTAGCCCAAGTGAC
R-TGTTTGCATTCATGGCGTGT

&
R-ATCTGTTGTGCCGGGAATGT

F-AACCGAAATGCAAAACAGGTGA

Pea, soybean,
and burclover [138]

Nodulation formation Rj2 and Rfg1 16, 3

F-AAGTCTTAAATTGTGTTTGGATGGA
R-TGAGAATTGTCACCACCGGG

&
F-AAGTCTTAAATTGTGTTTGGATGGA

R-TGAGAATTGTCACCACCGGG

Soybean [139]

Fruit size w2.2 2 F-TCTGCTCAGAAGCATGCACA
R-TTGTGACCTGTACCCCAGGA Tomato [140]

Short lateral branching slb 11 F-CTTGCGCTCCTTGGTATTCC
R-CAAGATCGGCAAGAGACAGC Melon [141]

Sutures on the rind s-2 9 F-GCATCGGAATCTTGTTCGGC
R-TCCGGTGGGAGATACCCAAT Melon [142]

Male sterility ms3 5 F-GGTACTTTGA CCCTCATAATTGG
R-TTGTTTGT GGTGTACG TGCT Capsicum [143]

Alternative respiration DcAOX1 1 F-AAAATAACAATGATGATGACACG
R-CTCCACTTCAGTGATATCCAA Carrot [144]

Curd architecture qCS.C6–1 and
qCS.C6–2 6C F-CGGTACTGGAATGTGGACGT

R-TGAATTGGTATGAACACGCCTC Cauliflower [145]

Early and late flowering BoFLC1.C9 Unmapped F-GGAAAGCAACATGGTGATGA
R-CATGGTGTGAACCAGAGTCC Cabbage [146]

Male sterility CDMs399-3 7C F-TCCCTTTCACATCGTCCACA
R-TGCAGCCCAGAACAGTGATA Cabbage [147]

Sex identification MYB35 5 F-TTGCTTGGCGGATCATATTATG
R-TTGCTTGGCGATGTCCCTTTTG Asparagus [148]



Int. J. Mol. Sci. 2020, 21, 4792 14 of 33

Table 1. Cont.

Trait Gene (s) Chromosomal Location Sequence Crop References

Quality traits

Low molecular weight glutenin Glu-D3 and
Glu-B3 1D F-CAGCTAAACCCATGCAAGC

R-CAATGGAAGTCATCACCTCAA Wheat [149]

Yellow pigment content Psy1 7A F-ACATGCCGCTACTCCTATCC
R-GTAGAGTGGCCAGACAAGGT Wheat [150]

Low molecular weight glutenin Glu-B3 1B F-ACAACAGGTTCAGGGTTCCA
R-GCTATTTGGTGTGGCTGCAA Wheat [151]

Yellow pigment content TaZds-D1 2D F-ACATAGTCCTGACCGCCAAA
R-AGAGTTGCTCCTTCCATGCT Wheat [152]

Lipoxygenase gene Talox-B1 4B F-ATGATACTGGGCGGGCTCGT
R-TCAGATGGAGATGCTGTTGGG Wheat [153]

Fragrance badh2 8 F-AGTTATGGTCTGGCTGGTGC
R-TTGTGTGCTACCCACCCTTC Rice [154]

Fragrance nksbad2 4 F-ATGGCAACATGGAAGGTAGC
R-CATCAGCAAGCTCCAAACAA Rice [155]

Fragrance BADEX7-5 8 F-TTAGGTTCTGAAGCCGGTGC
R-TCCCAGTAAATGCAACCTAACAGA Rice [156]

Low glutenin content Lgc1 10

F-TTCTACAATGAAGGCGATGC
R-CTGGGCTTTAACGGGACT

&
F-ACCGTGTTATGGCAGTTT
R-ATTCAAGGGCTATCGTCT

Rice [157]

Fe and Zn OsNAS3,
OsNRAMP1 7

F-TCCATCGCTTGCTACCTCAC
R-CCCGGAGATCGATCGAGACA

&
F-AGCACTCCCCCATCAATCAA
R-ACTACACGGGTGGCTCTTTG

Rice [158]

Intermediate amylose content Wx-in 6 F-CAGCGTCGACGTAAGCCTAT
R-CAGGCCCCTGAAATCCATGT Rice [159]

Oil content DGAT1-2 6 F-TGGCTCTGCAATCAGGAGAA
R-TGAAGCAGCAAACAACGAGC Maize [160]
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Table 1. Cont.

Trait Gene (s) Chromosomal Location Sequence Crop References

Quality traits

Forage quality for digestibility Bm3 4 F-TTCAACAAGGCGTACGGGAT
R-AGTGGTTCTTCATGCCCTCG Maize [96]

Provitamin A ZmcrtRB3 2 F-GTCGGTACTGGCAAGTGGAA
R-TAGTACGTGGCCATGACGTG Maize [161]

Sweetness sugary1 4 F-TCCCGACTTCAGAACGGTTG
R-ACAACAGAGCAACCCCAACA Maize [162]

Provitamin A crtRB1 and LcyE 10,8

F-CACAGGTCGCTGCGTACTTA
R-GGGAGACAGCTCACAGGAAC

&
F-CAGTGCGCTGAAGGCTACTA

R-GGATGAAAGGGTCGAGCCAA

Maize [163]

Soluble acid invertase SAI-1 4 F-GGATTCCACTTCCAGCCACA
R-CGACGGGGTAGAAGTCGATG Sorghum [164]

Fragrance SbBADH2 4 F-CGCAGTAGTGGAGTGGTTGT
R-ACTGTGGCGGTTCTTGCATA Sorghum [165]

Fragrance allele Gmbadh2-1 and
Gmbadh2-2 5 F-GTGATCTGCGAGGGAGGGAG

R-TGAGTTGCAGGCAGTGTCAT Soybean [166]

White flesh wf 9 F-TTGGAGGTTCAATGCTTGCC
R-CAAAGACCAGAGCACCATCG Melon [167]

Green flesh color gf 8 F-TCTGCAAAATGGTTGCTTTGAA
R-AGGTGGATGTGGCACACAAA Melon [141]

Flavonoids AgFNSI 4 F-ATGGCTCCATCAAC TATAAC
R-CTGCCCTGGCAATCTCCG Celery [168]

Starch content NnHXK and
NnGBSS Unmapped F-TCTAAATCCCAATCCGTCC

R-GCACGAACTCTTGGCAATC Lotus [169]

Pungency Pup1 2 F-CCATGGATTGTTGCTCGGGCCTCC
R-CCGTACCGCCCCATTGCGATTCC Chilli [170]

Anthocyanin biosynthesis VfTTG1 Unmapped F-TATGAATTCATTTTTAGTTCCCACCTAAC
R-GTATCCGGTTGAGGACTCTCATAGATA Faba bean [171]
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Table 1. Cont.

Trait Gene (s) Chromosomal Location Sequence Crop References

Quality traits

β-Carotene & Flesh QA/QC 3 F-AGTGCGGGACAAGATGATCA
R-TCCCGAACATCTGAGCAAGT Sweet potato [172]

Carotenoids b_CHYβ-1 Unmapped F-TCCAGCTTGGGAATTACGTC
R-ACAACGAAGCGTGCCATAG Sweet potato [173]

Biotic stresses

Powdery mildew Pm3 1A F-CAAGTACCAACCACAGCCAC
R-CCATTGCAACCACAGGAACA Wheat [174]

Stem rust resistance Sr45 1D F-GTCCATTTTACGACGGTCCG
R-CTGGTCGGTAGGGAAGCTAG Wheat [175]

Bacterial blight resistance Xa3 11 F-GAATGGGTGGGGTTGGGAAG
R-CCATGCACGCTTGTCGAATC Rice [176]

Bacterial blight resistance xa5 5 F-ACGGAGTTGCAATGTTGCTG
R-GGCCAGGAGTAAAGCGGATT Rice [177]

Bacterial blight resistance xa13 8 F-GGCCATGGCTCAGTGTTTAT
R-GAGCTCCAGATCTCCAAATG Rice [178]

Bacterial blight resistance Xa21 11 F-AGACGCGGAAGGGTGGTTCCCGG
R-AGACCGGTAATCGAAAGATGAAA Rice [179]

Bacterial blight resistance Xa38 4 F-TCTTCTATTGCTAACATTGGTG
R-AGCGTAAGTAAAAGTCTC Rice [180]

Brown plant hopper resistance Bph14 3 F-CAATCCGAGCTTACGTGGTG
R-GGTGGAGAAGGCAAGAGTCT Rice [181]

Blast resistance Pit 1 F-GTGACGGAAGTGCATGGGTA
R-ACCAGGGAACCCGACAAGAA Rice [182]

Blast resistance Pi54 (Pikh) 11 F-CCTCTTGAGTTGAATTGGCACG
R-CCTCGTGCAGCTGTTTTCAC Rice [183]

Blast resistance Pi35 1 F-TCCATGGCGGAGGTGGTGTTGGCTG
R-AGAGCAAATCTTGGGGTGTCTGCAA Rice [184]

Blast Resistance PigmR 6 F-ATGTCGGAGGAAGCAGGTC
R-ATGTCACGCAGCAAAACCAT Rice [185]

Brown plant hopper resistance Bph9 12 F-CACTCGCACGGATACAATGG
R-GATCGTGACACATGCATGCT Rice [186]
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Table 1. Cont.

Trait Gene (s) Chromosomal Location Sequence Crop References

Quality traits

Powdery mildew NBS–LRR class of
resistance genes 2 F-CGTTTTGTATGGCGTCCGAT

R-TTGTCGCTGAGGTCCATCTT Barley [187]

General stress response ERF transcription
factors 1 F-ACAGTGGTGGCAAGTGTGAA

R-ACGGCCTCCTTCTTACTCCT Several crops [188]

Leaf rust resistance Rph7 3H F-TGGAAACCACTGTACAGCCT
R-CAGGCATGGGAGTGAACCTA Barley [189]

Tomato yellow leaf curl virus ACY 6 F-CCTTATGATGTCTCGTGAAAGG
R-GAAGCACAGATTGAAGAAAACC Tomato [190]

Bacterial wilt Bwr-6, Bwr-12 6,12 F-TCAAGGTCCACTACCTTCATCC
R-TCGGTATAGAGGGTACGTTG Tomato [191]

Fusarium wilt frl 9 F-TACGATGACGTCGGT
R-ATGCTACTGCGATGAAAC Tomato [192]

Fusarium wilt Fom 1 7 F-AACGAGAAGGCGGTGGAAAT
R-CGATCTCCTCAAGGGAAGGTG Melon [193]

Leaf scald resistance Rpf Unmapped F-TTGTTGGAACCTTTCGCTGG
R-TAGACCTGTGCTGCCGTAAA Sugarcane [194]

Powdery mildew resistance Pm-2 F 1 F-GCCCAACCTTCAACTCGATA
R-TTGAATCTCATTTTTCTGTTGCAT Melon [195]

Melon necrotic spot virus nsv 4 F-GTTTCTGATACGATGTTGTTTCCCTG
R-GCCGAGATGCAGCAGGATGCTTTGCAC Melon [196]

Zucchini yellow mosaic virus (ZYMV) eIF4E 3 F-TGGACITTYTGGTTYGAYAA
R-GGRTCYTCCCAYTTIGGYTC Watermelon [197]

Powdery mildew Pm 5 F-ATTTTCTTGCTTCAAATGGA
R-ATAAGCAAAAGCATCGAAAG Watermelon [198]

Powdery mildew Pm-s 5 F-CCCTATGCGTGAAAGCCACT
R-CGCCTCAAACCCATACCCAA Cucumber [199]

Cauliflower mosaic virus (CMV) cmv6.1 6 F-ACAAAGCTTCTCCGCAAATG
R-GGAGGGAAAGGAAGGAGAGA Cucumber [200]

Bacterial wilt-resistance S401 6 F–G ACTGCGTACCAATTCAGTT
R-GATGAGTCCTGAGTAACACGATG Eggplant [201]
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Table 1. Cont.

Trait Gene (s) Chromosomal Location Sequence Crop References

Quality traits

Powdery mildew resistance InDel 1 1 F-AACTTGGTAGCAATTTTATTGGGT
R-TGGAGACAATGTGCATAAGTCTCT Capsicum [202]

Bacterial leaf spot resistance Xcvr 2 F-TATCAAACGTAAAGTTGGAGCTTGT
R-CCAAACACCTTGTGCATTGCT Lettuce [203]

Turnip mosaic virus resistance retr02 4A F-GGAGAAGACAAACAAACCCCC
R-A TACCTTCGACACCGTCCAAGACTT Turnip [204]

Powdery mildew resistance er1-7 6 F-CGACACCGTATTCAAGCAGG
R-TGTTGCCCTGTTTGATCGTT Pea [205]

Mungbean Yellow Mosaic Virus YR4 Unmapped F-ACAAACATGGGCTGGAACAC
R-GTGCCTGTAACTGCTCACAC Mung bean [206]

Resistance to weevils VrPDF1 Unmapped F-CCAAGCTTGGTTAACAGTTTCTAGTGCACC
R-GCGTCGACGATGGAGAAGAAATCACTGGCC Mung bean [207]

Abiotic stresses

Dehydration tolerance TaMYB2 Unmapped F-GAGGCCAGCTAGCAGCTGCC
R-ATTGCCGGACGCGCAAGAGG Wheat [208]

Drought stress tolerance TaAQP Unmapped F-ACATCAATTTTACCGTGCTTTG
R-CAATCAATCTGCCGACTGTG Wheat [209]

Drought stress tolerance DREB1 3D F-GAATGGATCCCGGAAAGCAC
R-GGGAATGAACCAAGCCACAG Wheat [210]

Salt tolerance TtASR1 Unmapped F-ACCCCTACTTCTACATGCCG
R-ATGATGGAGCTGTGGGACG Wheat [211]

Submergence tolerance SubA1 9 F-CTAGTTGGGCATACGATGGC
R-ACGCTTATATGTTACGTCAAC Rice [212]

Tolerance to phosphorus (P) deficiency Pup 1 12 F-CTGGACTTGACCCCAATGTA
R-TCTGATGGAGTGTTCGGAGT Rice [213]

Drought stress tolerance OsSAPK2 5 F-AAGGACATAGGGTCGGGGAA
R-TGGCCAAATGTGTGGGAGTT Rice [214]
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Table 1. Cont.

Trait Gene (s) Chromosomal Location Sequence Crop References

Quality traits

Drought tolerance MYBE1 5 F-GGTACCCTGTCAAGGTTCGG
R-AATTACTGGCCCCAGGTTCG Maize [215]

Photoperiod response Phd-H1 2H F-GTTGAGATCGACAGTCCCCA
R-GGGCTCCTATCTCCAACTCC Barley [135]

Aluminum stress tolerance SbMATE 4 F-TAAGGCGCAATCATCATGGC
R-CAACAAGATTCTGGAGCCGG Sorghum [216]

Drought and salt stress tolerance CPRD12 11 F-AAAGCATGCCCTAGTGGGAC
R-ATGTCGGAAGCTACGGTTTCT Cowpea [217]

Dehydration response SiDREB2 Unmapped F-CAACGGACTTGGGGCAAATG
R-ATCGTTCGCTTCTGCCTTCA Foxtail [218]

Salinity tolerance Salt index_QTL 1 Unmapped F-TGTACACTGTGTTTCTGTTGGT
R-GTATTCGATCGTCCCTCCCG Field pea [219]
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6.2. FM for Quality Traits

Quality traits are important for a variety of reasons, such as to meet consumer preferences.
FMs have been successfully applied in MAS to improve the food quality of crops [72]. A wheat FM,
YP7A, was developed for the Psy1 gene, which is involved with yellow grain pigment [128]. Similarly,
an FM has been developed for TaZds-D1, which is also responsible for increased yellow pigmentation in
wheat [152]. Gluten proteins determine bread-making quality of wheat. An SNP-based FM for Glu-B3
encoding low molecular weight gluten protein has been developed for improving the quality of wheat
products [151].

In rice, particularly basmati, aroma is one of the most important components for determining the
price in the world market. Basmati, the aromatic rice praised for its unique quality, is a connoisseur’s
delight, which has a pleasant aroma and is nature’s gift. A set of FMs linked to a recessive badh2 gene
responsible for 1-acetyl-2-pyrroline (AP) production has been identified and exploited for screening
rice germplasm for fragrance [154]. Grain length and grain breadth also determine the grain qualities
of rice. Long grain length adds an aesthetic value in rice for appearance and fetches a higher price
in the world market. For grain length in rice, an SNP-based FM has been developed for gene GS3
encoding trans-membrane protein for use in rice breeding. The GS3 gene governs grain elongation
after cooking longitudinally, an important trait affecting the physical appearance of the rice grains [220].
In rice, intermediate amylose content is preferred by the consumers, and an FM has been developed
for gene Wx-in encoding moderate amylose content for screening of rice germplasm [159]. Similarly,
in sorghum, an InDel based FM has been developed for the SbBADH2 gene responsible for fragrance.
This FM has been used in identification of sorghum genotypes possessing high fragrance, which can
be further used in sorghum breeding [165].

Maize is an important cereal crop of the world, which is used as both food and feed crop.
The quality improvement in maize is important to enhance the nutritional values for humans and
animals. To increase the nutritional values of maize, plant breeders are successfully exploiting the
modern molecular techniques for screening the genotypes and their use in breeding. In this context,
SNP-based FMs for ZmcrtRB3, which encodes a carotenoid hydroxylase, have been developed in
maize [161]. This gene affects a-carotene content in maize and is successfully transferred to other maize
varieties to enhance the pro-vitamin A content. Similarly, FMs have been developed for crtRB1 and LcyE
encoding pro-vitamin A content in maize [163]. Sweetness is an important quality trait in maize and
is encoded by the sugary1 gene. For successful screening and transfer of this trait, an FM has been
developed [162]. Maize oil is a desirable best vegetable oil because of its high smoking point while
frying. A gene DGAT1-2 has been identified for governing oleic acid quantity and oil content in maize.
An FM has been developed for this candidate gene to screen maize germplasm [160].

In soybean, an FM for Gmbadh2-1 and Gmbadh2-2 genes, which are responsible for fragrance
production, has been developed [166].

Celery is an important vegetable crop, which is rich in minerals and vitamins such as A, C, K,
potassium, folate, and flavonoids. In celery, high flavonoid content is encoded by AgFNSI, and an FM
has been developed for screening germplasm for this trait to be used in breeding [168].

6.3. FMs for Biotic Stress Resistance

Crop yield losses are caused by various pests, including diseases and insects. Several disease
resistance genes have been identified and transferred into elite cultivars with the help of FMs (Table 1).
Wheat diseases include leaf rust, yellow rust, brown rust, and powdery mildew. FMs for disease
resistance genes have been developed for pyramiding of different resistance genes into various wheat
varieties [221]. In wheat, FMs for resistance to leaf rust, yellow rust, and powdery mildew, such as
Lr 34, Yr 18, and Pm 38, have been developed and used for pyramiding into elite wheat varieties for
durable resistance to these diseases [174,222]. Similarly, an FM has been developed for gene Sr45
encoding wheat stem rust resistance to be used in MABB [175].
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Rice crop yield may be decreased by various diseases and insect pests such as bacterial leaf
blight, blast, brown spot, and brown hopper. With the accessibility of complete genome sequences
of rice subspecies indica and japonica, a number of FMs, such as Xa3, xa5, xa13, Xa21, and Xa38,
have been developed for bacterial leaf blight [103,176–179]. Similarly, FMs have been developed
for blast resistance genes such as Pit, Pi54 (Pikh), Pi35, and PigmR [182–185]. These FMs have
been used in MABB for foreground selection of various resistance genes for development of rice
cultivars such as “Samba Mahsuri” [178,223], “Improved Pusa Basmati 1” [224], “Pusa 1121” [180],
“Improved Tapaswini” [225], and “Ranbir Basmati” [125].

In tomato, an FM for ACY, a gene that confers tomato yellow leaf curl virus resistance was
developed and used to produce leaf curl virus resistance tomato cultivars [190]. FMs for bacterial wilt
and fusarium wilt have been developed in tomato to be used in breeding [191].

In watermelon, FMs have been developed for Zucchini Yellow Mosaic Virus (ZYMV) resistance
gene eIF4E (197) and powdery mildew resistance gene Pm [198]. Similarly, an FM for controlling
Cauliflower Mosaic Virus (CaMV) resistance has been developed for the cmv6.1 gene in cucumber [200].
Oumouloud et al. [193] developed an FM for the Fom 1 gene responsible for controlling fusarium
disease in melon. An FM has been developed for Rpf gene encoding leaf scald resistance in sugarcane,
which can be used for development of sugarcane varieties resistance to this disease [194].

6.4. FMs for Abiotic Stress Tolerance

Abiotic stress is one of the major unpredictable and uncontrolled factors in crop production.
Abiotic stress resistance is a complex trait controlled by polygenes and depends upon the time and
the severity of the stress components. All these unprecedentedly and uncontrolled factors of abiotic
stress make it difficult to characterize and develop FMs for abiotic stresses. Very few FMs have been
developed for abiotic stresses compared to biotic stresses; however, one goal is to discover functional
variations linked to the abiotic stress traits (Table 1). In wheat, an SNP linked with the dehydration
tolerance has been identified in the TaMYB2 transcription factor gene; an allele-specific FM has been
developed for use in MABB [208]. Similarly, two SNPs were identified in the DREB1 gene in wheat,
and an allele-specific FM has been developed [210]. Pandey et al. [209] developed SNP-based FMs
for the TaAQP gene encoding drought tolerance, which was validated in wheat varieties. Similarly,
an FM for the TtASR1 gene encoding salt tolerance in wheat has been developed, which should be
helpful to screen wheat germplasm for salt tolerance [211].

In rice, the phosphate (P) uptake 1 (Pup1) gene confers P-deficiency stress tolerance in field-grown
rice. A Pup1 gene-specific SNP, indel-, and CAPS-based FMs have been developed to transfer this trait
in P-deficiency-susceptible varieties through MAS [213]. Most areas of Asian countries are flooded
during rice growing period in rainy seasons, and a tolerance gene Submergence-A1 (SubA1) for flooding
has been identified. An FM for the SubA1 gene has been developed and successfully used to transfer
flooding tolerance in the “Swarna” variety of rice [212].

In foxtail millet, an SNP-based FM has been developed for the SiDREB2 gene, which is responsible
for a dehydration response [218].

Similarly, an FM for the SbMATE gene, which confers aluminum stress tolerance in sorghum,
has been developed [216]. The SbMATE FM helps in the screening of sorghum germplasm for aluminum
stress tolerance, which can be used in breeding.

In cowpea, an FM for CPRD12 gene conferring drought and salt tolerance has been developed [217].

7. Future Prospects and Conclusions

FM development for row crops has been implemented in plant breeding, but there has been meager
FM research in horticultural and forage crops. Since FMs are derived chiefly from coding DNA within
genes, these markers hold prospects for directly selecting a phenotypic trait. FMs also may be feasible
for interspecies transferability and can be used in those species for which limited genomic resources
are available. For successful implementation of precision breeding, the integration of advanced
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genomic tools with conventional plant breeding methods is essential. Moreover, development of
cost-effective FMs is important for the efficient execution of precision breeding in crops. FMs can be
effectively used in screening of germplasm, diversity analysis, QTL mapping, gene identification and
isolation, and phylogenetic studies. In these studies, the use of FMs increases the accuracy and the
efficiency of plant breeding for cultivar development with desired traits. In the future, allele-specific
development of FMs for newly identified genes is essential for enabling efficient direct selection.
Moreover, modern genomic and breeding approaches such as GWAS and GS have not been fully
exploited for crop improvement but can be increasingly deployed in both model and non-model crop
species with the availability of these NGS-based markers. In spite of available genomic resources,
more work is needed to identify and develop FMs and to implement them in MAS for food security
and sustainability goals. FMs may be used in the future for new plant breeding techniques using
biotechnology in precision breeding.

In the future, we expect that new plant breeding techniques (NPBTs) using gene editing,
cisgenesis, and epigenetic approaches will play an increasingly greater role in variety development.
They can potentially confer traits that may be difficult via traditional breeding. Some examples include
stress tolerance, shelf life, color, yield, and nutritional content. The results of conventional plant
breeding are sometimes difficult to predict and require several years to fix traits in varieties. NPBTs may
allow the breeders to develop improved varieties more precisely and more quickly. We expect that
FMs can also come into play as NPBTs hit their stride to allow for efficient introgression of novel traits.
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