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An interneuron progenitor 
maintains neurogenic potential 
in vivo and differentiates into 
GABAergic interneurons after 
transplantation in the postnatal rat 
brain
Qi Wang1,*, Peiwei Hong2,*, Hui Gao2, Yuntian Chen3, Qi Yang1, Mei Jiang1 & Hedong Li1

Dysfunction of cortical GABAergic interneurons are involved in numerous neurological disorders 
including epilepsy, schizophrenia and autism; and replenishment of these cells by transplantation 
strategy has proven to be a feasible and effective method to help revert the symptoms in several animal 
models. To develop methodology of generating transplantable GABAergic interneurons for therapy, 
we previously reported the isolation of a v-myc-induced GABAergic interneuron progenitor clone GE6 
from embryonic ganglionic eminence (GE). These cells can proliferate and form functional inhibitory 
synapses in culture. Here, we tested their differentiation behavior in vivo by transplanting them into 
the postnatal rat forebrain. We found that GE6 cells migrate extensively in the neonatal forebrain and 
differentiate into both neurons and glia, but preferentially into neurons when compared with a sister 
progenitor clone CTX8. The neurogenic potential of GE6 cells is also maintained after transplantation 
into a non-permissive environment such as adult cortex or when treated with inflammatory cytokine 
in culture. The GE6-derived neurons were able to mature in vivo as GABAergic interneurons expressing 
GABAergic, not glutamatergic, presynaptic puncta. Finally, we propose that v-myc-induced human 
interneuron progenitor clones could be an alternative cell source of transplantable GABAergic 
interneurons for treating related neurological diseases in future clinic.

GABAergic cortical interneurons serve as the major inhibitory neurons that form appropriate connections with 
excitatory projection neurons in the complex and highly ordered neuronal circuitry of the mammalian cerebral 
cortex1,2. Unlike locally produced projection neurons, GABAergic interneurons have to migrate a long distance 
to the cortex from their birth place, ganglionic eminences (GE) of the ventral telecephalon, during embryonic 
stages3,4. In the cerebral cortex, GABAergic interneurons help modulate firing patterns of projection neurons 
through forming inhibitory synapses onto different parts of the cellular regions in order to maintain balance of 
inhibition and excitation in the cortical neuronal circuitry5,6. Dysfunction of GABAergic interneurons in disrupt-
ing this balance due to either genetic mutations or injury is thought to involve in a panel of neurological disorders 
including epilepsy, schizophrenia and autism7,8.

The therapeutic potential of GABAergic interneurons in treating these diseases has been highly recognized 
recently since numerous groups demonstrated successful cases by transplantation of medial GE (MGE)-derived 
interneuron precursors9,10. A notable characteristic of these cells is their ability to migrate in the neonatal and 
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adult brain expanding their potential in affecting a wide area of diseased brain. This migratory capacity is thought 
to be intrinsically determined and related to the native developmental profile of these cells during embryonic 
stages11. GABAergic interneuron transplantation has been shown to benefit in animal’s behaviors in numerous 
disease models including epilepsy12–14, schizophrenia15, Parkinson’s16 and spinal cord injury17. In most cases, 
functional GABAergic interneuron integration seems to be required to facilitate recovery, although other mecha-
nisms such as increase in cortical plasticity by these transplanted cells are also proposed18.

Given the rapid advance in transplantation of GABAergic interneuron precursor for treating neurological 
diseases in animal models, renewable sources of such GABAergic interneurons are in high demand. Primary 
MGE-derived cells are unlike to be a feasible source in a future clinical setting. Derivation of GABAergic 
interneuron from ESCs or iPSC by genetic19 and culturing induction20–24 has been attempted but the results are 
not satisfactory and efficiency is low21. In addition, functional improvement by transplantation of these derived 
interneurons does not always meet expectation25–27. Therefore, alternative sources of these cells are clearly needed. 
Generation of neural stem cell (NSC) clones by Myc-transduction has been developed decades ago, and therapeu-
tical potentials of these clones have been extensively demonstrated28,29.

Our previous report has demonstrated that GE6 cells proliferate rapidly in culture in the presence of FGF2 
and differentiate into primarily neurons with little astroglia upon FGF2 withdrawal30. In the current study, we 
aim to determine if this distinct neurogenic potential of GE6 still holds after transplantation into the postnatal 
brain. Furthermore, we explore to optimize the pretreatment of GE6 cells before transplantation in order to 
facilitate future transplantation of similar human cells in a clinical setting. We found that transplanted GE6 cells 
exhibit robust migratory property, like their in vivo counterpart, and that these cells show some differentiation 
plasticity, but still maintain higher neurogenic potential when compared with transplanted CTX8 multipotential 
NSC clone. In addition, a simple predifferentiation treatment of GE6 helps improve survival of grafted rats and 
differentiation of GE6 cells in the postnatal cerebral cortex.

Results
Transplanted GE6 cells show robust migratory property and morphological differentiation in 
different regions of the postnatal forebrain. We previously reported a panel of neural progenitor clones 
derived from an E14.5 GFP rat forebrain using v-myc transduction30. Among them, one such clone GE6, iso-
lated from the GE region, displays properties of GABAergic interneuron progenitor preferentially giving rise to 
interneurons with the capacity of forming functional synaptic connections with primary hippocampal neurons 
and themselves in culture30. To evaluate the capability of GE6 cells to replenish interneurons, we transplanted 
them into the neonatal rat forebrain to examine their behavior in vivo by a protocol modified from a previous 
report31. A single point injection of 10,000 cells was made unilaterally aiming for one side of the subventricular 
zone (SVZ) of the P1-P3 rat pups. Like their in vivo counterpart (the MGE cells), GE6 cells dispersed nicely from 
the injection site and migrated into cortex (Ctx), corpus callosum (Cc) and hippocampus (Hip) at 7 days after 
transplantation (DAT) (Fig. 1A). Many GE6 cells with the migratory morphology, i.e. a tear drop-shaped cell 
body and a leading process, were observed in the Ctx at 7 DAT (Fig. 1B, insert). At 30 DAT, more GE6 cells were 
found to migrate out of the injection site and into the forebrain regions, and some cells were even found on the 
contralateral side of the brain, likely migrated through the Cc (Fig. 1A). Higher magnification images revealed 
characteristic morphologies of GE6 cells in different regions of the forebrain. For example, GE6 cells with a mixed 
morphology in the Ctx suggest their differentiation into distinct cell types (Fig. 1C). GE6 cells in the Cc exhibit a 
long bipolar morphology suggesting their differentiation into the oligodendrocyte lineage (Fig. 1D, arrow), while 
some GE6 cells in the dentate gyrus (Dg) of the Hip take on the morphology of putative granule neurons, a small 
cell body with long and highly branched processes (Fig. 1E, arrow). Therefore, our analysis by GFP microscopy 
indicates that GE6 cells maintain their native migratory property and disperse nicely in the postnatal forebrain 
upon transplantation, and that, morphologically, these cells differentiate into region-specific cell types.

Transplanted GE6 cells respond to local cues and differentiate into distinct cell types in the 
postnatal forebrain. Next, we examined further the differentiation of GE6 cells in different forebrain 
regions by immunostaining. In the Ctx, many GE6 cells were found to express the proliferation marker Ki67 
indicating they were actively proliferating, and these cells usually had simple cellular morphology (Fig. 2A). Some 
cells also expressed astrocytic marker GFAP, while others express oligodendrocyte lineage markers Olig2 and 
APC. Neuronal differentiation of GE6 cells was also observed by their expression of Doublecortin (DCX) (young 
neurons) and NeuN (mature neurons) (Fig. 2A). Thus, transplanted GE6 cells differentiated into major neural 
cell types of the central nervous system (CNS) while maintaining a portion as dividing progenitors. However, in 
the Cc, consistent with their elongated cell morphology (Fig. 1D), many GE6 cells were found to express Ki67, 
Olig2 and APC indicating a predominant differentiation process towards oligodendrocytes, but not astrocytes 
(GFAP+) (Fig. 2B). Very rarely were DCX+ or NeuN+ neuronal GE6 cells found in this region (data not shown). 
Similar to the Ctx, the Hip contained GE6 cells that were differentiated into distinct cell types including astrocytes 
(GFAP+) and neurons (DCX+ and NeuN+), in addition to undifferentiated progenitors (Ki67+) and radial glia 
(BLBP+) (Fig. 2C). Some transplanted GE6 cells were also observed in the SVZ where they mostly expressed Ki67 
and DCX suggesting their involvement in adult neurogenesis, while very few of these cells expressed GFAP and 
Olig2 in this region (Fig. 2D). Together, these results indicate that GE6 cells retain some differentiation plasticity, 
giving rise to distinct cell types in a region-specific manner.

GE6 cells maintain their intrinsic neurogenic potential upon transplantation into the neona-
tal cerebral cortex. We previously reported that neural progenitor clone GE6 differentiates into primar-
ily interneurons and few astroglia in culture, while a sister clone CTX8 differentiates into both neurons and 
astroglia30. Based on these observations, we proposed that the cell fate of GE6 cells is intrinsically determined 
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or biased by their expression of a unique combination of transcription factors including DLXs so that the envi-
ronmental cues may play little roles in directing differentiation of these cells. Thus, transplantation of GE6 cells 
to replenish interneurons may be advantageous in disease or injury models where local environments are usually 
non-permissive for neuronal differentiation. To determine if the intrinsic neurogenic potential of GE6 holds true 
in vivo, at a first step, we transplanted GE6 cells into the neonatal forebrain and compared differentiation of these 
cells with that of the multipotential progenitor clone CTX8 in the Ctx where permissive cues exist (Figs 1C, 2A). 
We found that about 50% of transplanted GE6 cells in the Ctx were still proliferating progenitors (Ki67+) at 30 
DAT while this percentage was less than 5% for CTX8 (Fig. 3A). This remarkable difference in cell proliferation 
between these two sister progenitor clones may represent their intrinsically distinct nature and correlate with 
the higher v-myc expression in GE6 comparing to CTX830. For neuronal differentiation, the two clones showed 
a similar percentage of DCX+ cells among transplanted cells, but GE6 displayed a significant higher percentage 
of NeuN+ cells than CTX8, which had essentially none (Fig. 3A). The percentages of cells expressing astroglial 
marker GFAP and oligodendrocyte marker Olig2 showed no difference, whereas the mature oligodendrocyte 
marker APC was higher in percentage in CTX8 than in GE6. A closer examination revealed that most Olig2+ GE6 
cells also expressed Ki67 (Fig. 3B, arrows) but Olig2+ CTX8 cells did not (Fig. 3B, arrowhead). This suggests that 
Olig2+ GE6 cells in the Ctx represent mostly undifferentiated cells; whereas Olig2+ CTX8 cells are in fact oligo-
dendrocyte lineage cells including precursors and APC+ mature oligodendrocytes. To compare the differentiation 
potential of GE6 and CTX8 directly, we first confirmed that Ki67 did not co-localize with cell type markers DCX, 
APC, GFAP (Fig. 3C) and NeuN (data not shown), and then examined only differentiated cells by comparing the 
ratio of neuronal (DCX +  NeuN) vs. glial (APC +  GFAP) differentiation between GE6 and CTX8. Clearly, this 
ratio of differentiation is significantly, and 3-fold, higher for GE6 than CTX8 (Fig. 3D), indicating a preferential 
neurogenic potential of GE6 cells when transplanted into the Ctx of the neonatal forebrain. Therefore, these 
results suggest that the intrinsic neurogenic potential of GE6 cells is maintained in a relatively permissive in vivo 
environment.

GE6 cells maintain their intrinsic neurogenic potential upon transplantation into the adult cer-
ebral cortex. To challenge the neurogenic potential of GE6 in a non-permissive condition, we transplanted 
these cells into the adult rat brain where neurogenesis is mostly completed. We compared differentiation of GE6 
cells in the adult cortex with that of CTX8 at 15 DAT, and found that while more than 60% of transplanted 
GE6 cells remained as proliferating progenitors (Ki67+), a significant proportion of these cells took on neuronal 

Figure 1. Migration and morphological differentiation of GE6 cells following transplantation into the 
neonatal rat forebrain. (A) Stacked images of inverted GFP signal showing distributions of GE6 cells at 7 
and 30 days after transplantation (DAT) into the neonatal rat forebrain. The asterisk indicates the putative 
cell injection site in the 7-DAT forebrain. (B) Enlarged image of the boxed region in the 7-DAT forebrain in 
(A). The insert shows a typical migratory morphology of transplanted GE6 cells in the Ctx. Differentiated cell 
morphologies of transplanted GE6 cells are shown in the Ctx (C), Cc (D) and Hip (E) of the 30-DAT forebrain. 
Typical region-specific morphologies are indicated by arrows in (D) and (E). Ctx, cortex; Cc, corpus callosum; 
Hip, hippocampus; Dg, dentate gyrus. Scale bar, 500 μ m in (A), 200 μ m in (B), 100 μ m in (C–E).
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phenotype by expressing DCX (Fig. 4A,B). In contrast, transplanted CTX8 cells showed almost none of Ki67+ 
or DCX+ cells, but a significantly higher percentage of GFAP+ astrocytes than GE6, which has none. Similar to 
our observation in the neonatal transplantation, we confirmed that Olig2+ transplanted cells in the adult Ctx 
represented mostly Ki67+ proliferating cells in GE6 but oligodendrocyte lineage cells in CTX8 (data not shown). 
In addition, a similar ratio of neuronal vs. astroglial cells was calculated and, again, revealed a drastic neurogenic 
preference of differentiation for GE6 cells (Fig. 4C). Of note, this 15-day transplantation is insufficient for cell type 
maturation as we did not observe any mature neurons (NeuN+) or oligodendrocytes (APC+), and yet it allowed 
examination on cell fate determination of transplanted cells and initiation of their differentiation process. Thus, 
these results showed that GE6 cells maintained their neurogenic potential when transplanted into the adult cer-
ebral cortex.

GE6 cells maintain their intrinsic neurogenic potential when treated with inflammatory 
cytokine leukemia inhibitory factor (LIF) in culture. To further challenge the neurogenic potential of 
GE6 cells in an injury-like environment, we wanted to test the differentiation of GE6 progenitor cells in lipopoly-
saccharide (LPS)-induced in vitro injury model as we previously described32. After treatment of LPS (100 ng/ml)  
for 2 or 4 days in culture, we first examined the gene expression of inflammatory factors such as IL-2, IL-6, LIF, 
TNF-alpha, and INF-gamma by quantitative reverse transcriptase PCR (qRT-PCR). To our surprise, we did not 
observe a significant difference in the expression level of any of these inflammatory factor genes in either GE6 
or CTX8 cultures (data not shown). This result is in great contrast to what we have observed in LPS-treated 
primary mouse astrocyte cultures32 and suggests that these neural progenitors are insensitive to LPS treatment. 
LPS-induced response is mainly mediated by microglia and reactive astrocytes33; and the lack of responsiveness 
to LPS in neural progenitor cells is probably due to the absence of inflammatory factor producers in their cultures. 
We then directly applied LIF (50 ng/ml), one of the major inflammatory cytokines induced by LPS32, to neural 
progenitor cultures and examined their differentiation by qRT-PCR. During the time-course differentiation, LIF 
treatment did not inhibit the expression of neuronal gene Tubb3 in GE6 (Fig. 5A). Although the expression of 
DCX, a marker of young neurons, was somewhat decreased upon LIF treatment in GE6 at day 4, the expressions 
of these two neuronal genes were much higher in GE6 than in CTX8 in general (Fig. 5A). We also examined the 
expression of GABAergic interneuron markers GAD1 and GAD2. Similar result was observed that LIF treatment 
moderately reduced their expressions in GE6 cells at day 4, but their expressions in GE6 were still much higher 
than those in CTX8, which were essentially none (Fig. 5A). DLX transcription factors play critical roles in the 
development of GABAergic interneurons34. We found that LIF treatment had a moderate effect on the expression 
of these genes during GE6 differentiation, but again GE6 cells had substantially higher DLX expression (especially 

Figure 2. Immunological characterization of GE6 cell differentiation in different regions of the forebrain 
at 30 DAT following transplantation into the neonatal rat forebrain. Immunostainings with cell type-specific 
markers show differentiation of transplanted GE6 cells in the Ctx (A), Cc (B), Hip (C) and SVZ (D) of the 
forebrain at 30 DAT. GE6 cells are indicated by GFP signal. Arrows indicates double-positive cells. Ctx, cortex; 
Cc, corpus callosum; Hip, hippocampus; SVZ, sub-ventricular zone. Scale bar, 20 μ m.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:19003 | DOI: 10.1038/srep19003

DLX1, DLX5, and DLX6) than CTX8 cells even in the presence of LIF (Fig. 5B). These results suggest that persis-
tent DLX expression of GE6 cells in an injury-like environment (LIF-treatment) intrinsically instructs these cells 
to take on interneuronal cell fate upon differentiation. On the other hand, astrocytic cell fate was slightly pro-
moted by LIF during GE6 differentiation suggesting some plasticity of these cells in differentiation potential that 
can be affected by environmental cues. In great contrast, LIF induced dramatic astrocytic differentiation in CTX8 
as indicated by a huge increase in GFAP expression level (Fig. 5C). This result is in agreement with the observa-
tion that multipotent neural stem cells mostly differentiate into astrocyte lineage after transplantation into adult 
or injured CNS35. In sum, this gene expression analysis indicates that intrinsic neurogenic potential of GE6 cells, 
probably governed by persistent expression of key transcription factors such as DLXs, can be maintained even in 
an injury-like condition, while multipotent neural progenitor CTX8 is more easily affected by environmental cues 
and mostly differentiates into astrocytes when stimulated by injury-released, glia-inducing cytokines.

Predifferentiation of GE6 cells before transplantation improves survival of grafted rats and 
shows increased overall differentiation in the postnatal cerebral cortex. Relative to CTX8, much 
higher percentage of Ki67+ cells in transplanted GE6 even at 30 DAT in the Ctx may help explain a more fre-
quent occurrence of cell mass formation in GE6-transplanted rats. This cell mass formation could be lethal as we 
observed that the survival rate of GE6-grafted rats was below 60% at 30 DAT and down to 15% at 60 DAT, while 
essentially no death was seen in CTX8-grafted rats within 60 DAT (Fig. 6A). The cell masses contained mostly 
Ki67+ and cleaved caspase-3+ cells with a small number of DCX+ neurons indicating that proliferation and cell 
death seem to occur simultaneously (data not shown). In addition, cell masses were often found to form near 
the SVZ where one of the neural stem cell niches has been described36,37, and their sizes and speed of formation 
seemed to correlate with the number of GE6 cells transplanted (unpublished observations). To increase the sur-
vival rate of GE6-transplanted rats, we adopted a predifferentiation protocol that has been shown to speed up the 
process of functional maturation and synaptic formation of GE6 cells in culture30. Indeed, this predifferentiation 

Figure 3. Preferential neurogenic potential of GE6 cells in the Ctx at 30 DAT following transplantation 
into the neonatal rat forebrain. (A) Comparison of cell type marker-positive cells between transplanted GE6 
and CTX8 cells in the Ctx. (n =  3 for both GE6 and CTX8). (B) Co-immunosatinings showing that, while most 
Olig2+ CTX8 cells are Ki67− (arrowheads), many Olig2+ GE6 cells are also Ki67+ (arrows) in the Ctx.  
(C) Co-immunostainings showing a non-overlapping expression of Ki67 and cell type-specific markers among 
transplanted GE6 cells in the Ctx. Arrows indicate cell type marker-positive GE6 cells, while arrowheads 
indicate Ki67+ GE6 cells. (D) Comparison of differentiation potential to neuronal vs. glial cell types between 
transplanted GE6 and CTX8 cells in the Ctx. Scale bar, 20 μ m. *P <  0.05; **P <  0.01 by Student’s t-test.
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protocol of GE6 before transplantation helped improve survival rate of grafted rats up to 70% at 60 DAT allowing 
observation of neuronal maturation of transplanted GE6 cells in vivo (Fig. 6A). We characterized the prediffer-
entiated GE6 cultures and found that proliferating cells (Ki67+ and Olig2+) were reduced to 30-40%, and that 
neuronal differentiation had already occurred shown by DCX+ and TuJ1+ neurons as well as glial differentiation 
shown by O4 and GFAP immunoreactivity (Fig. 6B). Consistently, the predifferentiation significantly reduced 
percentage of Ki67+ GE6 cells as well as Olig2+ cells in the Ctx at 30 DAT (Fig. 6C). Although the percentage of 
DCX+ young neurons were also reduced, the percentage of NeuN+ mature neurons were increased more than 
3-fold suggesting an improved neuronal maturation of transplanted GE6 cells in vivo by the predifferentiation. 
Surprisingly, percentages of glial marker (APC and GFAP)-positive cells were also significantly increased suggest-
ing that the predifferentiation protocol did not bias neuronal differentiation at the expanse of glial differentiation 
(Fig. 6C). Taken together, the 3-day predifferentiation protocol help improve the survival rate of GE6-grafted rats 
probably by reducing cell proliferation and promoting overall differentiation of these cells before transplantation.

Morphological and biochemical maturation of transplanted GE6 cells as GABAergic interneu-
rons in the postnatal forebrain. Increased animal survival by transplantation of predifferentiated GE6 
cells allowed us examine neuronal maturation of this v-Myc transduced neural progenitor clone in vivo. In the 
cerebral cortex of 60-DAT animals, GFP+ GE6 cells with complex neuronal morphology are more often seen than 
in 30-DAT animals. These cells typically have enhanced dendritic processes with spine-like structures suggesting 
their synapse formation in the local circuitry (Fig. 7A). Staining with pre-synaptic markers shows that VGAT+ 
puncta can be observed around the cell body and dendrites, but Vglut1+ puncta are rarely seen to co-localize with 
GFP (Fig. 7B). In addition, unlike Tbr1+ cortical projection neurons, GE6-derived neurons usually have a smaller 
cell body and no axon, which resembles cortical GABAergic interneurons (Fig. 7C). Among the GE6 cells with 
complex neuronal morphology, more than half are NeuN+ and GABA+, few are GFAP+. These cells do not show 

Figure 4. Preferential neurogenic potential of GE6 cells in the Ctx at 15 DAT following transplantation 
into the adult rat forebrain. (A) Immunological characterization of transplanted GE6 and CTX8 cells 
(indicated by GFP signal) in the Ctx. Arrows indicate double-positive cells. (B) Comparison of cell type 
marker-positive cells between transplanted GE6 and CTX8 cells in the Ctx (n =  3 for both GE6 and CTX8). 
(C) Comparison of differentiation potential to neuronal vs. astroglial cell types between transplanted GE6 and 
CTX8 cells in the Ctx. Scale bar, 20 μ m. *P <  0.05; **P <  0.01 by Student’s t-test.
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Figure 5. Gene expression analysis of neural progenitor clones (GE6 and CTX8) during differentiation in 
culture upon LIF treatment. Neural progenitor clones (GE6 and CTX8) were allowed to differentiate in culture 
by FGF2 withdrawal (-FGF2). These cells were then treated with inflammatory cytokine LIF (50 ng/ml) for 2 
or 4 days upon differentiation; and gene expression was analyzed by qRT-PCR. (A) Neuronal and GABAergic 
interneuronal genes; (B) DLX transcription factors; (C) Astrocyte marker gene GFAP. The individual value 
represents the average of three replicates with a standard deviation.

Figure 6. Transplantation of predifferentiated GE6 cells into the neonatal rat forebrain enhances their 
overall differentiation in the Ctx at 30 DAT and improves survival of transplanted rats. (A) Survival analysis 
of rats transplanted with CTX8, GE6 and predifferentiated GE6 (GE6 prediff). (B) Quantification of cell type-
specific marker expression in GE6 cells after predifferentiation for 3 days in vitro. (C) Comparison of cell type 
marker-positive cells between GE6 and GE6 prediff upon transplantation in the Ctx at 30 DAT (n =  3 for both 
GE6 and GE6 prediff). *P <  0.05; **P <  0.01 by Student’s t-test.
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proliferation marker expression, and show no colocalizaion with projection neuron marker Tbr1 (Fig. 7C). These 
data indicate that, upon transplantation into the postnatal cerebral cortex, GE6 cells mainly acquire GABAergic 
interneuron phenotype and integrate into the host cortical tissue. Previously, we showed GE6 cells give rise to 
GABAergic interneuron subtypes in culture after 6-day differentiation30. Neuropeptide Y (NPY), Somatostatin 
(SST) and Parvalbumin (PV) are the major interneuron subtypes that GE6 cells differentiate into in culture. Here 
we also examined these subtype marker expression in transplanted GE6 cells and used it as a maturation criteria. 
In contrast to in vitro results, transplanted GE6 cells mainly express Calretinin (CR) (~43%) and few NPY, but no 
other subtype markers (Fig. 7C). The distinct interneuron subtype specification of GE6 cells between in vitro and 
in vivo indicates plasticity of these cells in giving rise to different subtypes of GABAergic interneurons, which can 
be manipulated to better suit particular therapeutic purposes.

Discussion
During CNS development, multipotential neural stem cells become diversified in a spatiotemporal fashion and 
progressively restricted in their choices of cell types that they can give rise to. These cell-fate-restricted progeni-
tors maintain proliferation ability and generate specific neural cell types in a precisely controlled manner before 

Figure 7. Predifferentiated GE6 cells transplanted into the neonatal rat forebrain display mature neuronal 
phenotypes in the Ctx at 120 DAT. (A) complex neuronal morphology of predifferentiated GE6 cells revealed 
by inverted GFP signal. (B) Immunostaining of subtype-specific presynaptic markers (VGAT and Vglut1). 
Arrows indicate positive puncta around transplanted GE6 cells. (C) Immunostaining of cell type and subtype 
specific markers to show identity of transplanted GE6 cells in the Ctx. Arrows indicate double-positive cells. 
DAPI is used to label nuclei. Scale bar, 20 μ m in (A), 10 μ m in (B), 40 μ m in (C).
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exhausted at late stages of development28,29. Our success in isolating a variety of neural progenitors from different 
regions of the E14.5 rat forebrain by v-myc immortalization strongly supports the presence of these diversified 
neural progenitors30. In addition, the fact that the unique properties of these progenitors can be sustained in 
culture for many passages encourages the usage of these progenitors in transplantation for a potential cell-based 
therapy. Isolation of progenitors with distinct differentiation potentials (i.e. neurogenic, gliogenic or multipo-
tential) signifies their intrinsic natures (gene expression profiles) that help maintain their properties at least for 
a certain period of time. For example, Dlx-expressing interneuronal progenitor GE6 was able to gives rise to 
GABAergic interneurons in culture after at least 30 passages (data not shown). In this study, we report that the 
neurogenic potential of GE6 maintains in vivo compared with a sister clone CTX8. However, we did observe some 
plasticity of transplanted GE6 cells in that differentiation of cell types differ between regions where cells were 
transplanted. These include cellular morphology, degree of differentiation and maturation, and expression of cell 
type-specific markers. Thus, region-specific factors may also play a role in the behavior of transplanted cells. The 
environment in the adult brain favors glial differentiation of transplanted NSC38. However, our result that much 
more transplanted GE6 cells differentiate into DCX+ neurons than CTX8 within two weeks in the adult cortex 
(Fig. 4) or when challenged by inflammatory cytokine in vitro, shows feasibility that natural intrinsic factors 
may overcome a non-permissive extrinsic environment to direct cell differentiation. It will be exciting to test if 
the neurogenic property of GE6 cells retains in a diseased or injury CNS where neuronal replacement is needed.

Along with other genes, v-myc has been used as an immortalizing gene for decades, and v-myc transduced 
NSC clones have been reported previously29. However, GABAergic interneuronal progenitor clones by v-myc 
have not been reported. A central aim of this study is to test the feasibility of such progenitor clone as a cell source 
of transplantable GABAergic interneurons. Our results are promising in that GE6 cells are able to migrate exten-
sively in the postnatal brain upon transplantation and differentiate into GABAergic interneurons in the Ctx with 
expression of mature interneuron and synaptic markers. V-myc expression in this interneuron progenitor drasti-
cally reduces upon differentiation (both in vitro and in vivo) and does not seem to interfere with its differentiation 
potential30. Although the neuronal maturation of transplanted GE6 cells as determined by appearance of synaptic 
structure and subtype-specific markers was achieved in the Ctx, the timing of maturation process may be altered 
by v-myc expression. The MGE-derived primary cells were able to mature in 30 days after transplantation in the 
neonatal forebrain12. However, v-myc-induced GE6 cells take at least 60 days to show maturation phenotypes 
(Fig. 7). This timing difference may be due to a potential anti-differentiation function of v-myc gene in GE6 cells 
or the fact that cells derived from MGE contain a large number of interneurons and supersede GE6 cells in the 
differentiation process even before transplantation. Nevertheless, the v-myc induced interneuronal progenitors 
such as GE6 could serve as a potential source of transplantable GABAergic interneurons for cell-based therapy. 
The unique developmental origin of GABAergic interneurons in both rodents11 and human39,40 facilitates isola-
tion of these progenitors and therapeutic potential of this particular neuronal cell type in related neurological 
disorders.

Although v-myc has been regarded as a non-transforming gene and previous transplantation studies using 
v-myc induced neural progenitors show no signs of tumorigenecity29, we did observe cell mass formation after 
transplantation of GE6 cells especially transplantation of undifferentiated GE6 cells. This correlates with higher 
v-myc expression in GE6 compared with other clones such as CTX8. Transplantation of GE6 cells that have been 
predifferentiated in culture greatly reduces cell mass formation and increases survival of grafted animals (Fig. 6). 
Therefore, for therapeutic application of GE6-like interneuronal progenitors, a pretreatment to slow down cell 
proliferation and initiate differentiation process is likely required. Furthermore, a selection or enrichment of post-
mitotic neurons, for example, by FACS using neuronal cell surface markers, could potentially increase the efficacy 
of neuronal replacement and further reduce cell mass formation.

Alternative immortalizing methods including tetracycline-controllable myc expression system could further 
increase safety of these cells after transplantation. Although reduced v-myc expression level does not seem to 
interfere with interneuronal differentiation and maturation29,30, residual v-myc level in the mature neuronal cells 
may affect their physiological functions and potentially tumorigenic in longer term. Therefore, a tighter control 
on v-myc expression would eliminate these potential problems. In an ideal scenario, myc expression is turned 
on when target cells are expanded into a large quantity that is required for transplantation and turned off when 
they differentiate into mature neuronal cell types after transplanted into the host CNS. This type of approach is 
currently being investigated in our laboratory.

In conclusion, this study deals with the potential source of therapeutic GABAergic interneurons for transplan-
tation. We tested feasibility of v-myc expanded interneuron progenitors as cell source by implanting progenitors 
and predifferentiated cells into the postnatal brain. We showed in vivo differentiation and maturation of these cells 
in different regions of the brain, although further optimization could be done to increase the efficacy of differen-
tiation and decrease the potential tumorigenecity.

Methods
Animal uses. Sprague-Dawley rats were purchased from Chengdu Dossy Experimental Animals Co., Ltd 
(Chengdu, P.R. China). All animal use and studies were approved by the Institutional Animal Care and Use 
Committee of West China 2nd Hospital, Developmental & Stem Cell Institute, Sichuan University, Chengdu, P.R. 
China. All procedures were carried out in accordance with the approved guidelines.

Cell culturing, differentiation, and factor treatment. GE6 and CTX8 cells were cultured in a 
serum-free medium containing FGF2 as described30. In some experiments, GE6 cells were differentiated in a dif-
ferentiation medium containing no FGF2 but 0.5% fetal bovine serum (FBS) for 3 days. These partially differenti-
ated cultures were harvested for transplantation and referred to as “predifferentiated GE6”. For factor treatments, 
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GE6 and CTX8 cells were allowed to differentiate in the absence of FGF230, but in the presence of LPS (100 ng/ml) 
or LIF (50 ng/ml) for 2 or 4 days before harvest for total RNA.

Total RNA extraction and qRT-PCR. Total RNA extraction and qRT-PCR analysis of gene expression 
were performed as previously described41. The relative gene expression levels were normalized to that of the 
housekeeping gene GAPDH. The primer sequences of the target genes are shown in Table 1.

Transplantation procedure. For neonatal rat transplantation, P1-P3 rat pups were anesthetized on ice for 
about 5 minutes until no pedal reflex was observed, and this anesthesia was maintained on an ice-cold alumi-
num plate throughout the transplantation procedure. Dissociated cells (GE6 or CTX8) were concentrated to a 
high density (~5 ×  105/μ l) and back-loaded into a glass pipette tip (~50 μ m in inner-diameter) using a long-end 
Eppendorf micropipette tip. The glass pipette was then mounted onto a stereotaxic microprocessor (MC-4, 
TaiMeng Technology, Chengdu, P.R. China), and cell injection was made using an electronic air pump injector 
(Picospritzer® III, Parker Hannifin Corp., New Jersey, USA). A single point injection with a total of 10,000 cells 
in a 20 nl volume was made on the left-side of the forebrain perpendicular to the skin surface (coordinate: 3.5 mm 
anterior, 1 mm lateral, 1.5 mm dorsal, aiming for the SVZ region). The injected pups were returned to their moth-
ers after a 5-minute recovery on a warming pad and analyzed after1, 2, 3, 4 and 8 weeks.

For adult rat transplantation, 2-month-old rats were anesthetized using isoflurane (3% with oxygen). A sagittal 
incision of ~1 cm long was made on the midline of the scalp skin. An opening of 1.5 mm in diameter was made on 
the skull using an electrical dental drill (coordinate: 4.5 mm anterior, 2 mm lateral, 2 mm dorsal). A single point 
injection with a total of 10,000 cells in a 20 nl volume was made on the left-side of the forebrain perpendicular to 
the brain surface. The injected rats were analyzed after 2 weeks.

Immunohistochemistry, immunocytochemistry and fluorescence microscopy. Forebrains were 
collected after intra-cardiac perfusion with phosphate buffered saline (PBS) followed by 4% paraformaldehyde 
(PFA) in PBS. The tissues were then coronally sectioned into 40 μ m-thick section on a Vibratome and post-fixed 
in 4% PFA overnight at 4 °C. Tissue sections or fixed cell cultures were incubated with monoclonal antibodies 
against GFP (mouse, 1:500, Millipore), NeuN (mouse, 1:400, Millipore), GFAP (mouse, 1:500, Millipore), APC 
(mouse, 1:200, Millipore), GABA (mouse, 1:1000, Sigma), TuJ1 (mouse, 1:500, Covance), O4 (mouse, 1:100, 
Millipore), and CD11b (mouse, 1:500, Millipore); polyclonal antibodies against GFP (rabbit, 1:500, Millipore), 
BLBP (rabbit, 1:400, Abcam), Ki67 (rabbit, 1:500, Millipore), Olig2 (rabbit, 1:500, Millipore), GFAP (rabbit, 
1:2000, Dako), DCX (guinea pig, 1:1000, Millipore), VGAT (rabbit, 1:500, Synaptic Systems), Vglut1 (rabbit, 
1:500, Synaptic Systems), Tbr1 (rabbit, 1:400, Proteintech), PV (rabbit, 1:800, ImmunoStar), Calbindin (CB) (rab-
bit, 1:500, ImmunoStar), CR (rabbit, 1:500, ImmunoStar), NPY (rabbit, 1:500, ImmunoStar), and SST (rabbit, 
1:500, ImmunoStar), followed by appropriate species-specific secondary antibodies (Molecular Probes). DAPI 
(10ug/ml, Sigma) was included in the secondary antibody incubations to label nuclei. The sections or fixed cul-
tured cells were then mounted in mounting medium (Zhong Shan Golden Bridge Biotech, P.R. China) and ana-
lyzed by conventional or confocol fluorescence microscopy.

Statistical analysis. All quantifications on sections were done with tissues from at least three animals. All 
data were presented as means ±  standard deviation. Statistical analysis was performed in Microsoft Excel using 
Student’s t-test.
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