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Abstract

Glioblastoma multiforme (GBM)-initiating cells (GICs) represent a tumor subpopulation with neural stem cell-like
properties that is responsible for the development, progression and therapeutic resistance of human GBM. We have
recently shown that blockade of NFkB pathway promotes terminal differentiation and senescence of GICs both in
vitro and in vivo, indicating that induction of differentiation may be a potential therapeutic strategy for GBM.
MicroRNAs have been implicated in the pathogenesis of GBM, but a high-throughput analysis of their role in GIC
differentiation has not been reported. We have established human GIC cell lines that can be efficiently differentiated
into cells expressing astrocytic and neuronal lineage markers. Using this in vitro system, a microarray-based high-
throughput analysis to determine global expression changes of microRNAs during differentiation of GICs was
performed. A number of changes in the levels of microRNAs were detected in differentiating GICs, including over-
expression of hsa-miR-21, hsa-miR-29a, hsa-miR-29b, hsa-miR-221 and hsa-miR-222, and down-regulation of hsa-
miR-93 and hsa-miR-106a. Functional studies showed that miR-21 over-expression in GICs induced comparable cell
differentiation features and targeted SPRY7 mRNA, which encodes for a negative regulator of neural stem-cell
differentiation. In addition, miR-221 and miR-222 inhibition in differentiated cells restored the expression of stem cell
markers while reducing differentiation markers. Finally, miR-29a and miR-29b targeted MCL1 mRNA in GICs and
increased apoptosis. Our study uncovers the microRNA dynamic expression changes occurring during differentiation
of GICs, and identifies miR-21 and miR-221/222 as key regulators of this process.
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Introduction

Glioblastoma multiforme (GBM) is the highest grade (V)
astrocytoma and the most common glioma, accounting for
~40% of all primary brain tumors of the central nervous system
(CNS) [1]. GBM is one of the most aggressive tumors. Patients
usually have a median overall survival of 12-15 months, due to
the high rate of tumor recurrence despite surgical tumor
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removal and radio-chemotherapy, which highlights the need for
more effective therapies [2]. It has been proposed that
gliomagenesis initiates in adult neural stem cells or neural
precursors that undergo transformation into GBM-initiating cells
(GICs), which display a stem cell-like behavior [3]. GICs are
able to self-renew, express stem cell markers such as CD133
and Nestin, and can generate and propagate tumors in
immunodeficient mice [3-5]. In addition, GICs are highly
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resistant to current therapies, possibly explaining the frequent
tumor relapses [6]. Of note, GICs can be induced to
differentiate into mature cells of the main CNS lineages, which
lose their stem cell behavior and become more sensitive to
certain  therapies [3]. As representative examples,
differentiation of CD133* GBM cells with bone morphogenetic
protein 4 (BMP4) or using an all-trans retinoic acid (ATRA)-
based treatment led to inhibition of the tumorigenic potential of
these cells and resulted in retardation of GBM growth in mice,
as well as in sensitizing cells to radiation and BCNU
chemotherapy in the case of ATRA [7,8]. Furthermore, our
group recently discovered that blockade of NFkB pathway
promotes terminal differentiation and senescence of GICs both
in vitro and in vivo [9]. All these data suggest that induction of
differentiation may be a potential therapeutic strategy for GBM.

MicroRNAs (miRNAs) are small non-coding RNAs (21-23
nucleotides long) that bind to specific sites in the 3-UTR of
their target mMRNAs by partial complementarity, subsequently
inducing their degradation and/or the inhibition of their
translation [10]. miRNAs play a number of different roles in the
regulation of stem cell biology, differentiation, and cell identity
[10]. For example, miRNAs have been implicated in the
transition from neural stem/precursor cells to differentiated
neurons [11]. In addition, miRNAs are key players in tumor
development, including GBM [12]. Several miRNAs display
deregulated expression in GBM samples, and some of them
have been shown to regulate differentiation of GICs into mature
neural-like cells [13,14]. Accordingly, the use of interfering
RNAs aiming to induce GIC differentiation may represent a
promising therapeutic approach in malignant gliomas [15].

However, a global analysis of miRNA expression changes
occurring during GIC differentiation has not been performed
yet. We have recently established several human GIC lines
that can be efficiently differentiated into cells expressing
astrocytic and neuronal lineage markers in vitro [9,16]. Using
this system, here we performed a microarray-based high-
throughput miRNA expression analysis to uncover the dynamic
expression changes of miRNAs during GIC differentiation. Our
study identified several miRNA and their potential target genes
that may play a role in this process.

Materials and Methods

Ethic Statements

Human glioblastoma samples were obtained after written
consent for the research use of the specimens was provided by
all patients. These procedures were approved by the
institutional review boards of Hospital Universitario Marques de
Valdecilla and Clinica Universidad de Navarra. The study
involves the use of completely anonymized specimens.

The xenografts experiments in mice were performed at the
Animal Core Facilities of the Center for Applied Medical
Research (University of Navarra) after approval by the
University of Navarra Animal Ethics Committee. To avoid
suffering, the animals were anesthetized with i.p. ketamine-
xylazine 3:1 for surgical procedures and with continuous
inhalation of 2% isoflurane during PET.
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Cell line culture

The U87MG GBM cell line (ATCC HTB-14) was cultured in
DMEM (Invitrogen) supplemented with 10% FBS (Gibco) and
2% penicillin/streptomycin (BioWhittaker, Lonza).

Primary tumor neurosphere (NS) cultures

NS cultures were derived from five biopsies obtained from
patients diagnosed of GBM, as previously described [9]. Briefly,
surgical samples were washed, followed by mechanical
dissociation and enzymatic digestion. Tumor cells were then
cultured in serum-free DMEM/F12 medium (Invitrogen)
containing 20 ng/ml human recombinant EGF (Sigma), 20
ng/ml bFGF (Sigma) and 2% B-27 supplement (Invitrogen).
Primary neurospheres were detected within the first two weeks
of culture and subsequently dissociated every 3-4 days to
facilitate cell growth. To promote differentiation, neurospheres
were cultured in the same medium without B-27 supplement
and 10% fetal bovine serum (FBS) was added.

Self-renewal assessment

Clonogenic and limiting dilution assays were performed as
previously described [17] with minor modifications. Two
different in vitro self-renewal assays were performed: the clonal
dilution assay, measured as the mean percentage of wells
containing at least one NS after seeding the cells at a clonal
dilution (1 cell/well) and culturing them for 10 days, and the
limiting dilution assay, which indicates the number of cells from
a primary NS that are needed to form a secondary NS. For this
experiment, primary neurosphere cultures were dissociated
and seeded at dilutions that ranged from 200 cells/well to 1
cell/well. After 7 days of culture, the percentage of wells not
containing spheres was plotted against the number of cells
seeded per well to calculate the corresponding regression
lines. The intersection of these lines with the X-axis
corresponds to the number of cells needed to form at least one
NS. Cells from the GBM cell line U87MG, not enriched in GICs,
were grown in NS culture medium in parallel and used as
negative control for both assays.

In vivo experiments

Xenograft experiments in mice were performed as previously
described [9]. Briefly, one million NS cells were injected into the
brain (caudate putamen region) of anesthetized 6-8-week-old
female BALB/c-Rag2*-IL2yc” using a microsyringe held in a
stereotactic device (Kopf Instruments). Eight weeks after
injection, xenografted mice were monitored for tumor metabolic
activity by microPET in a dedicated small-animal Philips
Mosaic tomograph (Philips). Anesthetized mice were injected
with 11C-methionine (20 Mbq) and then placed prone on the
PET scanner bed to perform a static acquisition. Maximum
standardized uptake value (SUVmax) was calculated for each
tumor. For histopathological studies of the tumors,
anesthetized animals were perfused with 4%
paraformaldehyde and their brains were removed, post-fixed,
sectioned and stained with hematoxylin-eosin. Coronal
sections (200 mm thick) of the brain at the level of striatum
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were examined with a stereoscopic microscope for tumor
localization.

Cell transfection experiments

NSs were disaggregated with Accutase solution (Sigma-
Aldrich) and 1-2x10° cells were transfected with 100 nM pre-
miRNA or anti-miRNA oligonucleotides specific for miR-21,
miR-29a, miR-29b, miR-221 and miR-222 or pre/anti-miRNA
negative controls 1 (Ambion) using Nanojuice (Novagen)
following the manufacturer’s instructions. For luciferase
reporter experiments, the cells were transfected in triplicate
with the appropriate 3"-UTR-luciferase construct (0.2 ng/ul) and
the corresponding pre-miRNA (100 nM) using Nanojuice
(Novagen). To produce the 3’-UTR-luciferase constructs, the
3-UTR regions of MCL1 and SPRY1 were amplified from
human genomic DNA using the Phusion High-Fidelity PCR
Master Mix (Thermo Scientific) with specific primers (Table S1),
PCR products were digested with Xhol and Notl (New England
Biolabs) and ligated into the psiCHECK-2 vector (Promega).
Putative miRNA binding sites were identified using the PITA
algorithm (http://genie.weizmann.ac.il/pubs/mirQ7/
mir07_prediction.html) and mutated using a strategy based on
nested PCRs [18] using Phusion™ High-Fidelity PCR Master
Mix (Thermo Scientific) and specific primers (Table S1). After
24 hours, luciferase measurements were performed with Dual-
Luciferase Reporter Assay System (Promega) in the Berthold
LUMAT 9507 luminometer. Each experiment was repeated at
least 3 times. Statistical analysis was performed with the
unpaired t test for SPRY1 3"-UTR (Gaussian distribution) or the
Mann-Whitney test for MCL1 3°-UTR, (data did not fit the
Gaussian distribution) using the Holm-Bonferroni correction for
multiple comparisons.

Immunofluorescence microscopy

Cells were assayed for the presence of Nestin, GFAP, TUJ1
and O4 by immunofluorescence as previously described [9].
Briefly, neurospheres were collected on microscope slides by
cytospin centrifugation (400 rpm, 1 min) and differentiated cells
were grown on LabTek chamber slides (Nunc). Cells were then
fixed in 4% paraformaldehyde and permeabilized with 0.5%
Triton X-100. For immunostaining, cells were incubated
overnight with rabbit anti-GFAP (DAKO, Z0334), mouse anti-
Nestin (BD Biosciences, 611658), mouse anti-Tuj1 (Sigma,
T-8660) or mouse anti-O4 (Millipore, MAB345) antibodies.
Texas red-conjugated or fluorescein isothiocyanate (FITC)-
conjugated goat anti-rabbit or anti-mouse (Jackson
ImmunoResearch) were used as secondary antibodies. Nuclei
were counterstained with 4’,6-diamidino-2-phenylindole (DAPI).
Images were captured with a 739 CCD camera coupled to an
Axio Imager Z1 microscope (Carl Zeiss Inc.) using the Plan-
Neofluar 20x/0.50 objective and the Isis Imaging System
software (Metasystems). For quantification purposes, FITC-
conjugated AffiniPure Goat Anti-Mouse IgG (H+L) and FITC-
conjugated AffiniPure Goat Anti-Rabbit IgG (H+L) (both from
Jackson ImmunoResearch) were used as secondary
antibodies and images were acquired with an Axiocam Mrm
camera coupled to an Axioimager M1 fluorescence microscope
(Carl Zeiss Inc.), using the Plan-Neofluar 20x/0.50 NA objective
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and the Axiovision (4.6.3.0) program. Fluorescence was
quantified using FIJI plugin (ImageJ V1.46b) built in-house. The
plugin packs image processing operations as co-location
analysis, filtering and particle counting to automatically
measure the mean FITC intensity associated to a cell (located
in the proximity of DAPI signals) in the field.

In addition, cells were assayed for the simultaneous
presence of Nestin, GFAP and TUJ1 by triple
immunofluorescence as previously described [9], using as
primary antibodies mouse anti-Nestin (BD), rabbit anti-GFAP
(DAKO) and chicken anti-TUJ1 (Aves labs, TUJ6797987).
Alexa fluor 488 goat anti-mouse 1gG, Alexa fluor 568 goat anti-
rabbit IgG and Alexa fluor 647 goat anti-chicken IgG
(Invitrogen) were used as secondary antibodies. Images were
acquired with a Leica SP5-Il confocal microscope (Leica
microsystems) using a 20x/0.7 NA water immersion objective.

Cell viability and apoptosis assays

In order to test cell viability, 5,000 cells per well were plated
in 96-well tissue culture plates 24 hours after transfection with
the corresponding pre-miRNAs. Cells were then cultured for 72
hours and cell viability was measured by using the Cell-Titer 96
One Solution Aqueous kit (Promega). To assess apoptosis,
50,000 cells were harvested 96 hours after transfection with the
corresponding pre-miRNAs and processed using the Cell
Death Detection ELISAP-S kit (Roche) following the
manufacturer’s instructions. All studies were carried out in
triplicate wells and at least 3 independent transfection
experiments were analyzed.

Western Blot analysis

Cells were collected 96 hours after transfection and whole-
cell lysates were analyzed by Western blot with specific
antibodies against MCL1 (Stressgen), SPRY1 (sc-30048;
Santa Cruz) and ACTB (B-Actin) (Calbiochem) as previously
described [19].

miRNA and gene expression microarrays

Total RNA from the GBM cell lines G52, G63, G59, GN1C
and G97C, at the NS state or after 4 or 14 days of
differentiation, was extracted using mirVana miRNA Isolation
Kit (Ambion), labeled with Hy3 with the miRCURY Hy3/Hy5
Power labeling kit (Exigon) and hybridized onto miRNA
miRCURY™ LNA Array version 5" Generation (Exiqon) mixed
with a pool of all samples labeled with Hy5. These microarrays
contain 1891 capture probes complementary to human, mouse,
rat, and their related viral sequences from the v.14.0 release of
miRBase, as well as human miRPlus™ sequences not yet in
miRBase. Data were normalized by Lowess and only miRNAs
with expression values over background in more than 50% of
the samples of at least one experimental condition were
considered for statistical analysis. Three comparisons were
performed (4 days vs. NS, 14 days vs. NS and 4 and 14 days
of differentiation together vs. NS) using the LIMMA R package
[20]. MicroRNAs showing values of B>0 in any of the 3
comparisons and Hy3 raw data values greater than 200 in
average were selected for validation and further analysis.
Hierarchical clustering of microarray data was used to generate
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heat maps of expression using Cluster 2.11 and Treeview 1.60
(http://rana.lbl.gov/EisenSoftware.htm) [21].

Gene expression microarray hybridization using the Human
Genome U133 Plus 2.0 Array (Affymetrix) was performed for
the GBM cell lines G48, G52, G63 and G59 at the NS state and
after 4 days of differentiation, as previously described [9]. Both
background correction and normalization were performed using
the RMA (Robust Multichip Average) algorithm [22]. Probe sets
with a log2Ratio of gene expression in the differentiated state
to the NS state over 1.0 or below -1.0 in at least 2 samples,
and with the same tendency in the rest, were selected as
differentially expressed.

The data from both microarray experiments are available in
the GEO database (http://www.ncbi.nim.nih.gov/geo/) under
the accession number GSE44843.

Quantitative RT-PCR (q-RT-PCR)

Validation of candidate miRNAs was carried out using
specific TagMan MicroRNA assays (Applied Biosystems) for g-
RT-PCR.

To assess the expression of individual genes, RNA was
extracted with TRl Reagent (Invitrogen) and g-RT-PCR was
performed with FastStart Universal SYBR Green Master (Rox)
(Roche Diagnostics) in a 7300 Real Time PCR System
(Applied Biosystems) using specific primer pairs to detect the
expression of NES (SCTTCCCTCAGCTTTCAGGAC?;

STAAGAAAGGCTGGCACAGGT?), TUJ1
(*GGCCTGACAATTTCATCTTTGG?;
STCGCAGTTTTCACACTCCTTC?®), GFAP
(*GCAGAGATGATGGAGCTCAATGACC?;
SGTTTCATCCTGGAGCTTCTGCCTCA?) and GAPDH

(|AGCCACATCGCTCAGACAC?;
SCCATGTAGTTGAGGTCAATGAA?).

Difference in threshold cycle (ACt) was calculated as the
subtraction of the Ct corresponding to the housekeeping gene
(GAPDH) or small RNA (RNU6B) from the Ct of the gene or
miRNA of interest for each sample. AACt was obtained by
subtracting the ACt corresponding to the NS state to the ACt of
the cells differentiated during 4 or 14 days. Fold change (FC)
was calculated as 2-22¢ for values greater than 1. For values
below 1, the symmetric value -1/2-22¢t was calculated. At least
three independent experiments with triplicate wells for each
gRT-PCR were performed.

Prediction of potential miRNA targets

miRNA target predictions were extracted from the following
public databases: TargetScan v.5.1 (http://www.targetscan.org)
[23], PicTar 2006 (http://pictar.mdc-berlin.de) [24], PITA v.6
(http://genie.weizmann.ac.il/pubs/mir07/mir07_data.html) [25],
miRanda sept2008 (http://www.microrna.org/microrna/
getDownloads.do) [26] and microCosm v.5. (http://
www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/vs/) [27].
A gene list was generated combining down-regulated genes
potentially targeted by up-regulated miRNAs and vice versa.
The functional in silico analysis of these genes was performed
using Ingenuity Pathway Analysis (IPA) 9.0 (Ingenuity
Systems, www.ingenuity.com).
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Statistical analyses

Statistical analyses were performed with GraphPad Prism
4.0b. Variables were tested for fitness to Gaussian distribution
with the Shapiro-Wilk test over residual values. Comparisons
were performed by means of unpaired t test if the variable fitted
to a Gaussian distribution or Mann-Whitney U test if not,
correcting for multiple comparisons in both cases according to
the Holm-Bonferroni method.

Results

Characterization of the neurosphere cultures obtained
from surgical GBM samples

Five cell lines derived from GBM biopsies were cultured in a
GIC-propagating medium, where they formed typical spherical
structures in suspension known as neurospheres (NS) (Figure
1A, left panels) expressing the neural progenitor cell marker
Nestin (Figure 1B-C). Addition of 10% FBS and withdrawal of
B-27 supplement induced differentiation of NS cells, which
acquired morphological features resembling those of glial and
neuronal cells. These included growth in cell monolayers
attached to the flask and development of cell protrusions
(Figure 1A). In addition, a statistically significant increase in the
mRNA levels of GFAP (a protein expressed by cells in the
astrocytic lineage) and/or TUJ1 (a B-tubulin protein expressed
by cells in the neuronal lineage) was observed (Figure 1B). In
contrast, Nestin expression displayed a statistically significant
decrease upon differentiation in G97C and G63, as well as a
tendency to decrease in G52 and GN1C (Figure 1B). The
expression of these markers was also evaluated at protein
level by immunofluorescence (Figure 1C). In agreement with
mRNA expression levels, GN1C cells showed a decrease of
Nestin and an increase in GFAP, while TUJ1 seemed mostly
unchanged in this cell line (Figure 1B-C). Differentiation to the
oligodendrocytic lineage, determined by immunostaining of O4
sulfatides, was scarce or null (Figure 1C), which is consistent
with previously reported data [28]. In order to study whether
different cells in the differentiated cultures expressed TUJ1 and
GFAP separately or both markers were co-expressed in the
same cells, we performed triple immunofluorescence staining
for GFAP, TUJ1 and Nestin. These experiments revealed that
differentiating GICs co-expressed GFAP and TUJ1, while
Nestin expression was markedly reduced (Figure S1A). These
results show that the NS cell lines can be efficiently
differentiated to cells expressing both neuronal and astrocytic
markers.

In order to confirm the enrichment of GICs in the NS
cultures, limiting dilution assays were performed (Figure 2A).
NS cell lines required at least two-fold fewer cells to generate a
secondary NS than the non GIC-enriched human GBM-derived
cell line U87MG (11.4 cells for G63, 6.2 cells for G52, 5.4 cells
for GN1C and 23.5 cells for U87MG). Likewise, while the
U87MG cell line displayed 5.84+1.83% self-renewal capability
in the clonogenic assay, the NS cell lines showed higher
percentages of self-renewal: 57.39+15.93% for G63 (p=0.007);
61.11+21.68% for G52 (p=0.042) and 77.65+15.19% for GN1C
(p=0.001) (Figure 2B).
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Figure 1. The GBM neurosphere cultures express neuronal and astrocytic differentiation markers upon in vitro induced
differentiation. Morphology of two representative NS cell lines, GN1C and G63, is shown at their basal state of NS (A, left panels)
and after induction of their differentiation for 4 (4d) (A, central panels) and 14 days (14d) (A, right panels). All images were captured
using an inverted optical microscope Leica DMIRB with 20X magnification. Expression of progenitor (Nestin), astrocytic (GFAP) and
neuronal (TUJ1) markers was measured by g-RT-PCR in the NS cell lines G59, G97C, G63, G52 and GN1C (B) at the basal NS
state and upon 4 (4d) or 14 (14d) days of induction of differentiation. Data were normalized to GAPDH expression as 24 *
indicates statistical p value <0.05 using unpaired t-test with the Holm-Bonferroni correction for multiple comparisons. Protein
expression of Nestin, GFAP and TUJ1, as well as the presence of the oligodendrocytic sulfatide marker O4 (C), were analyzed by
immunofluorescence in the GN1C cell line at the NS state (NS) and after 14 days (14d) of differentiation using secondary antibodies
conjugated to FITC (green) or Texas Red (red) counterstained with DAPI (blue). Images were acquired at 20X magnification with a
739CCD camera coupled to an Axio Imager Z1 microscope (Carl Zeiss Inc.) using the Isis Imaging System software.

doi: 10.1371/journal.pone.0077098.g001

PLOS ONE | www.plosone.org 5 October 2013 | Volume 8 | Issue 10 | e77098



miRNAs Involved in GIC Differentiation

>

00 1 U87MG Control . 20
% 80 A < 40
2 60 1 $30
‘g 40 A g 20
w 20 A g 10
R O o 0
0
60 A 50
= 2 40
[} 1 [}
£ 20 - g 20
- 110
o 0 o 0
0 2 4 6 8 0 2 4 6 8
Cells / well Cells / well
B C coronal sagittal
Tumor
100 - * SUVmax
% G63 0,57
80 1 * ’
% 60 -
5 Tumor
g 40 - ' SUVmax
- 20 i G52
0 /M
UB7TMG G63 G52 GN1C
Control G97C
Control »

0 1,25
SuV

Figure 2. The NS cultures are enriched in GICs when compared to the glioblastoma cell line U87MG. In vitro self-renewal
limiting dilution assays, performed in 12 wells per dilution in triplicate experiments (A), and clonogenic assays, performed in
quadruplicate 96-well plates (B) for three NS cell lines: G63, G52 and GN1C; as well as for the U87MG cell line, used as a negative
control, are depicted. * indicates statistical p value <0.05 using unpaired t-test with the Holm-Bonferroni correction for multiple
comparisons. Tumors obtained from in vivo xenografts (1x10° cells injection) in the brain striatum of BALB/c-Rag2"-IL2yc” mice
(n=6 per cell line) were detected using microPET and are shown circled by a dotted line (C). Tumor images corresponding to G63,
G52 and G97C xenografts, as well as a negative control brain, are displayed, along with the corresponding quantification of
maximum value of standardized caption (SUV,,,,). A coronal section (200 mm thick) of a tumor originated by G97C was observed by
means of a stereoscopic microscope (D) for tumor localization (black arrowhead) and a semi-thin section of the tumor was stained
with hematoxylin-eosin (E).

doi: 10.1371/journal.pone.0077098.g002
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Besides self-renewal, an important feature of GICs is that
they can generate tumors in immunodeficient mice. To test this
ability, we performed intracranial injections of 1x10°® cells of
G63, G97C and G52 into the striatum region of Rag2”IL2yc’
mice using a stereotactic frame. Four months after injection, all
mice presented signs of disease and developed tumors that
were detected by microPET, yielding SUV,,,, values of ~0.60
(Figure 2C). Upon necropsy, histopathological studies
confirmed the presence of intracranial tumors resembling
human GBM (Figure 2D-E). Together, these results indicate
that the GBM-derived NS cell lines are enriched in GICs that
show in vitro self-renewal and tumorigenic potential in vivo.

miRNA and gene expression signatures of GICs change
upon differentiation

We studied miRNA expression changes by microarray
hybridization in the five NS cell lines before and after 4 and 14
days of differentiation. Data analysis yielded 21 miRNAs that
consistently varied their expression during differentiation,
including ten down-regulated and eleven up-regulated miRNAs
(Figure 3A). Sixteen of these 21 deregulated miRNAs belong to
genomic clusters, and 12 of them are accompanied by at least
one MiRNA of the same cluster displaying a similar expression
pattern. In addition, eight of the down-regulated miRNAs
belong to the three paralog clusters miR-17/92, miR-106a/363
and miR-106b/25, while three of the up-regulated miRNAs are
part of the miR-23/24 paralog clusters. Expression changes
were also validated by g-RT-PCR for seven miRNAs: 5 up-
regulated (hsa-miR-21, hsa-miR-29a, hsa-miR-29b, hsa-
miR-221 and hsa-miR-222) and 2 down-regulated (hsa-miR-93
and hsa-miR-106a) (Figure 3B-H). To begin to identify the
putative target genes of these seven deregulated miRNAs
during GIC differentiation, gene expression microarray
experiments were performed in NS cell lines before and after
differentiation. Data analysis defined the transcriptional
signature of GIC differentiation, which included 932 probesets
corresponding to 740 genes. Among them, 236 genes were
potential targets of the seven deregulated miRNAs, according
to TargetScan, PicTar, PITA, miRanda and microCosm
predicted miRNA target databases (Table S2). Ingenuity
Pathway Analysis (IPA) of these genes identified an
enrichment in cellular functions including CNS processes,
pluripotency and cancer, and in the Wnt/3-Catenin and
Glutamate Receptor signaling pathways (Figure S2). These
data indicate that the NS cell lines consistently show changes
in the expression of coding and miRNA genes during the
differentiation process.

Inhibition of miR-221/222 in differentiating GICs
increased Nestin expression while decreased GFAP
and TUJ1 levels

miR-221/222 was the most significantly up-regulated miRNA
cluster upon GIC differentiation (Figure 3A, D, E). In order to
unveil the potential role of these miRNAs in GIC differentiation,
we separately inhibited miR-221 and miR-222 in GN1C cells
during 14 days of differentiation (Figure 4A-B). Analysis of
mRNA expression of progenitor and differentiation markers
resulted in an increase in Nestin levels for both miR-221
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(1.48+0.23 fold, p=0.001; Figure 4C) and miR-222 inhibition
(1.25£0.13 fold, p=0.005; Figure 4D), in comparison to control
cells. In addition, a decrease in GFAP mRNA levels was
observed after inhibiting either miR-221 (0.77+0.16 fold,
p=0.012; Figure 4C) or miR-222 (0.60+0.14 fold, p<0.001;
Figure 4D). Similar results were observed for TUJ1 expression,
which was decreased after inhibition of miR-221 (0.66+0.22
fold, p=0.012; Figure 4C) and showed a tendency to decrease
after miR-222 inhibition (0.77+0.40 fold, p=0.168; Figure 4D).
The same expression profiles were confirmed in the G52 GIC
line (Figure S3A-D). mRNA results were validated at the
protein level by immunofluorescence (Figure 4E) and
subsequent quantification (Figure 4F): Nestin expression
increased in GN1C cells after inhibition of miR-221
(106383.4+8380.7 Mean Fluorescence Intensity (MFI),
p=0,037) and miR-222 (112897.7+1819.4 MFI, p<0.001)
compared to cells transfected with an anti-miR negative control
(94505.4+13043.5 MFI), GFAP levels decreased in GN1C cells
transfected with anti-miR-221 (43122.5+3114.4 MFI, p<0.001)
and anti-miR-222 (44499.5+2202.2 MFI, p<0.001) compared to
control cells (71093.5£9864.8 MFI), and TUJ1 levels were
reduced upon miR-221 inhibition (66062.5+2774.7 vs.
98468.3+7645.5 MFI, p<0.001) but not after inhibiting miR-222
(Figure 4E-F). In summary, inhibition of the miRNAs of the
cluster miR-221/222 in differentiating GICs decreases the
expression of astrocytic and neuronal lineage markers, which
suggests their involvement in GIC-induced differentiation.

miR-21 over-expression in GICs induces GFAP
expression, decreases Nestin levels and targets SPRY1

miR-21 was the most up-regulated miRNA during GIC
differentiation (Figure 3A, F). To functionally test this finding,
we over-expressed miR-21 in GN1C cells at the NS state for
seven days (Figure 5A). miR-21 ectopic expression induced an
increase in GFAP (1.87x0.12 fold, p<0.001) and TUJ1
(1.2940.13 fold, p=0.001) mRNA expression levels, and a
decrease of Nestin expression (0.731+0.11 fold, p<0.001),
compared to NS transfected with the pre-miR negative control
(Figure 5B). Similar results were obtained in the G63 GIC line
(Figure S3E-F). Expression changes were confirmed at the
protein level by immunofluorescence (Figure 5C-D): Nestin
staining was markedly reduced in GN1C cells over-expressing
miR-21 in comparison to control cells (34902+1559.9 vs.
48508.84+5285.26 MFI, p=<0.001), while GFAP immunostaining
was increased (76563.8+17485.6 vs. 60142.1+7436 MFI,
p=0.02). TUJ1 expression showed a tendency to increase upon
miR-21 over-expression (67460.9+13871.2 vs. 55015+23088.4
MFI, p=0.26). These results point to the involvement of miR21
in GIC differentiation. Triple immunofluorescence staining
showed that miR-21 over-expression in GICs induced the co-
expression of both GFAP and TUJ1 in the transfected cells
(Figure S1B), such as was observed in GICs cultured in
differentiation medium (Figure S1A).

One of the miR-21 predicted targets showing down-regulated
expression during GIC differentiation was SPRY71 (Sprouty1)
(Figure S4A), a gene that inhibits neural differentiation in
mouse embryonic stem cells [29] and has been previously
reported as miR-21 target in fibroblasts [30] and keratinocytes
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Figure 3. Microarray profiling of miRNA expression during NS differentiation. A heat map of a hierarchical clustering analysis
of the microRNAs with differential expression between the NS cell lines at their basal state (NS) and after 4 (4d) and 14 (14d) days
of induction of differentiation is displayed (A). Expression data are represented as log2Ratio and were mean centered for each
miRNA. Validation of the differential expression of miR-29a (B), miR-29b (C), miR-221 (D), miR-222 (E), miR-21 (F), miR-93 (G) and
miR-106a (H) was carried out by q-RT-PCR using specific TagMan microRNA assays, normalizing their expression values with
respect to RNUBB levels and to the NS state by calculating 2-24¢t, * indicates statistical p value <0.05 using unpaired t-test with the
Holm-Bonferroni correction for multiple comparisons; dotted lines indicate the basal expression level at the NS state.

doi: 10.1371/journal.pone.0077098.g003

[31]. Western blot analysis showed a marked decrease of
SPRY1 after 4 days of differentiation in GN1C and G63 cell
lines (Figure 5E). To assess whether this down-regulation was
caused by miR-21 up-regulation, transfection experiments with
a miR-21 precursor were carried out. Results showed that
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miR-21 over-expression at the NS state induced a similar
decrease in SPRY1 protein expression in both cell lines with
maximum inhibition after 72 hours (88.55% reduction, p<0.001
for GN1C; 90.62%, p=0.004 for G63) (Figure 5F-G).
Accordingly, we identified two potential binding sites for miR-21
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was confirmed by g-RT-PCR 14 days after transfection, compared to cells transfected with anti-miR negative control (anti-C-) (A, B).
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Transfections were carried out in triplicate. Dotted lines indicate the expression level of GN1C cells transfected with anti-miR
negative control. The corresponding protein expression levels of Nestin, GFAP and TUJ1 were visualized by immunofluorescence
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software. Quantification of mean intensity for Nestin, GFAP and TUJ1 fluorescence is displayed (F). * indicates p value <0.05 using
unpaired t-test or Mann-Whitney U test for statistical analysis and the Holm-Bonferroni correction for multiple comparisons.

doi: 10.1371/journal.pone.0077098.g004
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chr4:124324121-124324128 and “Mut 2” to chr4:124323893-124323900. Transfections were carried out in friplicate. * indicates p
value <0.05 in unpaired t test statistical analysis using the Holm-Bonferroni correction for multiple comparisons.

doi: 10.1371/journal.pone.0077098.g005
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in the 3-UTR of SPRY1 (Figure S4B). Subsequent dual
luciferase assays demonstrated regulation of the 3-UTR of
SPRY1 by miR-21, resulting in a significant decrease (24.74%,
p=0.002) of the reporter luciferase activity that was abolished
by the mutation of the more distal putative binding site for this
miRNA (Figure 5H). These data show that miR-21 targets
SPRY1 by direct 3"-UTR binding, suggesting that miR-21 is
probably involved in the decrease of SPRY1 protein expression
observed during GIC differentiation.

Over-expression of miR-29a/29b promotes apoptosis of
GICs by inhibiting MCL1 protein expression

The expression of each of the miRNAs of the miR-29a/29b
cluster showed a 3- to 4-fold increase in average during GIC
differentiation (Figure 3A, B, C). However, over-expression of
miR-29a and miR-29b in GN1C cells at the NS state (Figure
6A-B) did not induce changes in the expression of
differentiation markers, but a significant decrease in cell
viability and increased apoptosis were observed (Figure 6C-D).
Previous studies have demonstrated that miR-29a/29b can
promote apoptosis by targeting MCL7 mRNA in
cholangiocarcinoma cell lines [32]. Accordingly, Western blot
assays showed a reduction in MCL1 protein expression upon
over-expression of miR-29a (53.87% decrease, p<0.001) and
miR-29b (62.49% decrease, p<0.001) (Figure 6E-F), resulting
in 1.6+0.24 fold (p=0.0002) and 1.56+0.23 fold (p=0.0001)
increased apoptosis, respectively (Figure 6D). All these results
were validated in the G63 GIC line (Figure S5). Furthermore,
dual luciferase reporter experiments demonstrated targeting of
the 3"-UTR of MCL1 by miR-29a and miR-29b, resulting in a
significant decrease (38.78%, p<0.001 for miR-29a; 37.67%,
p=0.003 for miR-29b) of luciferase activity (Figure 6G). In
conclusion, miR-29a and miR-29b are able to target the anti-
apoptotic protein MCL1 and promote apoptosis in GICs.

Discussion

Our work provides for the first time a high-throughput
analysis of miRNA expression during differentiation of GICs [9].
This model resembles the clinical conditions in which the
therapeutic induction of differentiation of GICs should be
achieved more accurately than the ones based on growth
factor withdrawal, since the tumor microenvironment is rich in
growth factors [33]. Probably due to this methodological
difference, we did not confirm previous findings that reported a
pro-differentiation role for miR-124 and miR-137 on human
GICs [14]. On the contrary, we found that in our miRNA
microarray data these miRNAs were expressed at very low
levels (miR-124) or none at all (miR-137). Moreover, Silber et
al. also found that the expression of miR-124 and miR-137 was
associated with neuronal-like opposed to astrocyte-like
differentiation, while the most up-regulated miRNAs in our
study (miR-21, miR-29a, miR-29b, miR-221 and miR-222) are
associated to the GBM subclass showing a miRNA expression
profile evocative to that of astrocytic precursors, according to
the five subgroups of GBM defined by Kim et al. based on
miRNA  expression profiles [34]. Nevertheless, triple
immunofluorescence staining revealed that our differentiation

PLOS ONE | www.plosone.org

11

miRNAs Involved in GIC Differentiation

method induced the expression of both astrocytic and neuronal
markers in the differentiating GICs simultaneously. These
results might suggest a differentiation of these cells towards
the neuronal lineage, but retaining the expression of GFAP that
is usually restricted to neural precursors in the neuronal lineage
[35], while it is abundantly expressed in the astrocytic lineage.
This aberrant marker expression in differentiating GICs has
been previously reported by other groups [36].

Analogously to what has been reported for the differentiation
of normal neurons [37], most of the miRNAs that changed their
expression levels upon GIC differentiation in our model belong
to the same miRNA clusters, and several paralog clusters are
involved. For instance, the paralog miRNA clusters
miR-106a/363 (integrated by miR-106a, miR-363, miR-92-2,
miR-19b-2, miR-20 and miR-18b), miR-106b/25 (compound of
miR-106b, miR-25 and miR-93) and miR-17/92 (comprising
miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and
miR-92a-1) are down-regulated upon differentiation, while
clusters miR-29a/29b and miR221/222 are strongly up-
regulated, suggesting an important role for coordinate
regulatory miRNA networks during GIC differentiation. To
assess the significance of these two up-regulated miRNA
clusters in the differentiation process, we performed
transfection experiments using precursors or inhibitors of these
miRNAs and analyzed the expression of differentiation
markers. Cluster miR-29a/29b did not induce the expression of
the studied differentiation markers, but sensitized the cells to
apoptosis by targeting MCL1, a bona-fide target of the miR-29
family [32]. Interestingly, MCL1 is the most over-expressed
protein of the BCL2 family in the majority of malignant gliomas,
and neutralization of MCL1 in glioma cells has been reported to
induce apoptosis and increase chemotherapy-induced
apoptosis [38], suggesting that miR-29a/29b over-expression
could be studied as a possible therapy for GBM. The up-
regulation of cluster miR-221/222 that we observed upon GIC
differentiation is more controversial, since this cluster has been
found over-expressed in GBM compared to non-transformed
tissue [39], being particularly associated to the astrocytic GBM
subclass [34]. Conversely, both miRNAs have been shown to
inhibit proliferation in the TF-1 erythroleukemic cell line and to
reduce the stem cell repopulating activity of cord blood CD34+
cells through inhibition of KIT [40]. Of note, KIT amplification is
a frequent alteration in GBM [41]. Thus, these miRNAs
probably can exert pro-oncogenic or tumor suppressor
functions depending on the cellular context. Regarding neural
cell differentiation, miR-221 has been found highly up-regulated
upon nerve growth factor-induced neuronal-like differentiation
of PC12 rat pheochromocytoma cells [42]. miR-221 could be
exerting a similar role during GIC differentiation.

One of the most surprising findings of this work is the pro-
differentiation role of miR-21 over-expression in GICs. miR-21
is regarded as an onco-miR in GBM, as well as in other tumors,
and its over-expression has been associated to poor clinical
outcome [43]. Indeed, miR-21 has shown a widespread
involvement in the inhibition of tumor suppressor genes in GBM
cells, targeting multiple components of the p53, transforming
growth factor-g (TGF-B) and mitochondrial apoptosis pathways
[44]. Consequently, the inhibition of miR-21 expression with
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doi: 10.1371/journal.pone.0077098.g006
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therapeutic intent has been suggested as a possible treatment
for GBM and some preliminary in vitro and in vivo assays have
provided promising results. For instance, it has been reported
that the inhibition of miR-21 in GBM cells as well as in glioma
xenotransplant-bearing mice promotes apoptotic cell death of
the tumor cells [45,46], but no studies of its effects on survival
were performed, as all animals were sacrificed 6 days after
treatment with LNA-anti-miR-21. In this regard, our finding of
the involvement of miR-21 in the positive regulation of
differentiation of GICs suggests that miR-21 inhibition could
increase the stemness of this population, which is considered
the probable source of tumor relapses after GBM treatment. Of
note, analogous data have been published by other groups
concerning the role of miR-21 in the biology of stem cells. For
example, the neural repressor REST maintains the self-
renewal capacity and the pluripotency of murine embryonic
stem cells by suppressing miR-21, suggesting that miR-21
could behave as an anti-proliferative factor in these cells by
targeting Nanog and Sox2 [47]. These data support a pro-
differentiation role of miR-21 in the stem cell context.
Furthermore, in this study we demonstrate that SPRY17 is a
direct target of miR-21 in GICs, and it has been reported that
SPRY1 inhibition promotes neural differentiation in mouse
embryonic stem cells [29]. SPRY1, along with SPRY2, has a
role as negative feedback regulator of FGF signaling also in the
mouse ventricular zone of the brain, where it regulates cortical
proliferation, differentiation and the expression of genes that
modulate progenitor identity [48]. Taking these data into
account, we suggest that miR-21 could induce the
differentiation of GICs by targeting SPRY7 in these cells.
Further studies are warranted to elucidate the effects of miR-21
inhibition on GICs and GBM tumor relapses in an in vivo
setting, which would be particularly interesting in the context of
evaluating miR-21 inhibition as a possible treatment for GBM.

In conclusion, we have found that some miRNAs with
oncogenic roles in GBM, such as miR-21 and the miR-221/222
cluster, are positive regulators of GIC differentiation in
presence of growth factors. These findings suggest that their
inhibition with the intent to improve GBM treatment might not
have the desired effects on avoiding relapses, what should be
taken into account for future studies. On the contrary, the
miR-29a/29b cluster could promote GIC apoptosis and also
improve bulk tumor killing in GBM by targeting MCL1, being a
promising candidate to design future treatments for GBM
aimed to avoid recurrence.

Supporting Information

Figure S1. Triple immunofluorescence staining for Nestin,
GFAP and TUJ1 in GN1C GICS upon differentiation or
miR-21 over-expression. GN1C cells were cultured during 14
days in NS or differentiation media (14d) (A) or for 7 days in
NS medium after pre-miR-21 (pre-21) or pre-miR negative
control 1 (pre-C-) over-expression (B), and Nestin (Alexa fluor
488), GFAP (Alexa fluor 568) and TUJ1 (Alexa fluor 647) were
detected by immunofluorescence. Images were acquired with a
Leica SP5-Il confocal microscope using a 20x/0.7 NA water
immersion objective.
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(TIF)
Figure S2. Putative targets of the 7 miRNAs with
significant changes of expression during GIC

differentiation are involved in cell functions and canonical
pathways relevant to neural processes, pluripotency and
cancer. Among the 740 genes with differential expression
upon GIC differentiation, public databases for prediction of
miRNA targets identified 236 putative targets of the 7 miRNAs
that significantly changed their expression during that process.
IPA functional analysis of these putative targets identified their
involvement in functions (A) and canonical pathways (B)
related to neural processes, cancer and pluripotency
(underlined). Only the 10 most significant pathways or
functions among the ones with associated p value below 0.05
(corresponding with a threshold of 1.30 in the axis representing
—log(p value), indicated by a yellow line in the graphs) are
depicted. The Wnt/B-Catenin pathway included many of the
putative miRNA targets altered during differentiation (C), most
of them down-regulated (green), and an important inhibitor of
this pathway, DKK1, was found up-regulated (red) during
differentiation.

(TIF)
Figure S3. Validation of the functional studies of
miR-221/221 inhibition and miR-21 over-expression in

additional GIC lines. G52 cells transfected with anti-miR-221
(anti-221), anti-mir-222 (anti-222) and anti-miR negative control
1 (anti-C-) were cultured for 14 days in differentiation medium
(A-D). miR-21 (pre-21) or pre-miR negative control 1 (pre-C-)
transfected G63 cells were cultured in NS medium during 7
days (E-F). Cells were assayed for the expression of miR-221
(B), miR-222 (D) or miR-21 (F) by g-RT-PCR. 2 was
calculated as miRNA expression relative to RNU6B expression.
mRNA expression levels of Nestin (NES) as well as astrocytic
(GFAP) and neuronal (TUJ1) differentiation markers were
measured by g-RT-PCR (A, C, E). 222t was calculated relative
to GAPDH expression and to GICs transfected with the
corresponding negative control (dotted lines). At least two
independent transfections were performed. *, statistical p value
<0.05 using unpaired t test and Holm-Bonferroni correction.
(TIF)

Figure S4. SPRY1, down-regulated upon GIC
differentiation, displays two putative binding sites for
miR-21 in its 3-UTR. SPRY1 (underlined) is one of the 10
most down-regulated genes among the putative targets of our
7 selected miRNAs with differential expression upon GIC
differentiation, as shown in the Top Molecules display of the
IPA analysis (A). Scrutiny with the PITA prediction algorithm
(B) identified a seed perfect match putative binding site for
miR-21 at position chr4:124324121-124324128 (Genome
Browser hg19 assembly) (black font highlighted in green), and
another more degraded possible site at position
chr4:124323893-124323900 (light green font). M means
mismatch and W wobble pair in the pairing between the seed
of miR-21 (SEED) and the putative binding site. The annealing
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positions of the primers used for amplification and subsequent
cloning of the 3’-UTR are underlined.
(TIF)

Figure S5. Over-expression of the miRNAs of the
miR-29a/29b cluster in G63 cells at the NS state induces
apoptosis and inhibits MCL1. miR-29a/b over-expression in
G63 cells transfected with pre-miR-29a (pre-29a) or pre-
miR-29b (pre-29b) compared to pre-miR negative control (pre-
C-) was confirmed by g-RT-PCR 4 days after transfection (A,
B). Cell viability assays using MTS (C) and apoptosis
assessment by Cell Death Detection kit (D) were carried out 4
days after transfection. MCL1 protein levels were assessed by
Western blot two days after transfection, using B-Actin as
loading control (E). Quantification of Western blots was
performed with ImageJ (F) and is displayed as the MCL1/B-
Actin ratio relative to the negative control (100%). At least two
independent transfections were carried out. *, p value <0.05 in
unpaired t test or Mann-Whitney U test, using the Holm-
Bonferroni correction for multiple comparisons.

(TIF)

Table S1. Primers for 3-UTR cloning and site directed
mutagenesis.
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