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Abstract: It has been clarified that words in written texts are classified into two groups called Type-I
and Type-II words. The Type-I words are words that exhibit long-range dynamic correlations in
written texts while the Type-II words do not show any type of dynamic correlations. Although the
stochastic process of yielding Type-II words has been clarified to be a superposition of Poisson point
processes with various intensities, there is no definitive model for Type-I words. In this study, we
introduce a Hawkes process, which is known as a kind of self-exciting point process, as a candidate
for the stochastic process that governs yielding Type-I words; i.e., the purpose of this study is to
establish that the Hawkes process is useful to model occurrence patterns of Type-I words in real
written texts. The relation between the Hawkes process and an existing model for Type-I words, in
which hierarchical structures of written texts are considered to play a central role in yielding dynamic
correlations, will also be discussed.

Keywords: Hawkes process; autocorrelation function; stochastic process; waiting time distribution;
word occurrence; long-range correlation

1. Introduction

Considering written texts as time series data and analyzing occurrence patterns of
any components of texts by using methods of time series analysis have been attempted
for various purposes including rhythm analyses [1–4], analysis of word distributions [5],
gathering language statistics for rare words [6], and measuring importance of words [7].
One of the major and actively investigated problems in time series analysis of written
texts is to elucidate the origin of long-range dynamic correlations which are observed
at various levels of components [8–13]. For example, although word-level long-range
correlations have been clearly detected especially for words which play important roles
in describing the main theme of texts [7,14,15], the stochastic process which brings the
dynamic correlations to word occurrences is unknown. More specifically, there exist models
of stochastic process yielding long-range dynamic correlations of important words [15,16],
but no clear conclusion has yet been obtained. Since occurrences of a word in a written
text can be treated as a point process as will be described in the next section, this problem
is equivalent to identifying a suitable point process which can reproduce the occurrence
patterns of the considered word. We treat this problem in this study, and propose a Hawkes
process as a powerful and useful candidate for this point process.

In a wide range of fields, it has gradually been realized that point processes with
strong long-range correlations are suitably described by using Hawkes processes [17]. For
example, the Hawkes processes have been successfully adopted to model occurrences
of earthquakes [18–20], neuronal spikes [21–23], transactions in financial markets [24],
behavior patterns of people on social networking sites [25,26], and patterns of COVID-19
transmission [27]. We expect that the process is also effective for describing word occurrence
patterns having dynamic correlations.
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Before explaining why this is to be expected, here we briefly describe the definitions
of Type-I and Type-II words. Words that have dynamic correlations in their occurrence
patterns in a document are called Type-I words, while words that do not exhibit any type of
dynamic correlations are called Type-II words. As will be described later, an autocorrelation
function (ACF) is used to determine whether a considered word has dynamic correlation
or not.

The reasons why we expect the Hawkes process to be applicable to the description of
occurrence patterns of Type-I words are as follows.

• Important words which play central roles in describing some notions or ideas in
texts are all classified into Type-I words [7,14]. This is because every important word
appears in texts with a “burst” nature; once an important word appears in a considered
text, then it appears again and again for the duration in which the notion or the idea
is described. Thus, the “burst” nature brings dynamic correlations in the occurrence
patterns and consequently the word becomes Type-I. The “burst” nature of word
occurrences reminds us of the fact that once an earthquake occurs, earthquakes occur
more frequently for a short period of time. The Hawkes process can adequately treat
such “burst” phenomena because it has a built-in property of self-excitability.

• Type-I words often show long durations of dynamic correlations ranging from several
tens to several hundreds of sentences [7,14,15]. These durations correspond to lengths
of sentences in which some notion/idea that deeply related with a considered word
are described. The Hawkes process is expected to be able to reproduce such long-range
dynamic correlations because of its self-excitability.

Note that the Hawkes process is expected to describe only the occurrence patterns
of Type-I words, not those of Type-II words. This is because Type-II words appear with
almost constant probabilities of occurrence regardless of context, which is different from
the self-excited pattern that can be described by the Hawkes process.

In this study, we try to describe occurrence patterns of Type-I words by use of the
Hawkes process and check the validity of the description. To our knowledge, this is the
first attempt to apply the Hawkes process to analyze written texts. If the description by the
Hawkes process is successful, it will not only be an important application of the Hawkes
process, but also be an important step in attempts to describe document generation by
stochastic models.

The rest of the paper is organized as follows. In the next section, we present the method
of how to find/optimize an adequate Hawkes process for a considered Type-I word, given
occurrence patterns of the word. The section also presents procedures that check the validity
of the optimized Hawkes process through simulation. Section 3 is devoted to describing
the results of validation of the optimized Hawkes processes. In Section 4, we discuss
the relation between the Hawkes process and an existing stochastic model of generating
Type-I words in which a hierarchical structure of written texts (volumes, chapters, sections,
subsections, paragraphs, sentences) is taken into account. In the last section, we give our
conclusion and indicate a direction of future study.

2. Methodology

The main purpose of this study is to verify whether the process of generating Type-I
words can be regarded as a Hawkes process or not. To achieve the purpose, we take the
following 3 steps.

1. From the occurrence patterns of Type-I words in real written texts, we calculate
autocorrelation functions (ACFs) to characterize dynamic correlations of these words.
Details are given in Section 2.1.

2. We optimize a Hawkes process so that it can express the stochastic process of yielding
observed occurrence patterns of a considered word. For the optimization, we utilize
a log-likelihood function of the Hawkes process, and maximize the function by
optimizing parameters of the process, given the observed word occurrence signals.
Then, the Hawkes process, having the kernel function with the optimized values of
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parameters, is considered to be the best way to express the observed word occurrence
signal of the considered word in the sense of maximum likelihood estimation (MLE).
A detailed description is given in Section 2.2.

3. We generate word occurrence signals of the considered word from the optimized
Hawkes process. This is achieved by standard simulation procedures of point pro-
cesses [28]. The simulated word occurrence signals are then used to calculate ACFs.
The ACFs of the simulated signals are compared with the ACFs obtained in step 1 to
validate the optimized Hawkes process. Section 2.3 explains the procedure in detail.

As described above, we mainly utilize ACF as a characteristic quantity of a stochastic
process. In general, waiting time distributions (WTDs) are also used along with ACFs
in time series analysis because they both contain equivalent information in principle.
However, ACFs is more suitable in this study, because ACFs offer more precise descriptions
of dynamic correlations for the case of word occurrence signals [16].

2.1. Model Functions of ACFs for Type-I and Type-II Words

One of the methods to convert occurrence patterns of a considered word in the consid-
ered text to time series data is to utilize the following definition of a binary time-dependent
signal X(t):

X(t) =
{

0 (if a considered word does not occur in the tth sentence)
1 (if a considered word occurs in the tth sentence)

. (1)

Here, t is an ordinal number of sentences that assigned from the first to the last sentences
in a considered text and it plays a role of time along the text. By defining a binary time-
dependent signal X(t) as in Equation (1), we can utilize various results in point process
theory for our investigation.

Two examples of word occurrence signals X(t) are shown in Figure 1a,d. The two
words, “organ” and “seem” used in the figure, are both picked from “On the Origin of
Species” by Charles Darwin. The word “organ” is a typical Type-I word in the book, and
thus it shows a “burst” nature in X(t) (Figure 1a) and in a cumulative count of the word
occurrences along the text (Figure 1b). On the other hand, since the word “seem” is a
typical Type-II word in the book, its X(t) (Figure 1d) and cumulative count (Figure 1e) do
not exhibit a “bursty” nature but show word occurrences with a constant occurrence rate,
which indicates the occurrences are purely governed by chance.

Figure 1c,f shows ACFs of word “organ” and “seem”, which are calculated from
X(t) displayed in Figure 1a,d, respectively. Since X(t) is a discrete-time signal, a general
definition of ACF for a continuous-time signal A(t) given by

Φ(t) =
lim

T→∞

∫ T
0 A(τ)A(τ + t)dτ

lim
T→∞

∫ T
0 A(τ)A(τ)dτ

, (2)

is extended for our discrete-time case and the extended definition is used for the calcula-
tions [7]. The ACF shown in Figure 1c indicates that the dynamic correlation gradually
decreases as lag increases, which is a typical behavior of ACFs in usual linear systems.
On the other hand, ACF in Figure 1f shows abrupt decrease from its initial value one at
t = 0 to some constant value of almost zero at t > 0. This behavior of ACF indicates
that Type-II words are generated from stochastic processes that do not have any type of
dynamic correlations.

To represent characteristics of ACFs of Type-I words, we introduce an empirical model
function which gives satisfactory fittings of observed ACFs for Type-I words [7,14]. The
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function is called the Kohlrausch–Williams–Watts (KWW) function and has a stretched
exponential form given by

ΦKWW(t) = α exp

{
−
(

t
τ

)β
}
+ (1− α), (3)

where α, β and τ are fitting parameters satisfying 0 < α ≤ 1, 0 < β ≤ 1 and 0 < τ. The
fitting result for the Type-I word “organ” by use of Equation (3) is also shown as a red
curve in Figure 1c with optimized values of fitting parameters.
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Figure 1. Word occurrence signals X(t) (a,d), as defined by Equation (1); cumulative count of word
occurrences (b,e), and ACFs (c,f) of the words “organ” (a–c) and “seem” (d–f). The words “organ” and
“seem” are typical Type-I and Type-II words, respectively, picked from the Darwin text. Occurrences
of “organ” are in a context-specific and bursty manner (a,b), and long-range dynamic correlations are
seen in the ACF plot (c), while occurrences of “seem” show an approximately constant occurrence
rate (d,e) and no type of dynamic correlation is seen in ACF (f). Red lines in (c,f) show best fitted
results by use of Equations (3) and (4), respectively.

A model function for ACFs of Type-II words is given by

ΦPoisson(t) =
{

1 (t = 0)
γ (t > 0)

, (4)

where γ is a fitting parameter satisfying 0 < γ < 1 and it actually takes a value almost
equal to zero. Note that Equation (4) is theoretically derived under an assumption that the
stochastic process yielding Type-II words is a Poisson point process [7]. In Figure 1f, the
result of fitting with Equation (4) is displayed as a red line.
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Classifying whether a given word is Type-I or Type-II is performed as follows. First, we
execute two non-linear least squares fittings by use of Equations (3) and (4) simultaneously
on the one observed ACF of a considered word and compare two values of the Bayesian
information criterion (BIC) each of which obtained at the fitting using Equation (3) and at
the fitting using Equation (4). If the BIC of the fitting using Equation (3) is smaller than
that using Equation (4), then the word is classified as Type-I and otherwise the word is
classified as Type-II. We can classify an arbitrary word in written texts as Type-I or Type-II
without any ambiguities by using this procedure with some additional criteria [7].

Seven texts employed in this study, which are famous academic books chosen so
as to represent wide range of written texts, are listed in Table 1 with their short names
and some information. The procedure for preparing texts is the same as in the previous
paper [16]. In this study, we determined Type-I words to be analyzed through following
steps. First, words that appear at least 50 sentences or more in each of the 7 texts are
chosen as frequent words. All frequent words are then classified whether Type-I or Type-
II by the classification method described above. Finally, stop words are removed from
the set of the Type-I words, and remaining words are used for further analysis. As stop
words, we used the same list of stop words that the MySQL 8.0 system uses for full-text
queries (https://dev.mysql.com/doc/refman/8.0/en/fulltext-stopwords.html accessed on
2 March 2022).

Table 1. Summary of English texts employed.

Short
Name Title Author Vocabulary

Size
Length in
Sentences

Number of
Type-I Words

Darwin On the Origin of Species Charles
Darwin 5728 4036 124

Einstein Relativity: The Special and General Theory Albert Einstein 2222 1107 20

Freud Dream Psychology Sigmund Freud 4520 1977 18

Kant The Critique of Pure Reason Immanuel Kant 5157 5920 157

Lavoisier Elements of Chemistry Antoine
Lavoisier 5558 3899 122

Plato The Republic Plato 5686 5268 49

Smith An Inquiry into the Nature and Causes of the
Wealth of Nations Adam Smith 8399 11906 433

2.2. Log-Likelihood Function of Hawkes Process

Here we recall the basic notation of Hawkes process for later reference [25,29]. A
Hawkes process is a kind of self-exciting point process and has been applied in diverse
areas because of its self-exciting nature. This ‘self-excite’ means that each arrival/occurrence
increases the rate of future arrivals/occurrences for some period. The conditional intensity
function of the Hawkes process is given by

λ(t|Ht) = µ + ∑
ti<t

g(t− ti), (5)

where Ht denotes the history of all events occurring before time t, µ is the background
intensity, ti means a time of the ith event occurrence before time t, and g(τ) is a kernel
function which determines how past events will affect the future. Two frequent choices of
the kernel function, which are also used in this study, are

gexp(τ) = ab exp(−bτ), (6)

gpow(τ) =
K

(τ + c)p , (7)

https://dev.mysql.com/doc/refman/8.0/en/fulltext-stopwords.html
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where a and b in Equation (6) and c, p and K in Equation (7) are parameters of the kernels
taking non-negative real values. Examples of an occurrence signal, a cumulative count,
and a conditional intensity function for a Hawkes process with an exponentially decaying
kernel, Equation (6), are shown in Figure 2. Figure 3 shows corresponding quantities to
Figure 2 for a Hawkes process with a power-law decaying kernel, Equation (7). As seen
in these figures, since a value of the intensity function at the current time is enhanced by
the history of past generated events, once an event is generated, it tends to be generated
intensively in a short period of time in Hawkes processes.
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As mentioned before, the main objective of this study is to verify whether the Hawkes
process is eligible to describe stochastic processes yielding Type-I words or not. The first
step of the verification is to find the Hawkes process that best approximates the stochastic
process yielding the actual occurrence signal of a considered word within the descriptive
power of Hawkes processes. The most suitable Hawkes process, which is expected to
be able to reproduce real word occurrence signals X(t) of a considered Type-I word, is
searched for by maximizing the log-likelihood function of the Hawkes process. Therefore, a
searching method to find the optimized Hawkes process described below is in the manner
of standard maximum likelihood estimation (MLE).

Given the history of all events in the time interval [0, T], i.e., given the record of all
occurrence times

D[0,T] = {ti}n
i=1, (8)

the log-likelihood function of the Hawkes process having conditional intensity function of
Equation (5) is given by [30]

l
(

θ|D[0,T]
)
= log L(θ|D[0,T]) =

n

∑
i=1

log λ(ti|Hti )−
T∫

0

λ(t|Ht)dt, (9)
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where θ denotes a set of parameters of the Hawkes process. If we combine Equations (5) and (6),
then Equation (9) becomes

lexp
(
µ, a, b

∣∣{ti}n
i=1
)

=
n
∑

i=1
log

[
µ + ∑

j<i
ab exp

{
−b
(
ti − tj

)}]
−
[

µT +
n
∑

i=1
a{1− exp(−b(T − ti))}

]
.

(10)

In the same way, combining Equations (5) and (7) makes Equation (9) to

lpow
(
µ, c, K, p

∣∣{ti}n
i=1
)

=
n
∑

i=1
log

[
µ + ∑

j<i

K
(ti−tj+c)

p

]
−
[

µT +
n
∑

i=1

K
p−1

{
1

cp−1 − 1
(T−ti+c)p−1

}]
.

(11)

In our case, the set of occurrence times of events, {ti}n
i=1 in Equations (10) and (11), is

equivalent to the set of times (sentence numbers) at which word occurrence signal X(t)
takes value one. MLE of θexp = (µ, a, b) for exponentially decaying kernel, Equation (6), and
that of θpow = (µ, c, K, p) for power-low decaying kernel, Equation (7), are thus obtained
by substituting {ti}n

i=1 to Equations (10) and (11), respectively, and then maximizing these
functions. To maximize Equation (10) as a function of θexp = (µ, a, b), and to maximize
Equation (11) as a function of θpow = (µ, c, K, p), we use a quasi-Newton method with the
BFGS algorithm [31].

Entropy 2022, 24, 858 7 of 19 
 

 

 
Figure 3. Examples of (a) the occurrence signal of events, (b) the cumulative count of events and (c) 
the conditional intensity function for the Hawkes process with 𝜆(𝑡|𝐻௧) = 0.05 + ∑ .ଽ(௧ି௧ାଵ.)భ.ఴ௧ழ௧ . 

𝑙൫𝜽ห𝑫ሾ,்ሿ൯ = log 𝐿(𝜽| 𝑫ሾ,்ሿ) =  log 𝜆(𝑡|𝐻௧)
ୀଵ − න 𝜆(𝑡|𝐻௧)்

 𝑑𝑡, (9) 

where 𝜽 denotes a set of parameters of the Hawkes process. If we combine Equations (5) 
and (6), then Equation (9) becomes 𝑙௫(𝜇, 𝑎, 𝑏|{𝑡}ୀଵ )

=  log 𝜇 +  𝑎𝑏ழ exp൛−𝑏൫𝑡 − 𝑡൯ൟ
ୀଵ

− 𝜇𝑇 +  𝑎൛1 − exp൫−𝑏(𝑇 − 𝑡)൯ൟ
ୀଵ ൩. 

(10) 

In the same way, combining Equations (5) and (7) makes Equation (9) to 𝑙௪(𝜇, 𝑐, 𝐾, 𝑝|{𝑡}ୀଵ )
=  log 𝜇 +  𝐾൫𝑡 − 𝑡 + 𝑐൯ழ 

ୀଵ
− 𝜇𝑇 +  𝐾𝑝 − 1 ൜ 1𝑐ିଵ − 1(𝑇 − 𝑡 + 𝑐)ିଵൠ

ୀଵ ൩. 
(11) 

In our case, the set of occurrence times of events, {𝑡}ୀଵ  in Equations (10) and (11), is 
equivalent to the set of times (sentence numbers) at which word occurrence signal 𝑋(𝑡) 
takes value one. MLE of 𝜽௫ = (𝜇, 𝑎, 𝑏) for exponentially decaying kernel, Equation (6), 
and that of 𝜽௪ = (𝜇, 𝑐, 𝐾, 𝑝)  for power-low decaying kernel, Equation (7), are thus 

Figure 3. Examples of (a) the occurrence signal of events, (b) the cumulative count of events and
(c) the conditional intensity function for the Hawkes process with λ(t|Ht) = 0.05 + ∑ti<t

0.9
(t−ti+1.7)1.8 .

In actual procedures of the quasi-Newton method, we introduce new parameters
m0, a0, b0, c0, K0 and p0 instead of using original parameters µ, a, b, c, K and p in order to
stabilize convergence calculations. The original and new parameters are related as follows.
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µ = 0.5 + 0.5tanh(m0), (12)

a = 0.5 + 0.5tanh(a0), (13)

b = exp(b0), (14)

c = exp(c0), (15)

K = 0.5 + 0.5tanh(K0), (16)

p = 3.2 + 2.0tanh(p0). (17)

Note that all of the original parameters have a restriction that they should be non-negative,
but newly introduced parameters can take any real values. Equations (12)–(17) also indicate
that the conditions of the original parameters expressed by the following inequalities are
automatically satisfied; 0 < µ < 1, 0 < a < 1, 0 < b, 0 < c, 0 < K < 1, 1.2 < p < 5.2.
The last condition for p, 1.2 < p < 5.2, is needed in a practical sense because the Hawkes
process becomes unstable when p < 1. To determine which of the two kernel functions,
Equation (6) and Equation (7), is more appropriate given actual word occurrence data
{ti}n

i=1, we use the Akaike’s Information Criterion (AIC) for the judgement; i.e., we select
Equation (6) as a better kernel function when the AIC of MLE calculation with Equation (10)
is smaller than that with Equation (11), and otherwise we select Equation (7). The AIC is
an estimator of prediction error and therefore it provides a mean for model selection in
the same way as BIC [32]. The reason for using AIC instead of using BIC is that AIC has a
proven track record of being applied in model selection involving Hawkes processes [30].

2.3. Simulating Word Occurrence Events from Hawkes Process

The conditional intensity function, Equation (5), can be determined for each of the
Type-I words by using optimized kernel parameters θexp = (µ, a, b) in Equation (6) or
θpow = (µ, c, K, p) in Equation (7), which are obtained by MLE procedures with the word
occurrence signal {ti}n

i=1 of a considered word. Once the conditional intensity function,
Equation (5), is fixed, then we can simulate word occurrence signal X(t) from the Hawkes
process having that fixed intensity function. The simulation period T was set to be equal to
the actual text length (length in sentences of a considered book) to check the validity of the
Hawkes process; i.e., if the Hawkes process employed in the simulation is valid, then the
number of occurrences in simulated X(t) is almost equal to the number of occurrences of
a considered word in real written text. For simulating X(t), we use a standard thinning
algorithm for simulation of point processes [28]. Since the simulated word occurrence times
ti can take any real values between 0 and T, we convert these values of ti to the nearest
integer values in order to meet the condition that real ti take only integer values in time
along the text.

Then, we calculate ACFs from the simulated signal X(t) and we further perform the
curve fitting with Equation (3), as described in Section 2.1. We then evaluate the degree
of agreement between the ACFs calculated from actual word occurrence signals X(t) and
the ACFs calculated from simulated X(t) from the Hawkes process. The evaluation is
made through comparisons of two sets of optimized fitting parameters; one is the set of
parameters in Equation (3) obtained for real ACFs and the other is the set of parameters
obtained for simulated ACFs calculated from simulated X(t).

3. Results
3.1. MLE of Hawkes Process

Table 2 summarizes the results of MLE performed given the real word occurrence
signal X(t) of the word “organ” which is shown in Figure 1a. The parameter values listed
in the table are optimized ones to maximize Equations (10) and (11). Comparing the
two AIC values in the table, we can judge that gexp(τ) is more suitable than gpow(τ) to
simulate the real word occurrence signal X(t). Thus, we employ the Hawkes process with
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gexp(τ) having the parameter values of (µ, a, b) shown in Table 2 to simulate X(t). The
simulated X(t), cumulative count obtained from the simulated X(t) and ACF calculated
from the simulated X(t) are shown in Figure 4a–c, respectively. Figure 4c also shows the
results of the curve fitting using Equation (3). Although the “burst” periods are different in
Figures 1 and 4, overall behaviors of ACFs are almost coincide in Figures 1c and 4c.

Table 2. Results of MLE of the Hawkes process with the word occurrence signal of “organ” in
Darwin text.

Kernel Type Parameters Vector AIC BIC

gexp(τ) (µ, a, b) = (0.00893, 0.23944, 0.25068) 540.9253578 546.7790890
gpow(τ) (µ, K, c, p) = (0.00743, 0.62804, 5.05592, 1.56729) 541.3719225 549.1768974
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Figure 4. Results of the simulation for generating word occurrence signal of “organ” in Darwin text.
(a) Simulated word occurrence signal X(t) obtained from the optimized Hawkes process for “organ”,
(b) cumulative count of word occurrences obtained from simulated X(t), and (c) ACFs calculated
from simulated X(t) and the best fitted curve by use of Equation (3).

Table 3 shows comparison of the curve fitting results of two different ACFs; one is the
ACFs calculated from the real X(t) of the word “organ”, and the other is the ACF obtained
from simulated X(t) for the same word. From Table 3, it can be seen that the number of
word occurrences are almost the same for real and simulated X(t), and the values of other
parameters are also similar. This result indicates that the Hawkes process with optimized
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parameters can reproduce a word occurrence signal having the same statistical properties
as the actual signal of the word “organ”.

Table 3. Fitting results for two ACFs of the actual and and the simulated signals.

Type of X(t) Number of Word
Occurrences

Fitting Parameters in Equation (3)
BIC

α β τ

observed signal in real written text 155 1.00000 0.23825 1.64135 −691.30057
simulated signal from Hawkes process 157 1.00000 0.27683 1.16607 −680.82002

3.2. Results of Simulations for All Type-I Words

Figures 5–11 show comparisons of the curve fitting results of two different ACFs for
all Type-I words which appear in 7 texts listed in Table 1. In each plot of (a) in these figures,
the horizontal axis represents occurrence numbers of words in real written text, while the
vertical axis represents occurrence numbers in the simulated X(t). In each plot of (b), (c),
and (d), the horizontal axis represents one of the fitting parameters of ACFs obtained from
the real signal X(t), while the vertical axis represents that of ACFs obtained from simulated
X(t). In each plot of (e), the horizontal axis shows values of fitting parameter γ, which
appears in Equation (4), for ACFs obtained from the real signal X(t), while the vertical axis
shows values of γ for ACFs obtained from simulated X(t). One may wonder why we use
here the parameter γ which appears in the model function for Type-II words, Equation (4).
The value of γ is equal to the intensity rate λ in a simple Poisson point process [7] and can
therefore be regarded as the averaged value of the conditional intensity function λ(t|Ht) of
a Hawkes process. Thus, if the horizontal and vertical values in plot (e) are approximately
equal, then overall behaviors of real and simulated X(t) are considered to be similar. In
each plot of (f), the horizontal axis shows BICs of fitting ACFs obtained from the real signal
X(t), while the vertical axis shows BICs of fitting ACFs obtained from simulated X(t). If
the horizontal and vertical values in plot (f) are approximately equal, then overall behaviors
of ACFs obtained from real and simulated X(t) are considered to be similar. In all plots,
one plot point corresponds to one Type-I word; for example, horizontal and vertical values
of one plot point in a plot (a) represent the real occurrence number of a considered Type-I
word (the horizontal value) and occurrence number in the simulated signal for that word
(the vertical value). The red line in each plot shows the relation y = x, on which plot points
should be located when Hawkes processes are sufficient to represent original word yielding
processes. The correlation coefficients for the vertical and horizontal quantities are also
displayed in the title of each plot.

The degree of agreement between the vertical and horizontal quantities of each plot in
Figures 5–11 indicates that the actual signals of Type-I words can be reproduced somewhat
accurately using the optimized Hawkes processes. In particular, for the reasons listed
below, we can conclude that the Hawkes processes have sufficient descriptive power to
express original stochastic processes yielding Type-I words.

• The correlation coefficients of the number of occurrences (plot (a)) show strong positive
correlations in most texts. This fact indicates that actual and simulated X(t) share
same statistical properties.

• The correlation coefficients of γ (plot (e)) and those of BIC (plot (f)) also show strong
positive correlations. This indicates that ACFs of real X(t) and those of simulated
X(t) are very similar in overall behaviors.
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Figure 5. Comparisons between values evaluated from real X(t) (horizontal) and those evaluated
from simulated X(t) (vertical) across 6 characteristic quantities. All quantities were calculated for
each of Type-I words that appears in Darwin text. The red line in each plot represents the relation
y = x. The title of each plot includes a value of correlation coefficient, r, which indicates strong
positive correlation when r is larger than about 0.6.
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The most significant reason why the horizontal and vertical quantities do not perfectly
match in these figures is that the simulated X(t) generated by a Hawkes process with
optimized parameters is only one sample of the time series data among infinite realizations
generated by the optimized Hawkes process. If we prepare sufficient samples, i.e., large
number of simulated signals X(t) from the optimized Hawkes process for one Type-I word,
and use averaged values for all simulated X(t) to obtain one vertical value, then the vertical
value tends to approach to the corresponding horizontal value of the considered word.
This means that each of all runs generating X(t) offers one vertical value, and averaging
all vertical values justifies their convergence toward the real value. However, this requires
high computational costs, and is out of the scope of this study.

4. Discussion

In our previous study [16], a model of stochastic process that yields Type-I words has
been proposed. The characteristic of the model is that a waiting time distribution (WTD) of
word occurrences has a fractal structure, which is naturally introduced from the hierarchical
structure of written texts, i.e., volumes, chapters, sections, subsections, paragraphs, and
sentences. More specifically, the fractal nature of WTDs has been clarified through the
following procedures [16].

1. First, we construct an intensity function of word occurrence along a text, P(t), which
describes the occurrence probability of a considered word at time t. The construction
is done in a recursive way in which the hierarchical structure of written texts is
considered. Note that P(t) represents word occurrence probability per unit time at
time t, and thus it corresponds to λ(t|Ht) of Hawkes processes.

2. A Monte Carlo simulation is performed by use of P(t) to generate a word occurrence
signal X(t).

3. Waiting times tw, which denote a time between two successive word occurrences, and
their distribution P(tw) are calculated from the X(t).

4. The resultant log-log plot of tw vs. P(tw) shows a linear relationship, indicating that
the WTD has a fractal structure.
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Since the Hawkes process is defined by Equations (5)–(7), and since the structure of
written texts is not taken into account among these equations, the above model does not
seem to be related to the Hawkes process. However, the conditional intensity function
λ(t|Ht) of Hawkes processes employed in this study and P(t) described in the first proce-
dure above, are very similar to each other. To illustrate this fact, and to follow procedures 1
to 4 mentioned above by use of simulated signals from the Hawkes process, we present
another simulation result in which the simulated period is set to be a longer value of
T = 10, 000 to make result clearer. Figure 12 shows the simulated signal X(t) from a
Hawkes process, cumulative count of word occurrences, and λ(t|Ht) of the process over
the period of [0, 10, 000]. The conditional intensity function λ(t|Ht) shown in Figure 12c is
very similar to the previously reported P(t) [14,16] in the point that it seems to be restricted
to take several approximately discretized values.
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Figure 12. Simulated signal X(t) (a), cumulative count of word occurrences (b), and conditional intensity
function λ(t|Ht) (c), of the Hawkes process defined by λ(t|Ht) = 0.05+ ∑ti<t 0.1 exp{−0.25(t− ti)}.

Figure 13 shows ACF calculated from simulated X(t) shown in Figure 12a and its
fitting results by use of Equation (3). Note that the fitting parameter τ takes a very small
value of about τ ∼= 0.03 in Figure 13. In general, when τ in Equation (3) becomes smaller,
then the resultant ΦKWW(t) defined by Equation (3) approaches to ΦPoisson(t) given by
Equation (4), and at the limit of τ → 0 , Equation (3) becomes Equation (4). Thus, the ACF
shown in Figure 13 has intermediate properties between Figure 1c,f. In the same context,
Figure 12a has intermediate properties between Figure 1a,d, and Figure 12b is in between
Figure 1b,e. Therefore, the simulated signal shown in Figure 12a has a dynamic correlation
with “intermediate” strength.

Figure 14 shows two examples of the relationship between waiting time tw versus their
distribution P(tw) in double logarithmic plots. The values of tw and P(tw) used in the figure
are obtained from two simulated X(t) from Hawkes processes; one is the X(t) simulated for
the word “organ” (Figure 4a) and the other is X(t) shown in Figure 12a. Note that a linear
relationship seems to hold between log tw and log P(tw) for both cases, indicating that a
fractal structure exists in the WTDs. It is confirmed that, therefore, the Hawkes processes
bring some fractal structure in WTDs even in the case at which the Hawkes process does
not have strong dynamic correlations but an “intermediate” correlation level. From the
results shown in Figure 14, it seems almost certain that the Hawkes processes optimized to
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describe the generations of Type-I words have some fractal structures within their WTDs.
However, in order to clearly demonstrate this conclusion, large-scale simulations with
longer periods T are needed.
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in plot (b) which were obtained by the method of weighted least square. To avoid noise affecting the
fittings, we omit tw having an occurrence count less than or equal to 2.

5. Conclusions

Occurrence patterns of Type-I words that appear in seven famous academic books
were simulated by use of Hawkes processes. To seek an optimized Hawkes process for
each of the Type-I words, we performed maximum likelihood estimation of the parameters
of Hawkes process with the log-likelihood function given the actual occurrence pattern
of a considered word observed in real written text. With that optimized Hawkes process,
the occurrence signal of the word is generated and compared to the actual occurrence
pattern of the word. The validity of the optimized Hawkes process was confirmed through
comparisons between ACFs obtained from real word occurrence signals X(t) and those
obtained from the simulated X(t). Degrees of agreement in various characteristic quantities
of ACF show that Hawkes processes have a satisfactory ability to reproduce actual word
occurrence signals in real written texts. Therefore, Hawkes processes can be utilized to
express or simulate real word occurrence patterns of Type-I words. One of the advantages
of using the Hawkes process in this manner is that it allows us to infer how a considered
Type-I word works in a document. More specifically, we can determine the characters of
the dynamic correlation of the word from the parameters vector, θexp or θpow, although the
accuracy of parameter estimation needs to be further improved for this purpose.
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We further found that simulated word occurrence signals from Hawkes processes
have a property that waiting time tw and its distribution P(tw) show linear relationship
in double-logarithmic plots, indicating that the employed Hawkes processes have some
fractal structure in their WTDs. The generalization of this finding through large scale
simulations is an interesting theme for our future research.

Another possible direction of a future study is to establish a link between the stochas-
tic model of Type-I words and some kind of diffusion model. Indeed, in our previous
study [16], we utilized a Weiestrass random walk model [33–35] and modified it to de-
rive the linear relationship between log tw and log P(tw) which was observed in WTDs
of Type-I words. More generally, a methodology that directly relates point processes to
diffusion processes has already been proposed [36,37]. This may allow us to apply various
findings on fractional Brownian motion [38–40] to the analysis of the generation process of
Type-I words.

This study confirms that the yielding processes of Type-I words in seven famous
academic books can be described somewhat accurately by the Hawkes processes, which was
established through the curve fittings in which ACFs of simulated signals X(t) generated
from Hawkes processes are well fitted by the KWW function. This result leads to a new
research question: can the ACFs of signals generated from Hawkes processes always be
described by the KWW functions? Solving this problem requires either running large-scale
simulations of a new design or deductive arguments by developing the relevant point
process theory. This issue is also an interesting research direction for the future.
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