
Journal of Vision (2021) 21(8):19, 1–11 1

Controlling the spatial dimensions of visual stimuli in online
experiments
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There are clear benefits to using an online environment
for human subjects’ research, for instance, rapid data
collection and access to a diverse body of potential
participants. One distinct drawback of online
environments as compared to laboratory environments
is the relative lack of control over experiment
conditions. For research into human vision, a specific
concern is the relative lack of control over angular
stimulus dimension in an online setting. This paper
examines three approaches to estimating a participant’s
viewing distance online, and quantifies the magnitude
of the error in angular stimulus size associated with each
method. For each method, the average expected error is
smaller than 20% of the intended stimulus size, and for
the best method it is close to 10%. This paper provides a
discussion of the benefits and drawbacks of each of the
three methods, as well as parameter values and
computer code that will facilitate the use of these
methods in future online studies.

Introduction

Studies in the field of experimental psychology can
benefit from administering experiments via online
hosting services, as opposed to bringing participants
into the laboratory (Reips, 2002; Crump, McDonnell,
& Gureckis, 2013; Sauter, Draschkow, & Mack, 2020).
This approach can increase the number participants
that can feasibly be tested in a given amount of
time, for instance, when combined with a university’s
subject pool, and especially when combined with a
web-based recruitment platform, such as Prolific (Palan
& Schitter, 2018) or Amazon’s MTurk. The large
number of potential participants that can be reached
via such platforms, moreover, is a plus for studies
that aim to recruit participants who meet special,
low-prevalence, criteria (e.g. having a certain medical
condition), or participants who form a representative
sample of the overall population. In addition to such
general benefits of online experiments, the restrictions
in person-to-person interaction imposed by the
coronavirus disease 2019 (COVID-19) pandemic have
temporarily made online experiments the only option

for many research laboratories around the world
(Sauter et al., 2020). Indeed, it is plausible that this
forced foray into online experiments will have a lasting
impact on the popularity of such experiments, even in
the post-pandemic world, as numerous researchers will
now have climbed the learning curve of online testing.

A potential limitation of trading in the laboratory
computer for participants’ own personal machines, is
a relative lack of control over experiment conditions.
In the present study, I am concerned with control over
the participant’s viewing distance and, ultimately, over
the angular dimensions of on-screen stimuli. Many
classic phenomena in cognitive psychology are robust
to the relative lack of control associated with online
testing (Germine, Nakayama, Duchaine, Chabris, &
Chatterjee, 2012; Crump et al., 2013), but uncertainty
about viewing distance can be a serious limitation,
particularly in the field of vision science, where the
angular extent and angular eccentricity of stimuli on the
retina are often critical. Indeed, in vision science, these
variables are routinely specified in methods sections and
are typically kept constant in the laboratory with the
use of a head rest. There is good reason for this, because
countless (probably most) aspects of visual function
show a systematic dependence on angular stimulus size
and eccentricity (e.g. Rubin, Nakayama, & Shapley,
1997; Pelli, Palomares, & Majaj, 2004; Tadin & Lappin,
2005; Kang, 2009; Herrmann, Montaser-Kouhsari,
Carrasco, & Heeger, 2010; Stewart, Valsecchi, & Schütz,
2020). Clearly, then, the value of online experiment
environments for vision-related research depends
critically on the experimenters’ ability to infer or control
viewing distance and, consequently, angular stimulus
dimensions.

In this study, I conducted two online experiments
that were administered via a web-based recruitment
platform, in order to compare three approaches to
estimating viewing distance online. First, I evaluated
how accurately one can estimate viewing distance
from a participant’s response to two simple questions:
whether the participant is using a laptop screen or an
external screen, and how tall the participant is. This first
approach is based on the common-sense assumptions
that the range of natural viewing distances is limited to
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begin with, and that it depends on what type of screen a
person uses (closer for a laptop screen) as well as on the
person’s height (closer for shorter people, particularly
when using a laptop). Second, I evaluated an approach
that asks participants to position themselves at arm’s
length from the screen center. In combination with
the participant’s height, this may provide a reasonable
estimate of viewing distance, given that body height and
arm length are closely correlated (Quanjer, Capderou,
Mazicioglu, Aggarwal, Banik, Popovic, Tayie, Golshan,
Ip, & Zelter, 2014). Third, I compared those two
methods to a recently proposed method that centers on
estimating the position of the blind spot on the screen
(Li, Joo, Yeatman, & Reinecke, 2020). The angular
eccentricity of the blind spot is relatively constant
across participants, which allows its screen position to
be translated into a fairly reliable measure of viewing
distance – an approach that Li et al. (2020) termed the
“virtual chinrest” method.

To preview the results, I find that the method based
on blind spot location allows the most accurate control
of angular stimulus dimensions, followed by the method
based on arm length. I also find that the method based
only on two questions, although not as good as the
other two methods, does not perform dramatically
worse and may be suitable in some situations where
only approximate control of angular dimensions is
required or where an alternative approach fails. I
provide parameter values that can be used to translate
observed variables (body height, screen type, and blind
spot location) into estimates of viewing distance in
future experiments, and I report the magnitude of the
error in estimated distance and in angular stimulus
dimensions that can be expected when using these
parameter values. Finally, based on the observation that
participant responses are not always reliable, I propose
a tiered approach that attempts several approaches to
estimate viewing distance in sequence. I provide code
created in PsychoPy (Peirce, Gray, Simpson, MacAskill,
Höchenberger, Sogo, Kastman, & Lindeløv, 2019) to
implement this tiered approach at the start of an online
experiment.

Methods

I performed two experiments. Both were created in
PsychoPy (Peirce et al., 2019) and hosted on its online
platform Pavlovia. Participants were recruited and paid
using Prolific (Palan & Schitter, 2018). All experiments
were approved by the Institutional Review Board of
Michigan State University. In the first experiment, I
tested the approach based on body height and screen
type, and the approach based on arm length. In the
second experiment, I tested the approach based on
blind spot location.

Experiment 1

For this experiment, I recruited 33 colleagues
from vision science and related fields, as well as 421
participants from the general population. The 33
colleagues were recruited via email and volunteered
their time. The remaining participants were recruited
using Prolific, and received $1.59 for a 10-minute
experiment ($9.54 per hour). Before the experiment
started participants were instructed to get a tape
measure or equivalent, which they would need during
the experiment. The experiment started with a few
questions, asking the participant’s race, age, sex
assigned at birth, body height, and screen type (laptop
screen or external screen). I considered that the factors
of race, age, and sex could be relevant because they
might moderate, for example, the relation between body
height and arm length, but preliminary analyses did
not support this idea (data not shown) so those factors
will not be discussed further. After the initial questions,
the experiment asked to “position yourself naturally
in front of this computer, just as you normally would
when using this computer.” Then, while instructing the
participant to remain in that position, the experiment
asked the participant to measure the distance between
one eye and a marker at the screen center. Finally,
participants were asked to position themselves at arm’s
length from the screen (Figure 1) and then to measure
that distance again. For the 421 participants from the

Figure 1. The image used to help participants position
themselves at arm’s length from the screen. The accompanying
instructions read as follows: “Reach forward with one of your
arms, but don’t rotate your shoulder forward. Instead, your left
shoulder should be just as far from the screen as your right
shoulder. Then sit at such a distance from your screen that you
can just barely touch the red dot at the center of your screen
with your index finger, while keeping your arm, hand, and finger
stretched out straight to the red dot.”
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general population (but not for the 33 colleagues),
there was one additional task, right after the initial
questions and before the first distance measure. This
task involved measuring the length of a line on the
screen, and the purpose of the task was to make
sure that the participant had, indeed, found a tape
measure and knew how to use it. Because this required
the experimenter knowing the actual length of the
line, the participants from the general population
also performed a procedure, at the very start of the
experiment, that involves scaling an on-screen picture
to the size of a bank card (see figure 1a in Li et al.,
2020, and https://gitlab.pavlovia.org/Wake/screenscale),
which allows the experimenter to infer the size of a
pixel on each participant’s screen. I did not find any
significant differences between the colleagues and the
participants from the general population, so those
participant groups are pooled together in all analyses
presented here.

I excluded all men who reported a body height
smaller than 153.5 cm or larger than 203.5 cm, and
for women those limits were 141.5 cm and 188 cm,
respectively (based on the 0.05% and 99.95% points of
the world body height distributions for 20-year-olds
found on https://www.gigacalculator.com/calculators/
height-percentile-calculator.php). I also excluded all
participants who entered the length, in whole units,
of the on-screen line as anything else than 18 cm
or 7 inches (depending on which unit of preference
they selected during the experiment). The physical
length of the line was 18 cm, which translates to
7.09 inches. These criteria combined led to the exclusion
of three colleagues (9%) and of 196 of the remaining
participants (47%; 32 failed the height criterion, 130
failed the line length criterion, and 34 failed both).
Of the remaining participants, I excluded a final
eight from further analysis because they indicated a
natural viewing distance and/or arm’s length viewing
distance that lay more than three standard deviations
from the relevant average. (For arm’s length viewing
distance, these average and standard deviations were
computed across all participants not excluded based on
earlier criteria; for natural viewing distance they were
computed for each screen type separately.) This left 247
participants for the main analyses.

Experiment 2

For this experiment, I used Prolific to recruit 403
participants from the general population. They received
$1.59 for a 10-minute experiment ($9.54 per hour).
From the experiment components listed above, this
experiment involved the credit card scaling procedure,
the questions about body height and screen type (but
not the other questions), and the tasks of measuring
on-screen line length and screen distance at one’s

natural position (but not the task of measuring the
distance at arm’s length). After that, the participant
completed a task, not included in experiment 1, meant
to find the location of the blind spot. Similar to tasks
used elsewhere for this purpose (e.g. Li et al., 2020), this
task involved participants closing or covering their right
eye and directing their gaze at a central fixation point,
while a blue square (side 0.5 cm) repeatedly moved away
from and back toward fixation, sliding horizontally at
fixation level on the left side of the screen. The square
started at its most central position, at an intended
eccentricity of 8 degrees of visual angle (dva) and
moved back and forth between that position and its
most peripheral position, which was at an intended
eccentricity of 17 dva, or at 0.012 screen widths inside
the edge of the screen, whichever was smaller. As soon
as the square reached its most extreme position, it
reversed direction, moving back and forth a total of
three times (i.e. it moved in each direction 3 times), at a
constant speed such that one passage took 7 seconds.
For this procedure, the intended angular eccentricities
were translated to on-screen coordinates based on the
viewing distance as measured and reported by the
participant just earlier. Based on the range of viewing
distances observed in experiment 1 (see below), I only
accepted reported viewing distances between 30 cm
and 110 cm for this particular purpose, and interpreted
values outside of that range as erroneous and replaced
them with the average of the range: 70 cm. Participants
were instructed to hold down the spacebar whenever
they saw the blue dot, and to release it whenever they
did not. The objective was to find the position, in terms
of centimeters on the screen, of the inner or nasal edge
of the blind spot, which an earlier publication placed
at 13.6 dva on average, with a standard deviation of
0.96 dva (Li et al., 2020). Although the actual angular
eccentricity of the blue square during this procedure
depended on the reliability of the participant’s earlier
report of viewing distance, the procedure was fairly
robust to errors in that report, given the broad range of
intended angular positions (from 8 to 17 dva) relative to
that published distribution of blind spot edge positions
(13.6 ± 0.96 dva).

In an offline analysis of the blind spot data, I
divided each participant’s data into six passages of
the blue square: three toward the periphery and three
toward the fovea (see Figure 2). For each passage,
I identified periods during which no spacebar was
registered for at least 750 ms, thus ignoring shorter
periods that may separate keyboard signals while a
key is being held down (see caption of Figure 2 for
details). For outward-moving passages, I then marked
the square’s position at the time of the last recorded
spacebar signal prior to the key release period (see
Figure 2A). For inward moving passages, I marked
the first recorded spacebar signal following the key
release period (Figure 2B). Passages during which no

https://gitlab.pavlovia.org/Wake/screenscale
https://www.gigacalculator.com/calculators/height-percentile-calculator.php
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Figure 2. Example keypress data from the blind spot procedure, illustrating the first steps of the offline blind spot analysis. The target
moved back and forth repeatedly during the procedure, and the resulting key press data were separated into individual periods of
uninterrupted outward movement or inward movement. Each panel here shows such a period. The gray marks indicate moments at
which a spacebar was registered. The downward-pointing arrows indicate moments marked as ones at which the target entered the
blind spot during an outward passage (A), or at which it left the blind spot during an inward passage (B). No moment was marked for
passages during which the spacebar was released multiple times (C). It was found that, while the spacebar was continuously held
down, the interval between registered key signals was usually about 17 ms, corresponding to 60 Hz. However, this interval was often
longer immediately after the first key signal had been registered upon a new key press, as is visible in all panels shown here (e.g. at
the arrow in panel B). For this reason, the threshold for counting a period without key signals as a key release period was set well
above 17 ms.

key was pressed and passages with more than one key
release period were not included in further calculations
(Figure 2C). All positions marked in this automated
fashion were verified by visual inspection of the data,
which led to manual adjustments based on subjective
judgment (i.e. removal of a marked time point or
addition of a missed one) in about 20 cases (i.e. for
about 5% of the observers). I then discarded the data
of participants for whom a position had been marked
for fewer than four passages. For a given participant,
I then averaged all positions marked in this fashion
across all outward-moving passages, and separately
across all inward-moving passages. The estimate of the
blind spot’s inner boundary for that participant, finally,
was the average of those two averages; an approach
that aims to cancel out any delays related to manual
response time, which have opposite effects on the
position estimate for outward-moving passages versus
inward-moving ones.

I discarded data from a total of 266 participants
(66%) based on either the above-mentioned blind spot
criterion (78 participants), incorrectly reported line
length (56 participants; same criterion as in experiment
1), a reported body height outside of the accepted range
(21 participants; this range was now set from 141.5 cm
to 203.5 cm for all participants because I did not record
sex), or a combination of multiple of those criteria
(111 participants). One final participant was removed
because he/she indicated a natural viewing distance
that lay more than three standard deviations from the

average for the relevant screen type. This leaves 136
participants whose results are discussed below.

Results

In experiment 1, 144 participants indicated using
a laptop screen and 103 participants indicated using
an external screen. Figure 3A shows natural viewing
distance as reported during that experiment, separately
for the different screen types. Natural viewing distance
clustered fairly narrowly near 60 cm (the boxes delineate
the center 50% of the data and the line inside each box
indicates the median; see Figure 3A caption for details),
and it differed significantly between screen types (means
= 51.7 cm and 61.5 cm, t(245) = 6.54, p < 0.0001).
Arm’s length viewing distance (see Figure 3A) appeared
a little larger and more narrowly clustered, and was not
significantly different between screen types (means =
64.1 cm and 62.8 cm, t(245) = 0.90, p = 0.37).

Body height significantly predicted natural viewing
distance for laptop users but not for participants
with an external screen (Figure 4A), and it predicted
arm’s length viewing distance regardless of screen type
(Figure 4B). Comparing those results side-by-side
with the results of experiment 2 (Figure 4C) shows
that the relation between natural viewing distance
and on-screen blind spot location is substantially
stronger than either of those two relations, with strong
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Figure 3. Viewing distance per screen type, when positioned naturally (A) or when positioned at arm’s length (B). Each box contains
the central 50% of the data (ranging from the first to the third quantile) with the median marked by a horizontal line. Box width is
proportional to the number of data points in the corresponding data set (144 and 103 for laptop screens and for external screens,
respectively). The two whiskers attached to a box extend, respectively, to the most extreme sub-median data point and the most
extreme supra-median data point within 1.5 box heights from the box. The remaining data points are plotted individually and would
conventionally be considered outliers.

Figure 4. Relation between predictor variables (body height and on-screen blind spot position) and viewing distance, separated out by
screen type. Each solid line represents a two-parameter linear fit. (A) Natural viewing distance as a function of body height. (B) Arm’s
length viewing distance as a function of body height. (C) Natural viewing distance as a function of on-screen blind spot position. The
dashed line in panel C corresponds to a one-parameter linear fit (with the offset fixed at 0) to data across both screen types.
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Offset (cm) Slope (no unit)

Natural distance vs. height, laptop −18.5 0.41
Natural distance vs. height, external 37.4 0.13
Natural distance vs. height, screen types combined −18.3 0.43
Arm’s length distance vs. height, laptop −3.5 0.40
Arm’s length distance vs. height, external 7.4 0.31
Arm’s length distance vs. height, screen types combined 13.4 0.29
Natural distance vs. blind spot position, laptop 15.9 3.22
Natural distance vs. blind spot position, external 3.1 4.08
Natural distance vs. blind spot position, screen types combined 11.4 3.57
Natural distance vs. blind spot position, screen types combined, no offset N/A 4.44

Table 1. Fit parameters relating observed variables to viewing distance.

and significant correlations both for laptop users (91
participants) and for participants with an external
screen (45 participants). Figure 4C also shows a third
curve in addition to the two solid curves that were also
shown in the other panels. Whereas the solid curves
in these panels correspond to linear fits with two free
parameters, both offset and slope, this dashed curve
corresponds to a fit for which the offset was pegged
at zero. If, as has been reported in earlier studies,
the angular eccentricity of the (inner edge of the)
blind spot is approximately constant across observers
(Rohrschneider, 2004; Wang, Shen, Boland, Wellik, De
Moraes, Myers, Bex, & Elze, 2017; Li et al., 2020), then
the slope of this dashed line can be converted into this
angular eccentricity. Indeed, the inner edge eccentricity
that corresponds with the slope found here is 12.7 dva,
in good concordance with the estimates provided in
those studies.

Table 1 shows all parameters of the fits depicted
in Figure 4 and also of additional related fits. The values
in this table will allow researchers to estimate viewing
distance based on a participant’s screen type, body
height, and/or on-screen blind spot position in future
experiments.

The results shown so far give an indication of the
viewing distance of participants in online experiments
and how it relates to variables that can feasibly be
collected in such experiments. The key question,
however, is: when basing oneself on those variables,
how large an error may one expect in the estimated
viewing distance and, more importantly, in the angular
dimensions of a stimulus on the screen? Figure 5 is
concerned with that question.

Figure 5A shows the error in estimated viewing
distance for each of the three approaches (natural
viewing distance based on height, arm’s-length viewing
distance based on height, and natural viewing distance
based on blind spot location). In each case, the
distance estimate for a given participant was based
on a two-parameter linear fit to the data from all
participants with the same screen type as the participant

in question, except the participant himself/herself (to
avoid circularity). The error was then calculated by
comparing the distance estimate read off of that fitted
curve to the viewing distance actually reported by the
participant. Each box in Figure 5A contains the center
50% of all data points, with the line inside the box
indicating the median. The box heights show that,
for each method, the error in estimated distance is
smaller than 10 cm for at least half of the participants.
The whiskers delimit all data that lie within a certain
number of box heights from a given box (see caption
for details). In this case, this means that the whiskers
delimit between 94% and 99% of the data, depending
on the method. All remaining data points are plotted
individually. Comparing between methods, Figure 5A
suggests relatively large errors for the method that
involves natural distance and body height (left), and
particularly small errors for the method that involves
the blind spot (right). For this latter method, the best
50% of distance estimates are all within 5 cm of the
reported distance, and nearly all participants have
a distance estimate error of well under 20 cm. This
finding of good performance for the latter method is in
full agreement with the report by Li et al. (2020).

The same relative ordering in the performance of
the three methods is observed when analyzing the
absolute, rather than signed, values of the distance
estimate errors. For the three methods, the average
absolute errors are 8.9 cm (“height and natural”),
7.6 cm (“height and arm’s length”), and 5.5 cm (“blind
spot and natural”), and the difference between methods
is significant (ANOVA: F(2,628) = 11.53, p < 0.0001;
paired t-test between the two height-based methods:
t(246) = 2.24, p = 0.03; t-test between “height and
natural,” and “blind spot and natural”: t(380) = 5.18, p
< 0.0001; t-test between “height and arm’s length” and
“blind spot and natural”: t(380) = 2.99, p < 0.01).

More important than inaccuracies in estimated
viewing distance are inaccuracies in the angular
dimensions of on-screen stimuli that are drawn on
the basis of those distance estimates. Figure 5B
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Figure 5. Error in estimated distance (A) and in the angular extent of a stimulus that is drawn on the basis of the estimated distance
(B). Each box contains the central 50% of the data (ranging from the first to the third quantile) with the median marked by a
horizontal line. Box width is proportional to the number of data points in the corresponding data set (247 for the left and center box
in each panel; 136 for the right box). The two whiskers attached to a box extend, respectively, to the most extreme sub-median data
point and the most extreme supra-median data point within 1.5 box heights from the box. The remaining data points are plotted
individually and would conventionally be considered outliers. Going from left to right, these outliers comprise, respectively, 0.8%,
6.4%, and 1.5% of the data for panel A, and 4.9%, 8.5%, and 2.2% of the data for panel B. Note that panel B, although labeled as
showing angular size error in dva, can equivalently be read as showing size error as a proportion of intended size (because intended
size here is 1 dva). Also note that computing viewing distance error as a proportion of actual distance (not shown here) would yield
values almost identical to those of panel B.

summarizes, for each method, the amount by which the
radius of a stimulus at the screen center would differ
from its intended value, if the experimenter drew the
stimulus based on the estimated viewing distance, and
if the intended radius was 1 dva. The y-axis of this
panel is labeled as quantifying this error in terms of
degrees of visual angle, so it can equivalently be read as
quantifying the error as a proportion of the intended
radius. When expressed as a proportion, the error is
largely independent of intended stimulus size within the
size range that is relevant to most vision experiments
(within that range proportional error becomes very
slightly smaller as a function of intended stimulus
size). The box plots are again constructed in the same
way as before, but this time that works out to between
91% and 98% of the data being contained between the
whiskers (see caption for details). Figure 5B shows that
the proportional error in angular extent is comparable
between the “height and arm’s length” method (center)
and the blind spot method (right). In both cases, the
proportional error in angular extent lies well under
one-eighth for at least half of the participants (i.e.

the boxes lie within one gray band on either side of
0), and rarely exceeds three-eighths (i.e. the whiskers
lie within 3 gray bands on either side of 0). For the
“height and natural” method, the errors appear larger:
the box extends slightly beyond the one-eighth mark in
the positive direction, and the whisker in that direction
reaches just beyond four-eigths, which indicates that it
is relatively common for stimuli to be drawn as much
as 50% larger than they should be when using this
method. A final observation is that there are many more
outliers (individually plotted data points) in the positive
direction than in the negative direction in this panel,
which means that the distribution is skewed such that
is more common to draw the on-screen images much
too large, in terms of angular extent, than it is to draw
them much too small. This is related to the geometric
fact that, for a given distance estimate, the error in
angular stimulus extent will be relatively large (and
positive) if that estimate overshoots the real distance by
a given amount, but relatively small (and negative) if
the estimate undershoots the real distance by the same
amount.
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An analysis of the absolute value of the errors
again confirms the relative ordering in performance
of the three methods that is suggested by the figure.
For the three methods, the average absolute errors in
stimulus extent are 0.18 dva (“height and natural”),
0.14 dva (“height and arm’s length”), and 0.11 dva
(“blind spot and natural”). Equivalently, these average
absolute errors are 0.18 times the intended stimulus size,
0.14 times the intended stimulus size, and 0.11 times
the intended stimulus size, respectively. The difference
between methods is overall significant (ANOVA:
F(2,628) = 7.65, p < 0.001; paired t-test between the
two height-based methods: t(246) = 2.99, p = 0.003;
t-test between “height and natural” and “blind spot and
natural”: t(380) = 3.80, p < 0.001), but the difference
between the arm’s length method and the blind spot
method is not significant (t(380) = 1.55, p = 0.12).

Discussion

I examined three approaches to estimating viewing
distance and, related to that, to controlling angular
stimulus dimensions in online experiments. Consistent
with a previous report (Li et al., 2020) I found that
viewing distance can be estimated with a fair degree
of accuracy by measuring the on-screen position of
the blind spot. I also found that asking participants
to remain at arm’s length from the screen, and using
their body height to estimate viewing distance, allows
angular stimulus extent to be controlled with a level
of accuracy that is very similar to what is allowed by
the blind spot method. Finally, I found that viewing
distance can be estimated, albeit with a lower degree
of accuracy, based on nothing but knowledge about
the participant’s body height and screen type (laptop
or external). I provide parameter values that allow
future researchers to translate observed variables
into viewing distance estimates in their studies, and I
quantify the magnitude of the error in angular stimulus
dimensions that may be expected when using that
approach.

Aside from the quantitative comparison between
methods that is presented in this paper, there are further
considerations that affect which approach a researcher
may take. Compared to the other two methods, a
drawback of the method that asks participants to
position themselves at arm’s length from the screen, is
that this may not be the participant’s natural position.
This plausibly increases the likelihood for viewing
distance to change during the experiment. In contrast,
the other two methods allow the participant to stay in
their natural position, at a viewing distance of their
own choice, which plausibly results in a reasonably
constant viewing distance over time, even without
the possibility of using a head rest such as would be

used in a laboratory environment. An estimate of the
extent of viewing distance variation in conditions like
these comes from the study by Li et al. (2020). One of
their online experiments, in which participants were
asked to stay in a constant, comfortable position,
included three separate repetitions of the blind spot
estimation procedure, spaced apart by about 5 minutes
during which 25 trials of a visual crowding task were
administered. The authors found that estimated viewing
distance had an average within-participant standard
deviation of 3.9 cm across the three repetitions. In
general, it could be advisable to estimate viewing
distance several times during an online experiment,
both to adjust display dimensions to small changes in
viewing distance, and to be able to discard data from
participants who do not sit still.

A further benefit of the method based on the
blind spot is that it does not necessarily require the
researcher to know the dimensions of a pixel on
the participant’s screen. As detailed above, these
dimensions can be estimated via a procedure in which
the participant compares on-screen dimensions to those
of a real-world object that has a standard size, such as
a bank card. However, this procedure can be omitted
when estimating viewing distance from a blind spot
position on the basis of only a slope parameter, such
as the one documented in the bottom row of Table
1 (i.e. the slope of the fit with an offset of zero,
corresponding to a fixed angular blind spot eccentricity
for all participants). Specifically, in this approach, the
researcher can simply relate blind spot eccentricity in
pixels to viewing distance, also measured in pixels,
using the slope parameter. That distance, in turn, can
then be used to translate angular extent to on-screen
dimensions, again in pixels, without knowing the
centimeter value associated with any of these quantities.
Given that the approach that centers on the blind spot
uses only its horizontal eccentricity, in the absence
of knowledge about pixel dimensions, the approach
strictly allows control over angular stimulus extent only
in the horizontal direction. In practice, however, the
vast majority of computer screens have square pixels
(at least the screens used by participants in the present
study: out of 353 included participants who completed
the credit card procedure, 345, or 97.7%, indicated
a vertical/horizontal pixel aspect ratio between 0.95
and 1.05). Pixel aspect ratio is also something that
can be verified in a matter of seconds by, say, asking
participants to choose which of several ellipses drawn
on the screen is round.

Several findings in the present study constitute a
replication of findings reported by Li et al. (2020).
That study focused on the relation between on-screen
blind spot position and viewing distance, and it did
not involve the other two methods examined here.
The study also did not include any experiments that
involved online participants measuring their own
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viewing distance (the study did include an online
component, but relied on in-laboratory experiments
for analyses that required a ground-truth estimate
of distance). To the extent that the present findings
overlap with those of that prior study, they are in good
agreement. One slight difference is in the estimate
of the angular eccentricity of the blind spot’s nasal
boundary at the horizontal meridian, which I put at
12.7 dva, compared to 13.6 dva in Li et al. (2020).
One possible explanation for this difference is that Li
and collaborators’ estimate is based on only outward
movement of the visual target. Given the manual
reaction time delay involved in reporting a target’s
apparent disappearance (or reappearance), an approach
based only on outward movement likely results in
some degree of overestimation of the blind spot’s
eccentricity. The present approach involves averaging
an estimate obtained during outward movement and a
separate estimate obtained during inward movement,
thus sidestepping that issue. Consistent with this
explanation, Li et al. (2020) report their estimate of
the blind spot’s eccentricity (15.8 dva when expressed
in terms of the blind spot center rather than its nasal
edge) to be about one degree larger than the estimate
provided by other studies that used different methods
(14.3–15.5 when expressed in that way), which means
that the present estimate matches the estimates of those
other studies well.

A class of approaches to viewing distance estimation
that is not examined in the present study, is the class
that centers on face tracking using a webcam. Webcams
are ubiquitous in modern-day personal computers as
well as in mobile devices, and software for delineating
faces and their features inside a webcam image is
available to the general public (Kartynnik, Ablavatski,
Grishchenko, & Grundmann, 2019; https://github.
com/tensorflow/tfjs-models/tree/master/facemesh;
https://github.com/auduno/clmtrackr). Webcam-based
facial feature detection can conceivably play either
an auxiliary role or a central role in viewing distance
estimation. In particular, if the experimenter has no
knowledge of the absolute sizes of the facial features,
then the video stream could still be used to identify
relative changes in viewing distance, which could inform
updates to a previously obtained viewing distance
estimate, or trigger a new estimation procedure. If the
experimenter does have knowledge of the absolute
sizes of the facial features, then the video stream
can, itself, provide the basis for a real-time distance
estimate. Such absolute knowledge could come from a
procedure akin to the credit card procedure used here
(see Methods) but where the participant holds an object
of known size by his/her face in the camera image.
Alternatively, it could come from anatomic constants.
Indeed, an application exists that uses the fact that iris
diameter is relatively preserved across participants,
to estimate viewing distance from camera data with

considerable accuracy (https://ai.googleblog.com/2020/
08/mediapipe-iris-real-time-iris-tracking.html). When
implemented in online experiment software, and with
the provision that they require consent to access the
participant’s camera, such video-based methods can
form a highly effective approach to viewing distance
estimation.

One final, but important, consideration when it
comes to the utility of the approaches studied here, is
attrition. A sizable proportion of participants failed
this study’s inclusion criteria. Many of those exclusions
had to do with the participants’ own manual distance
measurements, and are therefore irrelevant to the utility
of the approaches under study, as those do not involve
such measurements. Still, a substantial number of
exclusions remains when considering only exclusion
criteria that are inherent to the approaches under
study. In experiment 1, about 15% of the participants
reported an implausible body height. In experiment 2,
that percentage was 5%, whereas for a further 20% of
participants no blind spot location could be inferred,
and a final 6% failed both those inclusion criteria.
There are several ways of reducing the number of
excluded participants. For instance, the experiment
can be programmed to accept only plausible body
height values, and in the blind spot procedure the
visual target can be programmed to keep moving back
and forth until a satisfactory estimate of blind spot
location is obtained. On the other hand, it is plausible
that some proportion of the participants who fail
these inclusion criteria are generally unmotivated or
otherwise unlikely to produce high quality data (indeed,
in the present study, the proportion of participants
who failed multiple criteria is much higher than what
would be expected based on each criterion’s individual
proportion when assuming independence). From that
perspective, it makes sense to allow participants to
enter, say, an implausible body height, and to treat the
question as a type of “filter” or “screening” question;
the inclusion of such questions in online studies has
been proposed elsewhere (e.g. Reips, 2002; Chandler,
Rosenzweig, Moss, Robinson, & Litman, 2019). One
final question here concerns the extent to which the
error in on-screen stimulus size would increase if a
researcher were to omit the stringent exclusion criteria
that we applied. Clearly, obtaining a blind spot-based
distance estimate is simply not an option for those
observers whose blind spot location could not be
inferred, but one could include height-based distance
estimates even for observers who report an implausible
body height. If we take that approach in our analysis
of experiment 1, then the average absolute error in
the radius of an on-screen object with an intended
radius of 1 dva increases from 0.18 dva to 0.25 dva
for the “height and natural” method. For the “height
and arm’s length” method, in turn, that error increases
from 0.14 dva to 0.18 dva. These changes are not

https://github.com/tensorflow/tfjs-models/tree/master/facemesh
https://github.com/auduno/clmtrackr
https://ai.googleblog.com/2020/08/mediapipe-iris-real-time-iris-tracking.html
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negligible, so keeping a close eye on data quality is
recommended.

In order to benefit from the relative accuracy
of the blind spot-based method (when it is
successful), while simultaneously reducing the
concern of data loss associated with the relative
difficulty of obtaining a blind spot estimate, I
propose a tiered approach. A Psychopy/Pavlovia
implementation of this approach can be found at
https://gitlab.pavlovia.org/janbrascamp/blind_spot, to
be used and adapted as part of online experiments. The
basic logic of the approach is as follows. The participant
reports body height and screen type, and performs
a screen scaling task (using a bank card) as well as
a task to determine blind spot location. An inferred
viewing distance is then computed, to be used to control
stimulus dimensions in subsequent experiment code.
This inference is based on estimated blind spot position
if a credible estimate is obtained. If not, then viewing
distance is inferred from body height and screen type, as
long as the entered body height is plausible. If not, then
viewing distance is estimated from assumed body height
and reported screen type. The code stores the results
of individual steps in the process (e.g. reported body
height, estimated blind spot position for each passage
of the visual target, etc.) so that, in post hoc analyses,
one can decide for each participant whether the viewing
distance estimate used has been satisfactory.

Conclusion

Although online environments have clear benefits
as a tool for experimental psychology, they also have
drawbacks, including a relative lack of control over
experiment conditions. Within the context of vision
research, one particular concern may be the relative
lack of control over angular stimulus dimensions. This
paper reports on three approaches to estimating viewing
distance and, thereby, controlling stimulus dimensions
in an online environment, and it provides parameter
values and experiment code that will help use these
approaches in future research.

Keywords: web-based experiments, online experiments,
blind spot, stimulus size, methods
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