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Abstract

The pathogenesis of persistent viral infections depends critically on long-term viral loads. Yet what determines these loads is
largely unknown. Here, we show that a single CD8+ T cell epitope sets the long-term latent load of a lymphotropic gamma-
herpesvirus, Murid herpesvirus-4 (MuHV-4). The MuHV-4 M2 latency gene contains an H2-Kd -restricted T cell epitope, and
wild-type but not M22 MuHV-4 was limited to very low level persistence in H2d mice. Mutating the epitope anchor residues
increased viral loads and re-introducing the epitope reduced them again. Like the Kaposi’s sarcoma–associated herpesvirus
K1, M2 shows a high frequency of non-synonymous mutations, suggesting that it has been selected for epitope loss. In vivo
competition experiments demonstrated directly that epitope presentation has a major impact on viral fitness. Thus, host
MHC class I and viral epitope expression interact to set the long-term virus load.
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Introduction

Gamma-herpesviruses characteristically persist in lymphocytes.

Since the pool of latent genomes is constantly drained by viral

reactivation, it must be replenished by virus-driven lymphoprolif-

eration; this in turn is limited by host T cells; the steady-state viral

load reflects an equilibrium of these fluxes. Viral loads are

remarkably constant in one individual, yet vary hugely between

them [1]. What determines the set point? Such questions are

difficult to address without animal models. Murid herpesvirus-4

(MuHV-4) is one of the best established. It is genetically closer to

Kaposi’s sarcoma associated herpesvirus (KSHV) than to Epstein-

Barr virus (EBV), but shares with EBV a lymphoproliferative

infectious mononucleosis syndrome [2] and persistence in memory

B cells [3–5]. The pathogenesis of KSHV infection is presumably

similar. The steady state MuHV-4 latent load does not appear to

reflect the inoculating virus dose [6], suggesting that it is set instead

by host and viral genetic polymorphisms.

Both host immunity and viral evasion contribute to MuHV-4

pathogenesis. Evasion dominates during acute latency amplification.

The MuHV-4 K3 protein promotes this [7] by degrading MHC class

I heavy chains and TAP [8,9]. K3 is transcribed in latently infected

germinal centre B cells [7], but also functions in lytically infected

myeloid cells [10,11], which are present in lymphoid tissue [4] and

are probably an important source of the viral M3 chemokine binding

protein [12,13]. The quantitative contribution of M3 to CD8+ T cell

evasion remains controversial [14,15]. However, it is clearly capable

of such a role [16]. M4 is another secreted lytic gene product that

promotes latency amplification [17,18]. Thus, K3 may act both

directly and by allowing lytically infected cells to protect latently

infected cells in trans [19]. The MuHV-4 ORF73 episome

maintenance protein has a further cis-acting CD8+ T cell evasion

mechanism, equivalent to that of EBV EBNA-1 [20,21], that is again

vital for host colonization [22].

Despite immune evasion, virus-driven lymphoproliferation is

brought under control by 3–4 weeks post-infection, at least in part

by CD8+ T cells [23–25]. H2d mice mount a CD8+ T cell response

against the M2 latency gene product at this time [26]. EBV latent

loads and associated pathologies are similarly controlled by CD8+

T cells that recognize viral latent antigens [27,28]. EBNA-1-

specific CD4+ T cells can also suppress EBV lymphoproliferation

in vitro [29,30], but whether equivalent recognition occurs in vivo is

unclear [31]: even optimized latent CD4+ T cell epitope

expression has little effect on MuHV-4 host colonization [32].

Most evidence would therefore suggest that gamma-herpesvirus

latency is controlled principally by latent antigen-specific CD8+ T

cells [27,28]. Vaccination with the M2 latency epitope has little

effect on MuHV-4 latency establishment [33] because viral

evasion dominates this setting. However, the impact of M2

recognition on the steady state viral load has not been defined.

The balance of immunity and evasion could be subtly different

here, for example if M3 function is now blocked by antibody.

M2 itself promotes acute latency amplification [34–36] by

modulating Vav-dependent B cell signaling [37,38]. The EBV

LMP-2A [39,40] and KSHV K1 [41,42] have equivalent roles. M2

also has anti-interferon and anti-apoptotic functions [43,44],

although what these contribute to latency is unclear. An unusual

feature of the M2 knockout phenotype in BALB/c (H2d) mice is that

despite an acute latency deficit, long-term latency is increased [36].

C57BL/6 mice (H2b), which are not known to recognize an M2

epitope, show the same acute latency deficit, but not the long-term

increase [34]. Here we show that although M2 itself promotes acute
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latency establishment, its H2-Kd-restricted CD8+ T cell epitope is a

major negative determinant of the long-term viral load. The

reduction in latency associated with M2 expression required both

its CD8+ T cell epitope and an appropriate host restriction element.

Thus, host MHC class I polymorphisms interact with viral latency

gene expression to determine the steady state gamma-herpesvirus

load.

Results

Long-term latency depends on viral M2 expression and
host H2 haplotype

Our starting point were the observations that MuHV-4 M2

knockouts show an acute latency deficit in both BALB/c and

C57BL/6 mice, but an elevated long-term latent load only in

BALB/c mice [34,36]; and that mutating only the M2 amino acid

residues critical for its interactions with Vav and Fyn [37,38]

reproduces the acute latency deficit but not the long-term increase

[37]. We hypothesized that a lack of H-2Kd-restricted epitope

presentation might contribute significantly to the M2 knockout

phenotype. We tested this further by comparing M22 (vM2FS; a

previously described M2 frame shift mutant [36]) and M2+ (vWT)

viral loads in different H2d and non-H2d mice (Figure 1).

At 14 days post-infection, both H2d and non-H2d mice showed

an M2-dependent latency deficit, consistent with M2 having an

important role in acute latency amplification, when viral evasion

limits CD8+ T cell function [7,14,22]. But by 50 days post-

infection, when reactivatable wild-type virus was barely detectable

in BALB/c mice (H2d), M22 virus titres were maintained and now

exceeded those of the wild-type. In contrast, long-term vWT titres

in C57BL/6 mice (H2b) were equivalent to those of the M2

mutant; DBA/2 mice (H2d) were similar to BALB/c; FVB-N

(H2q) were similar to C57BL/6; and B6.C mice, where the H2d

locus has been backcrossed onto a C57BL/6 background, were

similar to BALB/c. M2 expression therefore increased the acute

latent load independent of H2 type and reduced the long-term

latent load in an H2-restricted manner: low long-term latency

levels correlated with the H2d haplotype.

Generation of M2 mutant viruses with altered H-2Kd

epitopes
Residues 84–92 of M2 contain its H-2Kd-restricted T cell

epitope, GFNKLRSTL [26]. We tested whether the recognition of

this epitope could explain the H2-restricted difference in long-term

M22/M2+ latent loads by mutating its anchor residues to alanines,

either the phenylalanine at position 85 (vM2F85A) or the leucine at

position 92 (vM2L92A). We reverted the vM2F85A mutant in two

ways: first conventionally, by restoring position 85 to phenylala-

nine (vM2F85AR), and second by re-introducing the

GFNKLRSTL epitope ectopically at the M2 C-terminus

(vM2F85AEPI). All these viruses showed an otherwise intact M2

locus, normal in vitro growth and normal replication in infected

lungs (Figure 2A–C). Intracellular IFN-c staining of CD8+ T cells

from infected mice (Figure 2D) showed that either anchor residue

mutation prevented the generation of H-2Kd-GFNKLRSTL-

specific CD8+ T cells, and that re-introducing the epitope into its

ectopic site restored the response.

Long-term latent loads of M284–92 anchor residue
mutants

The acute (d14) latency titres of the anchor residue mutants in

BALB/c mice were indistinguishable from the wild-type (Figure 3).

Thus, there was no evidence that the point mutations affected M2

function. This was consistent with neither residue 85 nor residue

92 being crucial for the M2 Vav/Fyn interaction [37,38]. The C-

terminal GFNKLRSTL epitope insertion also had no appreciable

impact on latency establishment. At d14 post-infection, the impact

of epitope presentation is limited by viral evasion. But in contrast

to these normal acute titres, the long-term titres of the anchor

residue mutants were increased, like those of the vM2FS mutant,

while those of the vM2F85AR, vM2F85AEPI viruses were low, like

those of the wild-type. Thus, the presence of a presentable epitope

in M2 had a major impact on the long-term viral load.

Lower latency loads due to M284–92 epitope expression
are CD8+ T cell linked

The increase in long-term viral load following CD8+ T cell

epitope disruption implied that CD8+ T cell function helps to set

this load in BALB/c mice. To confirm this, we depleted CD8+ T

cells from vWT infected BALB/c mice by injection of anti-CD8

monoclonal antibody (MAb). Importantly, depletion was initiated

at 11 days post-infection, which is after the resolution of lytic

infection but prior to the peak H-2Kd-GFNKLRSTL-specific

CD8+ T cell response. The last MAb injection was performed at

d19. Latent loads were analysed at d21 post-infection (Figure 4).

The variability in titer between depleted mice probably reflected

incomplete depletion, as post-infection depletions are often less

efficient than pre-infection (our unpublished data), and the efficacy

of depletion in individual mice infected with vWT or vM2F85AEPI

correlated with viral load. Nevertheless, mice infected with the

anchor residue mutants had significantly higher splenic latent

loads than mice infected with epitope-expressing viruses before

depletion, and not after CD8+ T cell depletion. CD8+ T cells were

therefore responsible for the low latent loads of vWT and

vM2F85AEPI.

Increased germinal centre B cell colonization by MuHV-4
lacking M284–92 epitope anchor residues

In situ hybridization for viral tRNA expression, a marker of

lymphoid colonization [45,46] (Figure 5A–B), showed similar

results to the explant co-culture assays. Thus, the wild-type signal

was high acutely (d14) but low long-term; the vM2FS mutant had

a low acute signal but was higher at later times; the anchor residue

mutants had high signals both acutely and long-term; and re-

introducing the GFNKLRSTL epitope reduced the long-term

signal back to wild-type levels. The vM2F85A and vM2L92A

Author Summary

Persistent viruses present a major challenge to the
immune response. Gamma-herpesviruses are a prime
example, and the archetypal family member, Epstein-Barr
virus (EBV), has been studied for many years. A major
unanswered question with EBV is why long-term virus
loads—a key pathogenesis outcome—vary so widely
between individuals. As most EBV studies are necessarily
descriptive, the murid gamma-herpesvirus MuHV-4 pro-
vides an important focus of pathogenesis research. Here,
we used MuHV-4 to address what determines long-term
gamma-herpesvirus loads. We find a major role for a single
MHC class I–restricted latency epitope. This reflects that
latency-associated viral immune evasion and transcription-
al silencing create a unique setting, in which the pool of
possible epitopes is small enough for epitope loss to have
a significant impact on viral fitness. Our data suggest that
polymorphisms in viral latency genes and in host HLA class
I together determine long-term viral loads.

CD8+ T Cell Epitope Sets Latent Load
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mutants had both more viral tRNA+ germinal centres (Figure 5B)

and bigger viral tRNA+ germinal centres (Figure 5A), consistent

with the idea that disrupting CD8+ T cell recognition of M2

allowed more extensive proliferation of latently infected B cells.

We have previously correlated the higher long-term latent loads

of M22 MuHV-4 in BALB/c mice with increased frequencies of

viral genome+ germinal centre B cells [36]. We tested whether this

applied also to the anchor residue mutants by subjecting flow

cytometrically sorted germinal centre B cells to limiting dilution,

PCR-based viral genome detection (Figure 5C). The frequency of

viral genome+ B cells was higher for the wild-type than for the

vM2FS mutant at 14 days post-infection, and lower at 50 days

post-infection; the vM2F85A and vM2L92A mutants showed high

frequencies of viral genome+ B cells at both time points; and the

vM2F85AR (data not shown) and vM2F85AEPI revertants were

similar to the wild-type. Moreover, even at 133 days post-infection

1 in 19 GC B cells carried M2F85A DNA. At this time the

frequency of M2F85AR DNA+ GC B cells was 1 in 5274. Thus, the

colonization of germinal centre B cells matched the total viral load

in the spleen, with early colonization depending on M2 function

and late colonization depending on T cell epitope presentation.

Evidence for M2 positive selection
M2 is positionally homologous to the KSHV K1. In so far as

both modulate B cell antigen receptor signalling [37,38,41,42],

they are also functionally homologous. Thus, it might be expected

that MuHV-4 and KSHV share a latency program where M2 or

K1 accounts for much of the presentable latent antigen. There is

indirect evidence that this matters for K1: DNA sequence

comparison between KSHV strains suggests that K1 has been

positively selected for amino acid diversity [47]. A comparison of

MuHV-4 with a closely related herpesvirus recovered from a

shrew [48] shows the same phenomenon: M1, M3, M4 and ORF4

have non-synonymous to synonymous mutation ratios of 0.20–

0.27, while M2 has a ratio of 1.01 (Andrew Davison, personal

communication).

In order to gain more direct evidence for M2 immune selection,

we co-infected BALB/c mice with epitope+ and epitope2 viruses,

Figure 1. Long-term MuHV-4 latent loads depend on viral M2 expression and host H2 haplotype. Mice were infected intranasally with
wild-type (vWT) or M22 (vM2FS) viruses. At d14 or d50 post-infection spleens were removed and titrated for reactivation-competent virus by explant
co-culture with BHK-21 cells. Each point shows the titre of one mouse. The horizontal bars show arithmetic means. The dashed horizontal line
represents the limit of assay detection. Pre-formed infectious virus, as measured by the parallel titration of equivalent frozen/thawed samples, was
below the limit of assay detection. At d50 post-infection the vM2FS latent load was significantly higher than the vWT latent load in BALB/c (P = 0.011)
and DBA/2 (P = 361025) and close to significance in B6.C.H2d (P = 0.056), but not in C57BL/6 (P = 0.228) and FVB-N (P = 0.347) by a one-tailed
Student’s t-Test. This was also confirmed by combining all data from H2d mouse strains (P,0.0001) but not from non-H2d mice (P = 0.71) using a 2-
way non-parametric ANOVA Friedman’s test. Data were reproducible over two independent experimental groups.
doi:10.1371/journal.ppat.1000177.g001

CD8+ T Cell Epitope Sets Latent Load
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Figure 2. MuHV-4 latent epitope mutants show normal in vitro and in vivo replication. A. High molecular weight DNA from MuHV-4-
infected BHK-21 cells was checked by PCR for genome integrity in the HinDIII-E region. A schematic representation of the MuHV-4 genome and
amplicon coordinates for each PCR is shown. B. BHK-21 cells were infected (0.01 PFU per cell) with the indicated viruses, washed in PBS and virus
replication with time was monitored by plaque assay. C. BALB/c mice were intranasally infected with 104 PFU of the indicated viruses. At the
indicated days post-infection lungs were removed and titrated for infectious virus by plaque assay. Each point represents the titre of an individual
mouse. Horizontal lines indicate arithmetic means. None of the mutants showed a deficit relative to the wild-type (p.0.5 by 1-way non-parametric
ANOVA Kruskal-Wallis Test). D. Splenocytes of BALB/c mice infected with viruses of the indicated genotypes were stimulated in vitro with either
M284–92 (black bars) or EGFP200–208 as a control (white bars) in the presence of Brefeldin A, then stained for intracellular interferon-gamma. The data
show the percentage of CD8+ T cells responding to peptide at each time point (arithmetic means6SEMs from 3 independent measurements). *,
p,0.05 using a 1 tailed Student’s t-test.
doi:10.1371/journal.ppat.1000177.g002

CD8+ T Cell Epitope Sets Latent Load
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and quantified by real-time PCR viral genome loads in germinal

centre B cells using virus-specific primers (Figure 6). For co-

infection experiments, aliquots of the same viral preparations were

used to formulate viral mixes that contained equal amounts of

infectious units of each virus of interest, i.e. 56103 PFU of each

viral genotype, as determined by plaque assay. At d14 post-

infection, there was little difference between vWT and vM2F85A,

but by d50 vM2F85A accounted for .95% of the viral genomes.

vM2F85AEPI and vM2F85A gave a similar result, the proportion of

vM2F85A genomes increasing with time, while mixed vM2F85A and

vM2L92A loads remained equivalent. Thus, viruses lacking M2

epitope presentation contributed disproportionately to long-term

host colonization in BALB/c mice. The advantage of epitope null

viruses over vWT was H2d-dependent, since it was not observed in

Figure 3. The presence of a CD8+ T cell epitope in M2 sets the MuHV-4 long-term latent load. BALB/c mice were intranasally infected (104

PFU) and at 14, 21, 50 or 80 days post-infection spleen removed and titrated for reactivation-competent virus by explant co-culture. Each point shows
the titre of one mouse. Horizontal lines indicate arithmetic means. The dashed horizontal line represents the limit of assay detection. Pre-formed
infectious virus, as measured by parallel titration of equivalent frozen/thawed samples, was below the limit of detection of the assay. At d50 and d80
post-infection vM2F85A and vM2L92A showed significantly higher latency loads than vWT: d50, vM2F85A p = 0.021, vM2L92A p = 0.012; d80, vM2F85A

p = 0.007, vM2L92A p = 0.001; using 1 tailed Student’s t-Test with p values shown when false discovery rate correction for multiple testing (FDR) was
,0.05. Data were reproducible over two independent experimental groups.
doi:10.1371/journal.ppat.1000177.g003

CD8+ T Cell Epitope Sets Latent Load
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C57BL/6 mice co-infected with vWT and vM2F85A. Here, vWT

accounted for the majority of MuHV-4 genomes at all times.

Discussion

Gamma-herpesvirus infections encompass complex combina-

tions of cell types, anatomical sites, viral gene expression patterns

and immune effector functions. This has made elusive a

comprehensive understanding of how host immunity and viral

evasion interact. Nevertheless, a consensus picture is now

emerging. The long-term latent viral load is a key outcome, since

it correlates with virus shedding [1] and probably also with disease.

Maintained episomes replicate in step with normal cell division

[49]. However, compensating for reactivation-associated latent

genome loss requires a more complex program of virus-driven

lymphoproliferation. This opens up another front between host

immunity and viral evasion.

Lytic reactivation could itself potentially re-seed latency, and

this seems to be important in B cell-deficient mice [50]. However,

these mice lack both the major MuHV-4 latency reservoir and

virus-specific antibody, and consequently have an infection quite

different to that of wild-type mice. The severe latency deficiency of

viruses lacking episome maintenance [51,52] argues that as with

EBV [53], MuHV-4 persistence in immunocompetent hosts

depends on lymphoproliferation. The efficiency with which

proliferating B cells present CD8+ T cell targets must therefore

also be important. The protection of B cells expressing M2 by K3

is probably only partial. The data presented here show that the

impact of CD8+ T cell immunity can depend on a single epitope,

consistent with epidemiological evidence of epitope selection in the

EBV EBNA-3 [54,55] and the KSHV K1 [47].

The importance of a single latency epitope for MuHV-4

contrasts with lymphocytic choriomeningitis virus infection, where

removing an immunodominant CD8+ T cell target simply brings

out subdominant epitopes [56]. This may reflect that lymphocytic

choriomeningitis virus does not suppress MHC class I-restricted

antigen presentation, making the pool of possible epitopes larger.

C57BL/6 mice illustrate what can happen when classical CD8+ T

cell recognition of a key MuHV-4 target fails. Rather than overt

disease, a back-up mechanism of non-classical Vb4+CD8+ T cell

recognition comes into play [17,57]. The higher latent loads of

C57BL/6 mice despite massive CD8+Vb4+ T cell expansion

suggest this mechanism is not particularly efficient, and in C57BL/

6 mice infected with K3-deficient MuHV-4 [7] or in BALB/c

mice infected with the wild-type [17] CD8+Vb4+ T cell expansion

is minimal, presumably because classical recognition takes over.

However, non-classical recognition appears to provide a safety net

when host genetics or viral evasion limit normal antigen

presentation.

Unlike the fairly consistent and predictable effects of an attack

on the cellular antigen presentation machinery or a silencing of

viral transcription/translation, the interaction between viral

epitope loss and host MHC class I diversity creates unstable and

hard-to-predict outcomes. For example, the most pathogenic virus

variant may be quite different between different out-bred hosts.

Epitope selection may even allow gamma-herpesviruses contracted

from close relatives to establish higher average latent loads than

those from MHC class I-incompatible strangers. The data

presented here argue that small variations in key viral latency

genes can have major impacts on pathogenesis, and must therefore

be considered in any attempt to understand the infection of

individual hosts.

Materials and Methods

Cell culture and viruses
NIH-3T3-CRE cells [7] were grown in Dulbecco’s modified

Eagle’s medium (DMEM) supplemented with 10% fetal bovine

serum, 2 mM glutamine, 100 U/ml penicillin and 100 mg/ml

streptomycin. Baby hamster kidney cells (BHK-21) were cultured

in Glasgow’s modified Eagle’s medium supplemented as above

plus 10% tryptose phosphate broth. Murid gammaherpesvirus 4

(MuHV-4) strain 68 was used in this study [58]. To prepare viral

stocks, low multiplicity infections (0.001 PFU per cell) of NIH-

Figure 4. M284–92 epitope expression and CD8+ T cells are
linked in setting splenic latent loads. BALB/c mice were
intranasally infected with the indicated viruses (104 PFU) and at 11,
13, 15, 17 and 19 days post-infection anti-CD8 monoclonal antibody
(MAb) was intraperitoneally injected. At 21 days post-infection spleens
were removed for analysis. Control mice are d21 infected littermates
that were not injected with MAb. A. Schematic diagram of the
experimental setting. B. Splenocytes were stained for CD8. The data
show the percentage of CD8+ T cells of total lymphocytes (arithmetic
means6STDV) in depleted mice (black bars) and control mice (white
bars). C. Splenocytes were titrated for reactivation-competent virus by
explant co-culture. Each point shows the titre of one mouse. Black
symbols represent data for CD8+ T cell depleted mice, white symbols
represent data for control mice. Horizontal lines indicate arithmetic
means. Data were reproducible over two independent experimental
groups.
doi:10.1371/journal.ppat.1000177.g004

CD8+ T Cell Epitope Sets Latent Load
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Figure 5. Increased germinal center B cell colonization by MuHV-4 lacking M284–92 epitope anchor residues. BALB/c mice were
intranasally infected as shown and spleen sections hybridized with viral tRNA-specific riboprobes. A. Representative spleen sections from each group
of animals. Dark staining cells express viral tRNAs. Arrows indicate example positive cells. All sections are magnified 6200 and counter stained with
haematoxylin. B. Mean6SEM percentage of splenic follicles positive for viral tRNA expression. Six sections per mouse and three mice per group were
counted at each time point. Follicles were scored positive if they contained at least one viral tRNA positive cell. At d50 post-infection vM2F85A and
vM2L92A showed significantly higher latency loads than vWT (p = 0.002 and p,0.001; using a 1 tailed Student’s t-Test), whereas vM2F85AEPI showed
no significant difference (p = 0.45). C. BALB/c mice were intranasally infected with 104 PFU of the indicated virus. At 14 or 50 days post-infection,
reciprocal frequencies of viral infection in flow cytometrically purified germinal center (B220+PNAhigh) B cells were determined by limiting dilution and
real time PCR. Spleens were pooled from 5 mice per group. Bars show the frequency of viral DNA positive cells with 95% confidence intervals.
doi:10.1371/journal.ppat.1000177.g005

CD8+ T Cell Epitope Sets Latent Load
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3T3-CRE or BHK-21 cells were harvested after 4 days and titred

by plaque assay [59].

Recombinant viruses
The vM2FS [36], vM2F85A, vM2L92A and vM2F85AEPI viruses

were derived from BAC-cloned MuHV-4 [60]. The M2F85A and

M2L92A mutations were generated by overlapping PCR: A4353G,

A4354C substituted alanine for phenylalanine at M2 position 85,

and A4332G, A4333C substituted alanine for leucine at position 92.

Mutated genomic fragments were inserted into a HinDIII-E

genomic clone [61] cloned in pST76K-SR shuttle plasmid [60]

using BlnI (nt 3908) and XhoI (nt 5362) restriction sites. To

generate vM2F85AEPI, a genomic HinDIII/XhoI fragment (nt

4029–5362) was PCR-amplified from an M2F85A template and

cloned into pSP72 (Promega). Genomic co-ordinates 3846–4029

were then amplified, using the primer 59-AAAAAGCTTAGGG-

GATTCAATAAACTTAAGTCGACGTTATAACAGTGAAG-

GTGCTAACGCAGAA-39 and cloned into the same vector as a

BglII/HindIII fragment, thereby attaching the amino acid

residues KLRGFNKLRSTL to the M2F85A C-terminus. This

construct was again subcloned into the HinDIII-E shuttle plasmid

using BlnI/XhoI restriction sites. A vM2F85A revertant virus

(vM2F85AR) was generated using a wild-type HinDIII-E genomic

clone. All PCR-derived regions were sequenced to confirm the

integrity of the mutations. Each HinDIII-E shuttle plasmid was

transformed into DH10B E.coli containing the wild type MuHV-4

BAC. Following recombination, mutated BAC clones were

identified by DNA sequencing. The integrity of each BAC was

confirmed by restriction digestion with BamHI and EcoRI. All

viruses were reconstituted by transfecting BAC DNA into BHK-21

cells using FuGENE 6 (Roche Molecular Biochemicals). The loxP-

flanked BAC cassette was then removed by viral passage through

NIH-3T3-CRE cells. The integrity of each reconstituted virus was

checked by PCR of viral DNA across the HinDIII-E region. The

stability of the introduced mutations was confirmed by viral DNA

sequencing across M2, both prior to infection and using viruses

recovered from infected mice.

In vivo infections and virus assays
6- to 8-week old BALB/c, C57BL/6, DBA/2, FVB-N (Instituto

Gulbenkian de Ciência, Portugal) and B6.C.H2d mice (kindly

provided by C. Penha-Gonçalves, Instituto Gulbenkian de

Ciência, Portugal) were inoculated intranasally with 104 PFU of

MuHV-4 under isofluorane anaesthesia. At different days post-

infection, lungs or spleens were removed for post-mortem analysis.

Titres of infectious virus were determined by plaque assay of

freeze-thawed tissue homogenates on BHK-21 cells. Latent virus

loads were quantified by explant co-culture of freshly isolated

Figure 6. MuHV-4 lacking the H2-Kd-restricted M2 CD8+ T cell epitope is positively selected in a H2d host. BALB/c or C57BL/6 mice were
intranasally infected with equal amounts of the indicated viruses, 104 PFU in total. At 14, 21 or 50 days post-infection germinal centre (B220+PNAhigh)
B cells were recovered from pools of al least three spleens by flow cytometric sorting. The copy number of each viral genome was then measured by
quantitative PCR using primers specific for each viral genome. Each sample was assayed in triplicate. Black bars denote the percentage of M2F85A or
vM2F85AEPI genomes in the total genome load. Error bars show 95% confidence intervals.
doi:10.1371/journal.ppat.1000177.g006
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splenocytes with BHK-21 cells. Plates were incubated for 4 (plaque

assays) or 5 (explant co-culture assays) days, then fixed with 4%

formal saline and counterstained with toluidine blue for plaque

counting.

CD8+ T cell depletions
MuHV-4 infected BALB/c mice were depleted of CD8+ T cells

by 5 intraperitoneal injections of 200 mg of monoclonal antibody

YTS 169.4 [62]. Blood samples or splenocytes from depleted or

control mice were stained with APC-conjugated anti-CD8a and

phycoerythrin-conjugated anti-CD4 (BD Pharmingen) and ana-

lysed on a FCAScan Flow Cytometer using CellQuest software

(Becton Dickinson Immunocytometry systems).

In vitro T cell stimulation
Spleen cells (1–26106) were stimulated (6 h, 37uC) with 1 mM

GFNKLRSTL (M284–92) or HYLSTQSAL (EGFP200–208) pep-

tides (SIGMA-Genosys, Haverhill, UK) in RPMI supplemented

with 10% fetal bovine serum, 2 mM glutamine, 100 U/ml

penicillin, 100 mg/ml streptomycin, 50 mM 2-mercaptoethanol,

10 U/ml recombinant murine IL-2 (PeproTech, UK) and 10 mg/

ml Brefeldin A. The cells were then washed in PBS/10 mg/ml

Brefeldin A, blocked with anti-CD16/32 mAb, stained with APC-

conjugated anti-CD8a (BD Pharmingen), washed twice, fixed in

2% paraformaldehyde (30 min, 4uC), washed once, permeabilized

with 0.5% saponin, washed once, stained with a phycoerythrin-

conjugated anti-interferon-gamma mAb (BD Pharmingen) and

washed twice. All cells were analysed on a BD FACSCanto Flow

Cytometer using FACSDiva software (BD Biosciences).

Limiting Dilution analysis
The frequency of MuHV-4 genome-positive germinal centre B

cells was determined by limiting dilution and real-time PCR [37]:

B220+PNAhigh B cells were recovered from pools of five spleens using

a BD FACSAria Flow Cytometer (BD Biosciences) and serially two

fold diluted. Eight replicates of each dilution were analysed by real

time PCR (ABI Prism 7000 Sequence Detection System, Applied

Biosystems). The primer/probe sets were specific for the MuHV-4

ORF65 gene (59 primer: GCCACGGTGGCCCTCTA; 39 primer:

CAGGCCTCCCTCCCTTTG; probe: 6-FAM-CTTCTGTTG-

ATCTTCC–MGB). Samples were subjected to a melting step of

95uC for 10 min followed by 40 cycles of 15 s at 95uC and 1 min at

60uC. Real-time PCR data was analysed on the ABI Prism 7000

software. The purity of sorted cells was always greater than 97.5%.

In situ hybridization
In situ hybridization with a digoxigenin-labelled riboprobe

encompassing MuHV-4 vtRNAs 1–4 and microRNAs 1–6 was

performed on formalin-fixed, paraffin-embedded spleen sections

[46]. Probes were generated by T7 transcription of a pEH1.4

(Roche Molecular Biochemicals). Positive follicles were scored

using a Leica DM 5000B microscope.

Viral genome quantification
Splenic germinal centre B cells (B220+PNAhigh) were obtained

from pools of three spleens using a BD FACSAria Flow Cytometer

(BD Biosciences) and lysed overnight in 0.45% Tween-20, 0.45%

NP-40, 2 mM MgCl2, 50 mM KCl, 10 mM Tris-HCl pH = 8.3 and

0.5 mg/ml Proteinase K. Individual viral genomes (vM2F85A/vWT;

vM2F85A/vM2L92A; vM2F85A/vM2F85AEPI or vM2F85AEPI/vWT)

were quantified by real time PCR (RotorGene 6000 5-plex HRM,

Corbett Research), using a labeled probe specific for M2 and a

common primer plus mutant-specific primer. vM2F85A/vWT viral

mix: probe- 6-FAM-CATGGGGACTTTAACGTCGACC-

TAAGTT-TMR; common primer-GGTTAACTTCTTCAG-

GACTTGGTACA; M2F85A specific primer-TCCTAAAACCA-

TAAGAAGGGGAGC; WT specific primer-TTTCCTAAAAC-

CATAAGAAGGGGATT; vM2F85A/vM2L92A viral mix: probe- 6-

FAM-TCCCCTTCTTATGGTTTTAGGAAAGCGA-TMR;

common primer-CATCCCTCAGGAAATAAAAACAGTTC;

M2F85A specific primer-GGCTTCCATGGGGACTTTAA;

M2L92A specific primer-GCTTCCATGGGGACTTTGC;

vM2F85A/vM2F85AEPI or vM2F85AEPI/vWT viral mixes: probe- 6-

FAM-CCCCATGAACCCTGAGATACGTCTTCCT-TMR;

common primer-TGGCTCGACTGACAGTCCAGA; M2F85A and

WT specific primer ACCTAAGTTTATTGAATCCCCTAAGC;

M2F85AEPI specific primer-GTCGACCTAAGTTTATT-

GAATCCCCT (all primers and probes from TIBMolbiol). Samples

were subjected to a melting step of 95uC, 5 min followed by 45 cycles

of 15 s at 95uC and 45 s at 65uC. The wild-type, M2F85A, M2L92A or

M2F85AEPI HinDIII-E shuttle plasmids were used as templates to

derive standard curves. Real-time PCR data was analysed using

Rotor-Gene 6000 Series Software.

Statistical analysis
Data comparisons between different infection groups were

performed using Student’s t-Test, Friedman’s Test or the Kruskal-

Wallis Test as appropriate. For limiting dilution analysis 95%

confidence intervals were determined as previously described [36].
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