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Investigating the effects of genetic risk of schizophrenia on
behavioural traits
Adam Socrates1✉, Jessye Maxwell1, Kylie P. Glanville1, Marta Di Forti1, Robin M. Murray 2, Evangelos Vassos 1 and
Paul F. O’Reilly 1,3✉

To characterise the trait-effects of increased genetic risk for schizophrenia, and highlight potential risk mediators, we test the
association between schizophrenia polygenic risk scores (PRSs) and 529 behavioural traits (personality, psychological, lifestyle,
nutritional) in the UK Biobank. Our primary analysis is performed on individuals aged 38–71 with no history of schizophrenia or
related disorders, allowing us to report the effects of schizophrenia genetic risk in the sub-clinical general population. Higher
schizophrenia PRSs were associated with a range of traits, including lower verbal-numerical reasoning (P= 6 × 10–61), higher
nervous feelings (P= 1 × 10−46) and higher self-reported risk-taking (P= 3 × 10−38). We follow-up the risk-taking association,
hypothesising that the association may be due to a genetic propensity for risk-taking leading to greater migration, urbanicity or
drug-taking — reported environmental risk factors for schizophrenia, and all positively associated with risk-taking in these data.
Next, to identify potential disorder or medication effects, we compare the PRS–trait associations in the general population to the
trait values in 599 medicated and non-medicated individuals diagnosed with schizophrenia in the biobank. This analysis highlights,
for example, levels of BMI, physical activity and risk-taking in cases in the opposite directions than expected from the PRS–trait
associations in the general population. Our analyses offer simple yet potentially revealing insights into the possible causes of
observed trait–disorder associations, which can complement approaches such as Mendelian Randomisation. While we urge caution
in causal interpretations in PRS cross-trait studies that are highly powered to detect weak horizontal pleiotropy or population
structure, we propose that well-designed polygenic score analyses have the potential to highlight modifiable risk factors that lie on
the path between genetic risk and disorder.
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INTRODUCTION
While much is known about behavioural traits associated with
schizophrenia diagnosis and medication1, and prospective
studies have provided insights into behavioural traits common
during the years leading to diagnosis2, less is known about
behavioural traits associated with elevated genetic risk for
schizophrenia in the sub-clinical general population. The latter
could be useful for highlighting potential mediators of disorder
risk because their study should be less affected by the
confounding effects of medication or disorder pathophysiology,
which may have pre-clinical onset.
Modification of lifestyle or behavioural risk factors has the

potential of reducing disorder risk before the initiation of
pathology. However, identifying such risk factors using clinical
trials is typically infeasible and from standard observational data is
highly challenging due to the complex network of traits that
generates a myriad of non-causal associations3. The unidirectional
nature of genetic effects on traits, however, provides a convenient
‘anchor’ to build more powerful causal inference from observa-
tional data4.
Polygenic risk scores (PRSs), which correspond to a weak proxy

of an individual’s genetic liability to a trait or disorder, can be used
to infer genetic overlap between phenotypes via predicting one
phenotype from the PRS of another5–9. Identifying overlap
between genetic risk for a disorder and a trait can be useful both
to characterise the trait–PRS associations and in prioritising

putative disorder-modifying traits because genetic risk for traits
that do modify disorder risk must form a sub-component of
genetic risk for the disorder itself. Once genetic overlap has been
established, the next step is to infer which of the following is most
likely responsible: horizontal pleiotropy (i.e. the trait is non-causal
of the disorder), vertical pleiotropy (the trait affects the disorder or
vice versa) or that the observed overlap is an artefact of
population structure or ascertainment5,10.
Several studies have tested for genetic overlap between

schizophrenia and a small number of putative risk factors, such
as cognitive, smoking and other psychiatric traits11–13, while one
study has also tested for associations between schizophrenia
genetic risk and a large number of traits in the UK Biobank9.
However, while these studies have used techniques such as
Mendelian Randomisation9 and Genomic SEM13 to infer the causal
relationships underlying the observed genetic overlap, they have
not separated out non-diagnosed from diagnosed — medicated
and non-medicated — samples, which may have compromised
inferences made. Here we analyse these individuals separately. We
utilise the large sub-cohort of the UK Biobank with no history of
schizophrenia (or related disorders) in an exploratory study to test
for the effects of schizophrenia genetic liability in the general
population, and independently evaluate the large number of
schizophrenia medicated and non-medicated cases; all of these
individuals were collected and assayed as part of the UK Biobank
in the same way. Contrasting the results across these groups
provides a novel way of gaining insights that can help to
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distinguish between vertical and horizontal pleiotropy, as well as
between disorder and medication effects. We also perform
sensitivity testing to investigate potential confounding by
population structure. To demonstrate how these results can
motivate further interrogation of specific findings, we follow-up
the positive association between schizophrenia PRS and risk-
taking, investigating whether a greater propensity for risk-taking
may expose individuals to modifiable risk factors for schizophre-
nia, such as illicit drug use.
Our analyses should be considered an initial exploratory attempt

to identify behaviours that may mediate risk of schizophrenia. We
consider the simplicity of our approach to be a strength as an
exploratory analysis, highlighting and contrasting effects in non-
psychiatric, medicated and non-medicated cases in the same
cohort in a direct and transparent way, making few assumptions.
Analyses of this type could act as a complement to other more
technical approaches, such as Genomic SEM or Mendelian
Randomisation, for investigating causality in trait–disorder
associations4.

RESULTS
Polygenic risk score prediction of behavioural traits
We performed PRS analyses (see Methods) using PRSice-214, with
the schizophrenia GWAS summary statistics from the Psychiatric
Genomics Consortium (PGC) as base data15 and the UK Biobank
data on 307,823 individuals with no history of schizophrenia,
bipolar disorder or major depressive disorder as target data (see
Methods, Supplementary Tables 1 and 2 for traits and sample
sizes). Associations between the most predictive schizophrenia
PRS and the 529 behavioural traits from the UK Biobank were
tested using linear and logistic regressions in PRSice-2, controlling
for age, sex, Townsend deprivation index and the first 15 principal

components (PCs) to control for population stratification. We set a
highly conservative significance threshold of P < 1 × 10−7 based
on PRS including SNPs at a threshold of PT < 0.05 (the best-fit
schizophrenia PRS in leave-one-out analyses15) across 529 target
behavioural traits. This stringent threshold was used to minimise
significant hits being due to chance. Schizophrenia PRS showed
significant (P < 1 × 10−7) associations in 104 of the 529 behavioural
traits in the screened sub-cohort of 307,823 individuals. Pheno-
typic correlations between these traits can be seen in Supple-
mentary Figs. 1 and 2. To verify the reliability of these polygenic
associations, we repeated the analyses using PRS comprising only
the 108 sentinel genome-wide significant schizophrenia var-
iants15, based on the assumption that the effect size estimates
of genome-wide significant variants should be less affected by
population structure than non-significant variants; 77 of the 104
associated traits were nominally significant (P < 0.05) based on the
PRS comprising only genome-wide significant variants. The results
of all 104 significant associations are displayed in Supplementary
Table 2.
Figure 1 illustrates 20 of the most significant associations, with

highly related traits omitted (see Supplementary Table 2), showing
both the results based on the best-fit PRS (green) and the PRS
calculated from only the 108 genome-wide significant schizo-
phrenia SNPs (red). The markedly higher predictive power of the
best-fit PRS is apparent, yet the PRS–trait associations do not
appear to be due merely to the inclusion of non-significant SNPs
given the consistency with the GW-significant PRS results.
Reassuringly, the significant association with tea intake is non-
significant when tested using the GW-significant PRS, although
the association with cooked vegetable intake remains significant.
We consider how horizontal pleiotropy or population structure
may be responsible for these unexpected top-ranking associations
in the final sub-section of the Results, but first focus on the

Fig. 1 Bar plot showing 20 of the most significant associations. y-axis shows target trait variance explained, upwards for positive and
downwards for negative associations; with P-values of association shown on bars. The green bars show the best-fit schizophrenia PRS and the
corresponding target traits (x-axis), and the red bars show the association results when using the genome-wide significant (GW-significant)
schizophrenia PRS instead (based on the 108 sentinel schizophrenia SNPs). See Supplementary Table 2 for details and to inspect the selection
of these 20 results among the top results.
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findings that may indicate plausible targets of intervention. It is
noticeable, though perhaps unsurprising given the deleterious
nature of even prodromal stage schizophrenia2,16, that most of the
associations are in a direction that reflects ‘negative trait’
outcomes with higher genetic risk for schizophrenia; for example,
positive correlations with nervous (P= 1 × 10−46) and guilty (5 ×
10−30) feelings, and negative correlations with fluid intelligence
(P= 2 × 10−53) and friendship satisfaction (P= 2 × 10−24). Since
these analyses have been performed on a sample of individuals
with no history of schizophrenia, then they should reflect the
effects of genetic risk for schizophrenia in the general unaffected
population. We test this claim further in the next sub-section.

Contrasting trends in the general population and diagnosed
samples
The presence of individuals with schizophrenia in the UK Biobank
allows us to contrast the PRS-by-trait trends observed in the
undiagnosed general population with values of the corresponding
traits in diagnosed individuals. There are 599 individuals in the full
genotyped UK Biobank data with an ICD-10 diagnosis (from
Hospital Episodes Statistics) of ‘schizophrenia, unspecified’. This is
the largest category of official schizophrenia diagnosis in the UK
Biobank. Of these individuals, 297 reported presently taking
antipsychotic treatment during the baseline verbal interview,
which is also when most traits tested here were measured;
however, many traits were measured as part of the Mental Health
Questionnaire performed approximately 8 years after baseline
interviews and so there will be greater misclassification of
ongoing-treatment status in relation to these traits and corre-
spondingly smaller estimated effects (Supplementary Table 2).
There is also likely to be healthy participation bias, in which
diagnosed individuals participating in the study are likely to be
less severe than diagnosed individuals in the broader population.
Furthermore, diagnoses correspond to lifetime diagnoses,
whereas medication status corresponds to that at baseline.
Therefore, diagnosed non-medicated individuals may have
comparatively lower severity on average, and so differences
between the general population and non-medicated cases may be
underestimated, while differences between medicated and non-
medicated cases may be over-estimated. Finally, since the number
of individuals with schizophrenia in these data is relatively small,
in particular those on medication, then these findings should be
considered with caution.
Figure 2 displays the PRS-by-trait trends in the undiagnosed

general population as quantile plots (in green), with the trait
values for non-medicated (blue) and medicated (red) schizo-
phrenia cases appended to the right end of the x-axes. Depicting
the cases as having the highest genetic liability is appropriate
because, on average, cases are expected to have a higher genetic
liability than unaffected individuals, and the low predictive power
of the PRS ensures that even individuals in the top 5% quantile of
the undiagnosed sub-cohort will only have a moderately elevated
schizophrenia risk on average. The cases’ PRS fall between 20th

out of 21st quantiles, and medicated cases have higher PRS on
average compared to non-medicated cases (see Supplementary
Figs. 3 and 4).
The plots in Fig. 2 correspond to the traits of Fig. 1 and are also

shown in order of association significance (notice the different y-
axis scales when comparing the trends).
In 13 of the 20 results shown in Fig. 2, the trait values in

schizophrenia cases are in the direction expected according to the
PRS-by-trait trend, and in 12 of these 13, the medicated cases have
a more extreme trait value. For example, in Fig. 2d we observe
higher levels of nervous feelings in undiagnosed individuals with
higher genetic risk for schizophrenia, even higher levels in non-
medicated schizophrenia cases, and the highest levels of nervous
feelings in medicated schizophrenia cases. The trends towards the

case trait values observed with increasing genetic risk for
schizophrenia in the general population could be caused by: (i)
the trait being a (modifiable) risk factor for schizophrenia (vertical
pleiotropy), (ii) the pre-clinical or spectrum-like manifestation
of the disorder in the general population, which essentially
constitutes effects downstream of risk factors (horizontal pleio-
tropy), or (iii) misclassification of schizophrenia cases as being
unaffected. The alternative explanations (i) and (ii) cannot be
easily distinguished without specific follow-up studies (see next
sub-section). To elaborate on (iii), if misclassification of schizo-
phrenia cases as unaffected is more common among individuals
with higher schizophrenia PRS, then a downstream effect of
schizophrenia on, e.g. nervous feelings may have generated the
observed PRS-by-trait positive trend. However, if such misclassi-
fication does exist, then it may play a small role in the observed
results since almost half (7 of 20) show discordant results between
the general and affected sub-cohorts.
The fact that medicated cases generally have more extreme

trait values than non-medicated cases could be explained by
medicated cases having greater severity of disorder than non-
medicated cases.
However, some of the results show little difference between the

groups or the reverse trend, which may be indicative of
medication effects. For instance, while BMI reduces with increas-
ing schizophrenia PRS (Fig. 2g), medicated cases have markedly
higher BMI compared to the general population (P= 4.9 × 10−18;
see Supplementary Table 2) and non-medicated cases, which is
consistent with the known side-effect of antipsychotic medication
of increased BMI. Figure 2j may point to some behavioural
explanation for this, since higher schizophrenia PRS is associated
with higher physical activity, while medicated individuals show
the lowest levels of activity. Negative symptoms such as apathy
and lack of motivation may also contribute to lower physical
activity in people with schizophrenia, as well as side-effects of
antipsychotic medication, lack of self-efficacy and reduced
capacity to prioritise health benefits, which may not be present
in the general population17. There is increased self-reported risk-
taking with higher schizophrenia PRS (Fig. 2j), but individuals on
medication have lower levels of risk-taking than those not on
medication (P= 3 × 10−3). Interestingly, dopamine agonist drugs
have been found to increase risky behaviours in several studies on
Parkinson’s disease patients18,19, and so these results, pertaining
to antipsychotic-induced dopamine blockade, may reflect the
reverse effect.
Supplementary Figs. 5–8 display similar plots for the remaining

top 80 PRS-by-trait association results with P < 1 × 10−7, and
Supplementary Table 2 provides results of testing the difference
between trait values in schizophrenia cases compared to those of
the top quantile in the unaffected general population for all
104 significantly associated traits.
The widespread significant and substantial differences observed

in the behavioural traits between schizophrenia cases and the
undiagnosed individuals (Fig. 2, Supplementary Table 2 and
Supplementary Figs. 5–8): (1) supports the recorded diagnosis of
schizophrenia (i.e. that these individuals behave differently from
the general population) and (2) stresses the need to perform PRS
cross-trait analyses, and causal inference analyses from genetic
data, that are stratified by disorder/medication status.

A possible path to schizophrenia via the genetics of risk-
taking
Here we follow-up one of our top-ranking associations that
purporting to self-reported risk-taking (response to question
‘Would you describe yourself as someone who takes risks?’), since
we consider this a plausible target for therapeutic intervention.
We also perform this follow-up analysis to highlight the potential
for our results in hypothesis-generation and to show how specific
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Fig. 2 PRS-by-trait quantile plots (in green) indicating the trends of association between the best-fit schizophrenia PRS and the target
behavioural traits among 20 of the most significant associations, matching those of Fig. 1. The quantile plot is ordered along the x-axis
from low to high genetic risk for schizophrenia, according to PRS in the target (UK Biobank) data, with each green point representing the
average target trait value of a 5% quantile of the sample. The y-axis shows the regression coefficients corresponding to the effects of the PRS
on the trait, controlled for covariates (see Methods). Non-medicated (blue) and medicated (red), at baseline, diagnosed individuals are
appended to the right end of each plot, reflecting the expected higher genetic burden of diagnosed individuals compared to unaffected
individuals (see Main Text). Vertical lines represent 95% confidence intervals; these appear absent for some traits with a large range and are
larger in the two categories of cases due to their smaller sample sizes.
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results can be further interrogated to gain greater insights into
their underlying causes.
We hypothesise that a part of the aetiology of schizophrenia

may derive from a genetic propensity for risk-taking, resulting in
greater exposure to drug-taking, migration or urbanicity —
reported risk factors for schizophrenia20–23. Testing these path-
ways explicitly is underpowered here due to the relatively low
power of a UK Biobank risk-taking PRS and the limited number of
schizophrenia cases for such analyses, so instead we tested the
phenotypic associations and those with the schizophrenia PRS.
Migration patterns were characterised in three ways: Euclidean
distance moved between birth and current residence, birth and
current residence population density (and their difference) and
time spent at current residence (see Methods). We also tested
associations with several ‘control traits’, such as ‘leg pain on
walking’, ‘breast fed’ and ‘month attended baseline assessment
centre’ (see Methods) for comparison, since epidemiological
testing on such large sample sizes are vulnerable to producing
highly significant associations that are the consequence of small
biases or statistical artefacts.
Testing in the undiagnosed individuals, self-reported risk-taking

is positively associated with lifetime distance moved (P= 3 ×
10−123; r2= 0.001) and change in population density (P= 7 ×
10−37; r2= 0.0004), and is negatively associated with time spent in
current residence (P < 1 × 10−300; r2= 0.007). Risk-taking is also
positively associated with self-reported substance abuse (P= 8 ×
10−74; r2= 0.008). While these results are consistent with the
proposed pathway (see Supplementary Table 3 for all results), we
caution against their strong interpretation because of their small
explanatory power, their attenuation when also controlling for
Townsend deprivation index and education level, the sensitivity of
small P-values to stochastic variation24, and because the associa-
tions with many of the control traits were also significant.
Next, we tested for the association between schizophrenia PRS

and these traits in the undiagnosed sub-cohort (see Supplemen-
tary Table 4). With the exception of left-hand grip strength, blood
pressure device ID (i.e. type of blood pressure measuring device)
and population density of birth place, all the nominally significant
results related to the migration variables and substance use
and all the non-significant results corresponded to the control
traits (threshold of P < 0.05 for this sub-analysis, though we
caution discrete interpretation of P-values in general24,25). Schizo-
phrenia PRS was positively associated with population density of
current residence (P= 3 × 10−11), self-reported substance abuse
(4 × 10−9), ever-smoked-cannabis (7 × 10−8) and change in popu-
lation density from birth to current residence (P= 6 × 10−3), and
negatively associated with time spent at current residence
(P= 1 × 10−21) and distance travelled (5 × 10−4). However, each
association is attenuated when Townsend deprivation index
and education are controlled for, especially lifetime change in
population density. This likely reflects a complex network of
mediating, pleiotropic and causal relationships between the
genetics of risk-taking, education, socio-economic status, migra-
tion and drug-taking patterns, which could generate cross-
generational effects such as the association observed between
schizophrenia PRS and birthplace population density. Focussed
follow-up studies will be required to further unravel the proposed
risk-taking–schizophrenia pathway in order to consider it a
possible target for intervention.

Potential confounding in PRS–trait associations
While many of the associations in Fig. 1 have been implicated in
schizophrenia aetiology previously20, there are also highly
significant unexpected associations between the best-fit schizo-
phrenia PRS and tea intake (P= 1.7 × 10−28) and cooked vegetable
intake (P= 6.4 × 10−22). While the association between the GW-
significant PRS and tea intake is reassuringly non-significant (P=

0.42), it remains a concern for the many similar analyses being
conducted in the field6–9 that there is such a significant
association between the best-fit PRS and a trait that is expected
to play no causal role in schizophrenia. We exploit the engaging
and memorable nature of this example to highlight the potential
for confounding to generate PRS–trait associations, either in the
form of horizontal pleiotropy or due to population structure. In
Fig. 3, we illustrate what we consider to be four of the main broad
causal explanations for PRS–trait associations, using the associa-
tion with tea intake as an example, and consider how each can be
further tested.
In Fig. 3a we illustrate how ‘horizontal pleiotropy’ may typically

arise, via the multiple downstream effects of a causal risk factor or
function encoded by the genome (here addiction, leading to the
putatively causal factor cannabis smoking). This (hypothetical)
relationship would result in the genetic risk for schizophrenia
being associated with tea intake. This relationship could be
tested by controlling for cannabis smoking, but relatively few
unaffected individuals in the UK Biobank answered the questions
on cannabis smoking. There are positive associations phenotypi-
cally between tea drinking and cannabis smoking (P= 6 × 10−4;
maximum frequency of cannabis smoking), and also substance
abuse (P= 0.05), but alcohol consumption (P= 3 × 10−106) and
coffee consumption (P < 1 × 10−308) are negatively correlated with
tea drinking. The best-fit schizophrenia PRS is positively associated
with current smoking status (P= 2 × 10−37) and ever-taken-
cannabis (P= 7 × 10−17), consistent with the literature26,27, but is
negatively associated with beer intake (P= 2 × 10−11) and coffee
intake (P= 3 × 10−12). Thus, any link with propensity to addiction
is not straightforward and unlikely to be explained by the simple
relationship in Fig. 3a.
The potential for confounding by location (Fig. 3b) in polygenic

score analyses has been highlighted in several recent publica-
tions5,28. We repeated the analyses extending the number of PCs
adjusted for from 15 to 40 PCs and observed little change in
results (Supplementary Fig. 9). While confounding by location is,
thus, perhaps unlikely to be the main explanation for the
association with tea drinking, and the results in general, the large
sample size here means that even subtle confounding effects —
not well-captured by top PCs — could be responsible for highly
significant associations, and so without a thorough investigation
of potential confounding by population structure this possibility
cannot be ruled out.
While individuals with schizophrenia may consume more tea

(Fig. 3c) — due to spending more time indoors, for example —
our analyses were performed in the unaffected sub-cohort and so
the observed association should not be due to disorder onset.
Misclassification of cases as being unaffected could have caused
the association, although our results overall indicate that such an
effect may be small (see previous section).
We believe that tea being a causal risk factor for schizophrenia

(Fig. 3d) is the least likely of these potential explanations.
Bidirectional Mendelian Randomisation29 and the Latent Causal
Variable approach30 can be applied to distinguish between causal
effects in either direction (Fig. 3c, d), but distinguishing these from
confounding-by-function (Fig. 3a) is extremely challenging with-
out highly rich or prospective data (note that methods removing
variants displaying horizontal pleiotropy would likely rule-out
cannabis as a causal factor in the scenario of Fig. 3a).
Each of the models in Fig. 3 are severe simplifications of reality,

which likely involves simultaneous bidirectional and feedback
effects, but are presented here to highlight some key alternative
causal relationships consistent with observed PRS trait associations.

DISCUSSION
This study exploited GWAS data from the PGC and genotype-
phenotype data from the UK Biobank, to examine the associations
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between the common genetic liability for schizophrenia, esti-
mated by PRSs, and a range of behavioural traits. A key feature of
our study design is that the UK Biobank sample size allowed us to
contrast PRS vs behaviour trends in the unaffected population
with the same behaviours in 599 individuals with schizophrenia,
in the same cohort. With PRS an incomplete measure of genetic
liability, we investigated whether the associations between
increasing polygenic risk for schizophrenia and behavioural traits
in the undiagnosed general population are predictive of the trait
values in medicated and non-medicated schizophrenia cases, who
we expect to have higher genetic liability on average.
Almost one-fifth of the associations, which were observed in the

general non-diagnosed population sample beyond the typical age
of schizophrenia diagnosis (>38 years), were significant at a
stringent threshold. Most of these show that increased genetic risk
of schizophrenia is associated with negative trait outcomes, such
as lower friendship and family satisfaction and greater feelings of
guilt and anxiety, reflecting known social cognition challenges in
diagnosed and high-risk individuals31,32. Thus, the broad findings
may support the notion that common genetic risk for schizo-
phrenia manifests as a continuum across the population, with
symptoms common to diagnosed schizophrenia cases observed in

high-risk unaffected individuals to a greater extent than low-risk
unaffected individuals.
While there is justified concern about generating false-positive

associations when exploiting polygenic scores that include a large
number of null variants, we observed high consistency between the
results of best-fit PRS and PRS-based only on genome-wide
significant SNPs (Fig. 1), with best-fit PRS having markedly higher
explanatory power. Atypical differences between the results of the
two types of PRS could highlight potentially confounded associa-
tions, as in the case of tea drinking. However, a significant best-fit
PRS and non-significant GW-significant PRS may also reflect a
peripheral but causal effect, whereby a trait that is only weakly causal
of schizophrenia is influenced by variants that are correspondingly of
very small effect and thus not among the GW-significant SNPs. Thus,
as well as increasing explanatory power, the results from best-fit PRS
could provide aetiological insights if evaluated carefully.
The unprecedented size of the UK Biobank as a deeply

genotyped-phenotyped data set allowed us to perform a more
comprehensive type of analytical comparison. The data were of
sufficient size to both conduct a well-powered investigation
of PRS–trait relationships at high resolution and to contrast
those relationships with corresponding trait values of a sufficient
number of individuals with schizophrenia (Fig. 2). While the

Fig. 3 Four possible causal explanations for the schizophrenia-PRS vs tea drinking association. Red arrows reflect causal paths and grey
dotted lines depict confounded associations induced by the causal relationships. schizophrenia ‘risk alleles’ refer to those included in the PRS,
thus comprising genuine schizophrenia risk alleles (/risk haplotypes) and those with no effect on schizophrenia. a Some fraction of
schizophrenia risk alleles are addiction risk alleles, which influence addiction to multiple substances. The causal relationship between cannabis
and schizophrenia assumed here induces the association between schizophrenia-PRS and tea consumption, confounded-by-function
(addiction here, used for illustration only); b schizophrenia risk allele frequencies vary with location (due to genetic drift, etc.) and so too do
environmental factors influencing tea consumption and schizophrenia risk, inducing correlations between all three; c schizophrenia risk alleles
increase risk for schizophrenia. Schizophrenia increases tea consumption; d schizophrenia risk alleles increase tea consumption. Tea
consumption increases risk for schizophrenia.
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number of individuals with schizophrenia in the UK Biobank is
relatively small in the context of the entire cohort, these data
provide an unusual opportunity to perform a comparison of the
potential effects of schizophrenia risk between the sub-clinical
general population and diagnosed individuals, both those
medicated and non-medicated, in the same study population.
The trends of association observed in the unaffected and affected
sub-cohorts for a fraction of the traits demonstrated that all the
results cannot be merely a consequence of disorder misclassifica-
tion or pre-clinical effects, although these effects are likely to
contribute to the observed associations. We hope that our
analyses will motivate the collection of samples with sufficiently
large numbers of both unaffected and affected individuals,
consistently assayed and ideally prospectively collected, so that
effects across the disorder liability spectrum can be further
explored. Highlighting the downstream effects of schizophrenia
diagnosis compared to genetic risk in analyses such as these,
which include no cryptic assumptions, should make them a useful
counterpart to approaches for causal inference, such as Mendelian
Randomisation9,30.
However, while there is information to be gleaned from such

cross-trait PRS analyses, the results must be interpreted carefully.
The schizophrenia PRS based on the PGC schizophrenia GWAS
only explains ~ 7% of the variance in schizophrenia liability and
overlaps with genetic risk for other psychiatric disorders, such as
bipolar15,33. The PRS–trait associations reported here are therefore
based on small and non-specific effects. The trait variance
explained by the schizophrenia PRS has a maximum of only
0.04% (Supplementary Table 2) and for most traits tested is much
lower, which means that (1) at best we have some initial insights
into the role of behaviour in the genetic risk for schizophrenia and
(2) the generation of misleading results due to subtle bias or
confounding cannot be entirely ruled out. Furthermore, there is a
possibility of collider bias influencing some of the associations due
to both ascertainment of the UK Biobank cohort and the
covariates that we have controlled for. As the UK Biobank subjects
differ on average from the general population, if two associated
traits both influence selection into the study, a spurious
association may be generated34. Adjusting for a collider variable,
such as covariate that is correlated with both the PRS and the
outcome, can have the same effect. For example, the increased
association between schizophrenia PRS and left-hand grip
strength when education is controlled for (Supplementary Table
4) could be due to the PRS influencing both the left-hand grip
strength and education. Controlling for education would therefore
induce the increased association.
Although many of the leading associations, and their directions,

are consistent with the literature on schizophrenia aetiology, we
highlight the need for more thorough investigation before strong
interpretation of any specific association. We illustrate four simple
associations (Fig. 3) that could plausibly generate any of the
observed PRS–trait associations. Focusing on tea drinking as an
example may seem farcical, and was in fact the topic of a popular
blog post highlighting the potential problems of PRS associations
(with tea drinking a hypothetical example)35, but is intended to
clearly demonstrate the fallacy of assuming that highly significant
PRS–trait associations only expose factors on a causal path to the
outcome. For this reason, a large-scale systematic study of this
type must be considered as exploratory, providing only broad
aetiological insights and a screen of potentially interesting links
between traits and disorder requiring further investigation.
Certainly, none of the results from these analyses should be used
to guide present clinical practice.
To exemplify the kind of follow-up analyses that can be

performed based on the results of such exploratory studies, we
further investigated the association of schizophrenia–PRS and self-
reported risk-taking by calculating lifetime within-UK migration
patterns and combining those with population density data from

the UK National Office of Statistics. These analyses indicated that
risk-taking genetics may be a sub-component of the genetic
aetiology of schizophrenia due to mediation by migration and/or
drug-taking20–23. However, this should be considered a hypothesis
only, and confirmation of this and an assessment of the
contribution of such a relationship to overall schizophrenia
prevalence requires dedicated follow-up studies. It is interesting
to note that gene–environment correlations of this type effectively
inflate both pedigree-based and population-based heritability
estimates, since they are regarded as a genetic contribution to the
phenotype even if the critical causal agent is environmental.
By mining one of the largest datasets with one of the most

comprehensive and detailed behavioural phenotype information,
we have arguably produced the most systematic interrogation of
the link between genetic risk for schizophrenia and behaviour
to date. We have generated a catalogue of 529 schizophrenia
PRS–behavioural trait associations, 104 exceeding a stringent
multiple testing threshold, demonstrating the influence of genetic
risk of schizophrenia on behaviour and lifestyle in the general
population. While the large-scale nature of the analyses makes
them necessarily preliminary and exploratory, we have demon-
strated several ways of gaining greater insights than those derived
from the primary associations. We hope that these analytical
strategies, and the array of PRS–trait associations generated here,
will act as a useful starting point for follow-up investigations to
further expose the network linking genetics, behavioural traits and
schizophrenia, which may eventually provide targets of early
intervention to reduce the risk of schizophrenia.

METHODS
Base and target data
The base (or discovery) data for this study were the genome-wide
association study (GWAS) results from the PGC for schizophrenia15. These
schizophrenia GWAS results are derived from a sample of up to 36,989 cases
and 113,075 controls of European and East Asian ancestry, which yielded
108 independent loci harbouring genome-wide significant associations.
In the present study we analysed target data on up to 307,823 participants

(52% females), aged 38–73 years (mean= 56.85, S.D.= 8.06), involved in
the UK Biobank baseline assessment (http://www.ukbiobank.ac.uk)36,37 and
Mental Health Questionnaire. UK Biobank is a health resource for
researchers that aims to improve the prevention, diagnosis and treatment
of a range of illnesses. The recruitment process was coordinated around 22
centres in the UK (between 2007 and 2010)37. Individuals within travelling
distance of these centres were identified using NHS patient registers
(response rate= 5.47%)38. Invitations were sent using a stratified approach
to ensure demographic parameters were in concordance with the general
population. All participants provided written informed consent and the
current study was ethically approved by the UK Biobank Ethics and
Governance Council (REC reference 11/NW/0382; UK Biobank application
reference 18177).
The traits analysed in the target data were ‘behavioural traits’, liberally

defined as any trait that has a substantial behavioural component and
included traits across personality, mood, nutrition, physical activity and
psychological feelings. Altogether 529 such behavioural traits were
analysed (see Supplementary Table 1 for full list), although many of these
traits were closely related to each other and thus there is a strong
correlation structure among the traits. Details on the 104 significantly
associated traits are contained in Supplementary Table 2.

Base and target data: Quality control and exclusions
Blood samples from 488,366 UK Biobank participants were genotyped
using the UK BiLEVE array or the UK Biobank axiom array. Further details on
the genotyping and quality control (QC) can be found on the UK Biobank
website (http://www.ukbiobank.ac.uk/scientists-3/genetic-data/). In the
current study, SNPs were removed if they had missingness > 0.02 and
MAF < 0.01. Samples were removed from the dataset if they had
missingness > 0.01. We used a subset of European ancestry inferred
individuals, defined using 4-means clustering applied to the first two PCs
of the genotype data, because PRS are typically underpowered when
applied to target samples of a different global ancestry to that of the base
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data using current PRS methods5. Confirming this to be the case here, we
repeated the analysis of the top 20 PRS–trait associations (Fig. 1) in the full
cohort including 20,798 non-European ancestry inferred individuals and
observed less significant PRS–trait associations in 12 of the 20 results
despite the substantial increase in sample size (Supplementary Fig. 10).
One of each pair of related individuals were removed using a relatedness
criterion KING coefficient < 0.088. Exclusions based on heterozygosity and
missingness were implemented according to UK Biobank recommenda-
tions (http://biobank.ctsu.ox.ac.uk/showcase/label.cgi?id=100314). Sam-
ples were removed if they were discordant for sex. SNPs deviating from
Hardy-Weinberg equilibrium (HWE) were removed at a threshold of P <
10−8. This QC process resulted in a data set of 560,173 SNPs and
386,192 samples available for analysis.
For our polygenic risk analyses of the unaffected general population, we

removed all individuals with an ICD-10 diagnosis of major depressive
disorder, bipolar disorder, schizophrenia, and all individuals on anti-
psychotic medication. There were 307,823 individuals remaining for the
analyses of schizophrenia PRS in the unaffected sub-cohort. The analyses
that performed comparisons between the unaffected sample and
individuals diagnosed with schizophrenia exploited data on 599 indivi-
duals in the full UK Biobank data with an ICD-10 hospital diagnosis of
‘schizophrenia, unspecified’ and their antipsychotic medication status. Of
these individuals, 297 reported antipsychotic treatment during the verbal
interview.
UK Biobank data are available through a procedure described at http://

www.ukbiobank.ac.uk/using-the-resource/.

Primary polygenic risk score analyses
Summary statistics from the schizophrenia GWAS were downloaded from
the PGC website (https://www.med.unc.edu/pgc/results-and-downloads).
PRSs were generated using PRSice-2 software (www.prsice.info)14. PRSice
calculates individual risk scores by calculating the sum of disease-
associated alleles, weighted by the log odds ratio estimated in the
discovery GWAS. SNPs were clumped to minimise their linkage disequili-
brium (LD) using an r2 ≥ 0.1 threshold in sliding windows of 250 kb. PRS on
schizophrenia were generated for individuals in the UK Biobank cohort
based on the PGC discovery GWAS summary statistics, and then used to
predict target phenotypes recorded the UK Biobank. We selected SNPs to
calculate the polygenic scores at a P-value threshold of P < 0.05 based on
the PGC’s analysis showing these explained the most case–control variance
in 40 leave-one-out analyses13. Under a Bonferroni correction for multiple
testing that conservatively assumes independence between PRS thresh-
olds and among the base and target traits, we use a significance threshold
of 0.05 / (529)= 9.4 × 10−5 for the most predictive PRS in our primary
analyses, based on the 529 target traits tested. For further stringency, given
the risk of detecting significant associations that are a result of subtle
confounding in such large sample sizes, we only declare significance at P <
1 × 10−7. Details of the 104 phenotypes that show an association with the
most predictive PRS at P < 1 × 10−7 in the target data are provided in
Supplementary Table 2. Associations were examined in regression models
for the binary (logistic) and quantitative (linear) target traits, adjusting for
age, sex, Townsend deprivation index and the first 15 PCs of the genotype
data to control for population stratification, with additional adjustments
described in the text for relevant analyses. The PCs were provided as part
of the UK Biobank genotype data release. As further reassurance that the
observed associations are genuine, we repeated the analyses using PRS
based only on the 108 sentinel genome-wide (GW) significant variants for
schizophrenia.

Quantile plots
Quantile plots were generated by creating 20 bins of the screened subjects
based on their PRSs, with the lowest quantile containing the 5% of the
subjects with the lowest genetic liability up to the 5% with the highest.
Each trait phenotype was then regressed on the 20 quantiles using linear
and logistic regressions on continuous and binary traits, respectively,
with the 11th quantile used as the reference. In all, 15 PCs, age, sex, batch
and centre were included as covariates in each regression. For the
schizophrenia cases, a 21st quantile was used in the regressions and in the
medicated/non-medicated plots a further two were used.

Migration and substance abuse analyses
The UK Biobank data included birth and current residence (at baseline)
location variables, under our application, defined using the British National

Grid referencing system, corresponding to northerly and easterly positions,
with a reference point close to the Isles of Scilly. We used these locations to
characterise migration patterns of UK Biobank individuals within the UK.
First, the Euclidean distance travelled between birth and current residence
was calculated using the northerly/easterly co-ordinates of each; the
distance is calculated to the nearest kilometre to prevent identification
(mean distance travelled= 84.9 km, median= 15.0 km). Next, population
density measures were derived by matching the co-ordinates of each
participant to population density information held on national databases
relating to each local authority district. Population density statistics and
boundary data for local authority districts were downloaded from the
office of national statistics (https://www.ons.gov.uk), based on the 2011 UK
Census data. The R packages sp and rgdal were then used to retrieve the
appropriate population density metrics for each participant according to
their location co-ordinates. Thus, the population density measures for birth
place (mean= 2376 per km2, median= 1897 per km2), current residence
(mean= 2059 per km2, median= 1415 per km2) and their difference
(mean=−316.7 per km2, median= 0), were derived for each participant
and, again, corresponded to the local postcode area. Time spent at current
residence was available directly as a UK Biobank variable (mean= 17.8
years, median= 16 years). Substance abuse, defined as those with an ICD-
10 hospital diagnosis or self-reported substance abuse (total UK Biobank
sample: cases= 4033, controls= 498,631), was also available.
Self-reported risk-taking was tested for association with the migration

phenotypes using linear regression and with substance abuse using logistic
regression. The control phenotypes that were used in this follow-up analyses,
also tested via linear and logistic regressions, were: breast fed (binary: cases=
277,671, controls= 106,156); birth weight known (binary: cases= 277,076,
controls= 224,726); birth weight (mean= 3.12 kg, median= 3.32 kg); left
hand grip (mean= 29.55, median= 28); leg pain on walking (cases= 39,759,
control= 130,710); blood pressure device ID and month attended assessment
centre. Each of these phenotypes were then tested for an association with the
schizophrenia PRS. All of the analyses were adjusted for age, sex, Townsend
deprivation index and educational attainment, as described in the main text
and corresponding table captions.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this paper.
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