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Introduction
In silico scientific experiments are usually performed through 
workflows, which may be viewed as a chain of software  
executions.1 The activities in a workflow may have particular 
characteristics and purposes, considering an order of execu-
tion, demanding ad hoc modeling and management.2,3

In Bioinformatics, workflows usually perform experi-
ments on data from the so-called omics (genomics, transcrip-
tomics, metabolomics, etc.),4 whose sequencing technologies 
have become more affordable. It has made the amount of 
omics data become a Big Data matter,5 for which the work-
flows often require a high-performance computing environ-
ment.6 Maintaining such an environment requires resources, 
time, and skilled operators, which makes cloud computing an 
emerging alternative to Bioinformatics workflows. Along 
with guaranteeing the required reproducibility inherent in 
scientific experiments, constraints such as the data prove-
nance and technical restrictions based on the user profile 
must be addressed.7

Given this scenario, this study presents a solution for cloud-
based Bioinformatics workflows using data provenance to ena-
ble the reproducibility, including the computational environment 
itself. We discuss the effectiveness of the proposed solution 
using 3 typical Bioinformatics workflows and 3 distinct families 

of Not only SQL (NoSQL) database systems to store and 
retrieve the data provenance.

In section “Background,” we introduce the concepts involved 
in this study, followed by the related works and their contribu-
tions. Then, section “Method” describes our method, followed 
by section “Results,” where we show the results and their prac-
tical implications for improving the reproducibility of work-
flows in Bioinformatics.

Background
In this section, we introduce essential concepts of data prove-
nance, cloud computing, and the Infrastructure as a Service 
(IaaS), and NoSQL database systems.

Data provenance

Reproducibility is a fundamental matter in the production of 
scientific knowledge. The phases of a scientific experiment are 
often defined in a protocol, or in the case of in silico experi-
ments, in a workflow. Data provenance must provide a lineage 
or history of how the data were created, used, and modified 
preserving the data source and the process employed to trans-
form it into a final product.8,9 For this reason, data provenance 
is closely related to reproducibility.

Bioinformatics Workflows With NoSQL  
Database in Cloud Computing

Polyane Wercelens1 , Waldeyr da Silva1,2 , Fernanda Hondo1,  
Klayton Castro1, Maria Emília Walter1, Aletéia Araújo1,  
Sergio Lifschitz3  and Maristela Holanda1

1Department of Computer Science, University of Brasília, Brasília, Brazil. 2NEPBIO (Group of 
Biological Studies and Research on Cerrado), Federal Institute of Goiás (IFG), Formosa,  
Goiás, Brazil. 3Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil. 

ABSTRACT: Scientific workflows can be understood as arrangements of managed activities executed by different processing entities. It is 
a regular Bioinformatics approach applying workflows to solve problems in Molecular Biology, notably those related to sequence analyses. 
Due to the nature of the raw data and the in silico environment of Molecular Biology experiments, apart from the research subject, 2 practical 
and closely related problems have been studied: reproducibility and computational environment. When aiming to enhance the reproducibility 
of Bioinformatics experiments, various aspects should be considered. The reproducibility requirements comprise the data provenance, 
which enables the acquisition of knowledge about the trajectory of data over a defined workflow, the settings of the programs, and the entire 
computational environment. Cloud computing is a booming alternative that can provide this computational environment, hiding technical details, 
and delivering a more affordable, accessible, and configurable on-demand environment for researchers. Considering this specific scenario, we 
proposed a solution to improve the reproducibility of Bioinformatics workflows in a cloud computing environment using both Infrastructure as a 
Service (IaaS) and Not only SQL (NoSQL) database systems. To meet the goal, we have built 3 typical Bioinformatics workflows and ran them 
on 1 private and 2 public clouds, using different types of NoSQL database systems to persist the provenance data according to the Provenance 
Data Model (PROV-DM). We present here the results and a guide for the deployment of a cloud environment for Bioinformatics exploring the 
characteristics of various NoSQL database systems to persist provenance data.

KeyWoRDS: Bioinformatics workflows, reproducibility, data provenance, cloud computing, NoSQL

ReCeIVeD: October 27, 2019. ACCePTeD: October 29, 2019.

TyPe: Original Research

FuNDINg: The author(s) received no financial support for the research, authorship, and/or 
publication of this article.

DeCLARATIoN oF CoNFLICTINg INTeReSTS: The author(s) declared no potential 
conflicts of interest with respect to the research, authorship, and/or publication of this 
article.

CoRReSPoNDINg AuTHoR: Polyane Wercelens, University of Brasília, Brasília 
70910-900, Brazil.  Email: polyane.wercelens@gmail.com

889974 EVB0010.1177/1176934319889974Evolutionary BioinformaticsWercelens et al
research-article2019

https://uk.sagepub.com/en-gb/journals-permissions
mailto:polyane.wercelens@gmail.com


2 Evolutionary Bioinformatics 

Data provenance has been traditionally used in the work-
flow context,10 and its utility resides in the possibility of easily 
creating, evaluating, or modifying the computational models 
or scientific experiments once the provenance expresses the 
accumulation of knowledge of what was done.2 Studies in 
Scientific Workflow Management Systems (SWfMS) have 
collaborated on suitable solutions such as a taxonomy defini-
tion to classify those systems and the understanding of the 
workflow life cycle.2

Over time, some provenance models were proposed, such 
as the W7 Model,11 Provenir Ontology,12 Provenance 
Vocabulary,13 Open Provenance Model (OPM),14 and 
Provenance Data Model (PROV-DM).15 PROV-DM is a 
generic model that has been proposed to capture the data 
source in such a way that different systems can import and 
export their specifications. It represents the provenance data 
through an acyclic and directed graph describing the involved 
agents (e.g. people), entities, and activities. In a data provenance 
graph, nodes can represent objects, such as files or programs, 
and edges represent dependencies between these objects.

Cloud computing

Cloud computing defines resources on-demand to its users 
from a service provider, abstracting the infrastructure details. 
Several paradigms of computing have converged to that. They 
express mainly as virtualization, service orientation, and dis-
tributed systems, allowing a conceptually agnostic way to oper-
ate concerning the hardware that supports its applications and 
data in an almost unlimited way. The provisioned infrastruc-
ture is both accessible over the internet and geographically 
hosted in distributed data centers.

High availability, fault tolerance mechanisms, and, notably, 
elasticity, are some features provided by cloud computing ser-
vices.16 Elasticity is the ability to provision resources quickly 
and, in some cases, automatically.17 So, provisioning computa-
tional resources can be done to increase or flexibly decrease 
them, consistent to the user needs.

On one hand, service models describe an architectural standard 
for the operation of cloud-based solutions. These models are 
defined as Platform as a Service (PaaS), IaaS, and Software as a 
Service (SaaS).18 On the other hand, the deployment models can 
be defined as public, private, community, or hybrid17 and are deter-
mined by who afford to manage and operate the cloud facilities.

Although there are various technologies and hardware 
involved in these environments, resource management is uni-
fied. Many service providers come up with custom interfaces 
for handling their resources, such as Amazon Web Services 
(AWS), Microsoft Azure, Google Cloud Platform (GCP), 
DigitalOcean, and others. These providers offer a toolset that 
integrates the view of the user resources and enables suitable 
operation of the hosted environment.

Several threats can occur in a cloud computing environment 
in the different service and deployment models.19 So, cloud 

security mechanisms describe a set of policies, technologies, and 
control, aiming to protect the information and the hosted ser-
vices.20 A pivotal concept is confidentiality, which indicates that 
only authorized individuals or systems can access data and com-
putational resources,20 even in a multi-tenant infrastructure.

We have chosen to use IaaS, considering that in this service 
model, the user has more control over the cloud service stack 
than in PaaS and SaaS. The data are stored in block devices 
deployed in virtual machines (VMs), and not directly deal with 
the object storage system of the cloud provider, which usually is 
less performative than the other one.

Furthermore, when running a workflow, the computational 
resources can be expanded using the elasticity mechanisms of the 
chosen cloud provider. Thus, a cloud computing-based approach 
embraces seemly that the capturing and the storing provenance 
data enable the reproduction of the experiments and also include 
information concerning the computational environment.

NoSQL databases

The NoSQL databases have appeared with the increasing 
demand for databases that are capable of storing, processing, 
reading, and writing significant amounts of data with high per-
formance21 and offer a feasible alternative to the traditional and 
well-established Relational Database Management Systems 
(RDBMS).22

NoSQL database systems function with a flexible schema 
(or schemaless), able to handle both structured and unstruc-
tured data. NoSQL database systems distinguish in 4 leading 
families, and some of them are hybrid and implement more 
than 1.21-24 These families are as follows:

•• Key-value database systems: store data in a pair of parts 
(keys and values) where unique key indexes each value. 
Values are isolated and independent of each other, while 
the application logic treats relationships. Some examples 
of key-value stores are Voldemort25 and Redis.26

•• Column-oriented database systems: a predefined set of 
columns rules the structure of the values. It works as an 
orthogonal view of data regarding the tuple (line)-oriented 
relational database systems. HBase27 and Cassandra28 are 
examples of column-oriented database systems.

•• Document-oriented database systems: store documents 
as collections of attributes and values and may contain 
multivalued attributes. They established that keys and 
values could apply to each document, identified by a key 
which is unique within a collection. Usually, the data 
artifacts are stored adopting formats such as JavaScript 
Object Notation ( JSON) or eXtensible Markup 
Language (XML). Some document-oriented database 
systems are MongoDB29 and CouchDB.30

•• Graph-based database systems: they use a graph schema 
composed of nodes and edges to represent the data that 
can be stored both in the nodes and in the edges between 
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them. Some examples of Graph-based systems are 
Neo4J,31 ArangoDB,,32 and OrientDB.33

Concerning Bioinformatics, when analyzing the innova-
tions that have emerged since the Next Generation Sequencing 
(NGS), NoSQL has served to deal with the problems and limi-
tations that a Relational Database encounters in this research 
field.34,35 Due to the relevant relationship between NoSQL 
database systems and cloud computing, which is the environ-
ment used for this study, we chose to evaluate the persistence of 
data provenance in 3 distinct NoSQL families.

Related Works
In this section, we present related works involving data prove-
nance, its storage mode, and the computational environment of 
the experiments.

De Paula et al36 proposed the management of data prove-
nance for genome projects using PROV-DM. Their results 
demonstrated PROV-DM as a suitable model for storing 
properties for each execution of Bioinformatics workflows, 
and one which also provided graphical representation for the 
large volumes of data generated by genome projects using the 
Entity Collections.

Two research studies were performed using the NoSQL 
Column-Oriented Cassandra database system for data prove-
nance management using the PROV-Wf model.37,38 The 
researchers analyzed the performance by running a Bioinformatics 
workflow. Ferreira et  al37 compared relational and NoSQL 
DBMS approaches by migrating source data from a PostgreSQL 
RDBMS to Cassandra, a column-based NoSQL system. 
Aniceto et al38 extended this research by including MongoDB, a 
Document-Oriented NoSQL, comparing both Cassandra and 
MongoDB regarding PostgreSQL performance.

Also, other studies have used the Document-Oriented 
concept. Li et al8 suggested the Provenance Lens, a framework 
that provides data source management in cloud environments 
and compares its performance when using RDBMS and 
NoSQL Document-based and Graph-based systems. 
Sempéré et  al39 introduced Gigwa, a sharing resources web 
tool, that bases on MongoDB, providing a way to explore 
large amounts of genotyping data using filters of different 
combinations. Chacko et  al40 introduced PERM, a prove-
nance management system that uses the idea of Data Foreign 
Wrappers, also with MongoDB.

Costa et al41 presented the GeNNET, a platform that is capa-
ble of unifying scientific workflows running Docker containers 
employing the NoSQL Graph-Oriented Neo4J database system 
to integrate transcriptome analysis and select relevant genes.

Likewise, Almeida et al42 conducted a study on the Graph-
Oriented model, in which researchers presented AProvBio, an 
architecture that can perform the data provenance of scientific 
experiments in Bioinformatics automatically, using PROV-DM 
and Neo4J.

In another research, Costa et al43 also captured the prove-
nance data from a workflow using the PROV-Wf model. The 
workflow was executed both in desktop-based and cloud-based 
environments, whereas provenance was captured and stored in 
a relational database system.

Kanwal et al7 captured provenance data from a workflow 
based on the Genome Analysis Tool Kit (GATK) using 3 dif-
ferent workflow definition approaches: Galaxy (graphical  
user interface-based integrative framework),44 Cpipe45 
(Bioinformatics-specific pre-built pipelines), and Common 
Workflow Language (CWL), a declarative approach to work-
flow definition. Their conclusion reported assumptions and 
recommendations on reproducibility and data provenance.

There are some bioinformatics workflow management 
systems that deal with parallel tasks, including the develop-
ment and management of graphics processing unit (GPU)-
accelerated and distributed computing-based workflows.46,47

Incompatible data formats can hamper chaining outputs to 
each task in a workflow. Lenadora et al48 addressed this prob-
lem through a suitable solution using utility and conversion 
functions, achieving an average reduction of size by 40% in data 
storage.

Curcin et al49 provided an overview of scientific workflows 
and their capabilities of answering questions, reusability, and 
adaptability. They described the challenges and the steps 
involved when performing a study using primary care data-
bases when related to provenance capture, component integra-
tion, and high-level informatics challenges.

Cloud computing for Bioinformatics is also a natural 
solution for throughput analysis.50 It was used by Ko et al51 
while developing Closha, a hybrid automatic cloud-based 
workflow management system capable of running Hadoop-
based and general-purpose applications, as well as perform-
ing a pipeline-based analysis service for massive biological 
data.

Regarding the provenance data in a cloud environment, 2 
approaches stand out. The first solution is Galaxy,44 which can 
be classified as an SaaS and represents data provenance in an 
OPM model.14 Another solution is CloudBioLinux, which 
offers genome analysis resources through software images, and 
specific data repositories for cloud computing platforms.52 A 
summary of the significant contributions of these related works 
is presented in Table 1.

Method
To evaluate our solution for data provenance management, we 
performed 3 different typical Bioinformatics workflows. The 
workflows executed on 1 private and 2 public computational 
cloud environments. The data provenance was captured and 
persisted in 3 distinct NoSQL database systems, with a mainly 
designed schema according to the family to which they belong. 
The provisioning of the VMs for the environment was done 
using Docker53 as a container platform. The following 
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subsections describe the workflows, the data provenance sche-
mas for each NoSQL database, and the cloud environment.

Bioinformatics workflows

The raw material for Bioinformatics workflows are “reads,” 
which consist in strings of a limited alphabet (ACGT) repre-
senting DNA fragments obtained from NGS. Specific 
alignments of those reads give rise to an assembly producing 
contiguous sequences that represent samples of the original 
DNA.54 Greedy algorithms, OLC (overlap-layout-consensus) 
methods, and k-mer-based De Bruijn graphs are the most used 
assembly strategies.55

A typical workflow for genome assembly is composed of the 
sequential phases filtering, assembly, and analysis, which includes 
annotation.56 The filtering phase cleans the reads using specific 
quality parameters.57 The assembly phase may be a reference-
based or a de novo assembly. On one hand, the reference-based 
assembly of fragments uses a reference genome, aligning the 
reads of the target organism with its genome or a genome of  
a phylogenetically close organism. On the other hand, the  
so-called de novo assembly is performed without a reference 
genome.55 The analysis phase is very diverse and depends on the 
biological response sought in the experiment, and the data are 
processed to validate the initial hypothesis of the experiment.57

Three real Bioinformatics workflows were used in this 
work as didactic examples. The first one consists of mapping 
reads of expressed DNA (cDNA) of human primary cardiac 
microvascular endothelial cells and hPSC-derived endocar-
dial endothelial cells to the human chromosome 22 as the 
reference (Supplementary material Workflow for mapping 
reads to a reference). This workflow used the software 
Sickle,58 SAMtools,59 Hisat,60 and HTSeq.61

The second workflow consists of a de novo genome 
assembly of a multidrug-resistant Enterobacter kobei isolate 
(Supplementary material Workflow for de novo bacterial 
assembly). The DNA of the E. kobei was sequenced using the 
HiSeq platform (Illumina) generating 100 bp paired-end 
reads.62 This workflow used the Trimmomatic63 for the fil-
tering and trimming, Abyss64 for the assembly, and Quast65 
for the statistical analysis of the results.

The third workflow consists of finding drug-resistant genes 
in an isolated pathogen species Enterobacter cloacae subsp. cloa-
cae NCTC 9394 (Supplementary material Workflow for iden-
tifying bacterial drug-resistant Genes). The reads filtering was 
performed using Trimmomatic,63 and its assembly in contigs 
using SPAdes,66 and again statistical analysis with Quast.65 
Then, the genes were predicted using with Glimmer67 and 
annotated using the MEGARes antimicrobial resistance data-
base68 through Blast alignments.69

Table 1. Summary of the central contributions of the related works.

WORK PROVEnAnCE MOdEL dATABASE TyPE dATABASE inSTAnCE EnViROnMEnT

Curcin et al49 − RdBMS Oracle −

Schatz et al50 − − − Cloud

Krampis et al52 − − − Cloud

de Paula et al36 PROV-dM − − −

Costa et al43 PROV-Wf RdBMS * Local and Cloud

Ferreira et al37 PROV-Wf Column and RdBMS Cassandra and PostgreSQL Local

Aniceto et al38 − Column Cassandra Local

Chacko et al40 − document MongodB Local

Sadedin et al45 RdBMS SQLite Local

Li et al8 − RdBMS, document, and Graph MySQL, MongodB, and neo4J Local

Sempéré et al39 − document MongodB Cloud

Afgan et al44 OPM − − Cloud

Costa et al41 − Graph neo4J Cloud

Almeida et al42 PROV-dM Graph neo4J Local

Kanwal et al7 OPM − − Local and Cloud

Ko et al51 − − − Cloud

Abbreviations: OPM, Open Provenance Model; PROV-dM, Provenance data Model; RdBMS, Relational database Management Systems.
The symbol “–” means not applicable and “*” means not identified.
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Cloud environments

Three different computational resource providers were used 
running in 2 public cloud providers (DigitalOcean and Google 
Cloud) and a private corporate cloud. Each environment has 
VMs using Docker, which is an open-source technology that 
both allows the management of application in containers and 
can be used together with IaaS for provisioning workflow 
environments with a negligible performance impact.41,70

A container-based application fully encapsulates the 
shipped software, providing all the required dependencies and 
ensuring the same libraries and software packages during the 
building and running processes.41,71 A BioLinux72 Docker 
image forked to a new image called ProvBio, which contains all 
the tools and settings used by each workflow. The entire envi-
ronment can be reproduced by following the steps available at 
https://github.com/polyane/dataprovenance

Regarding the VM environment, we chose 4 Centos7 VMs 
running Docker, where we kept the workflow and the NoSQL 
systems in separate containers, as presented in Figure 1A. The 
databases (MongoDB, OrientDB, and Cassandra) were hosted 
in instances 1, 2 and 3, which ran over Alpine Linux and 
Debian Docker containers (Figure 1B).

The Cassandra and OrientDB platforms were configured 
with 2 nodes (N1 and N2), whereas MongoDB was set up with 
1 primary node and 2 secondary nodes (S1 and S2). The work-
flow machine “ProvBio” is hosted in instance 4. It has the raw 

data and runs a ProvBio Docker container forked from Biolinux 
with additional tools sraToolkit, sickle, Hisat2, SAMtools, 
Quast, and Trimmomatic (Figure 1C). During the executions, 
there was no computational resource allocation beyond that 
was granted initially. The instance specifications are described 
in Table 2.

Data provenance schemas

Based on the PROV-DM, we defined schemas for persis ting 
the data provenance in NoSQL Column-oriented, 
Document-oriented, and Graph-based families considering 
specially designed schemas for each of them. In addition to 
the typical workflow entities: Agent, Experiment, Activity, 
and Project, we included the Machines and Environment enti-
ties related to the execution of the experiments in the cloud 
environment.

The Environment entity has information about the cloud as 
the cloud provider, the location, and the number of machines in 
the environment. The Machine entity has information perti-
nent to the machines present in the execution environment of 
the workflow such as price, type of billing, operating system, 
among others. These components are vital for managing the 
data provenance of an experiment executed in the cloud. It 
makes it possible to reproduce both the experiment and the 
conditions of its environment. Besides, it permits us to get 
tracking the origin of the data.

Figure 1. The cloud environment: (A) cloud environment instances, (B) database instances, and (C) workflow instance. PROV-dM indicates Provenance 

data Model.

Table 2. Configuration of instances.

HOST nAME ROLE OS VERSiOn dOCKER COnTAinER CPU RAM HARd diSK

instance-1 Cassandra n1, OrientdB n1 
and MongodB S1

CentOS 7.4 Cassandra and MongodB (extended 
from debian Linux) OrientdB 
(extended from Alpine Linux)

2 4 GB 30-GB SSd

instance-2 Cassandra n2, OrientdB n2 
and MongodB S2

CentOS 7.4 Cassandra and MongodB (extended 
from debian Linux) OrientdB 
(extended from Alpine Linux)

2 4 GB 30-GB SSd

instance-3 MongodB Primary node CentOS 7.4 Alpine Linux 2 4 GB 30-GB SSd

instance-4 PROV-dM Workflow Runner Ubuntu 14.04 ProvBio (extended from Biolinux) 2 4 GB 50-GB SSd

Abbreviations: CPU, central processing unit; PROV-dM, Provenance data Model; RAM, random access memory.

https://github.com/polyane/dataprovenance
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MongoDB can store documents under collections in 2 
ways: either reference, when there is a reference or link between 
2 related documents, or by embedded documents, which 
arranged in fields or arrays. In the document-based schema 
proposed here, we used both approaches. Figure 2 shows the 
embedded documents between the Project, Experiment, 
Activity, and Agent entities, as well as between the Provider, 
Location, Cluster, and Machine entities. Activity and Machine 
entities represent the relationship by reference, describing 

workflow activity running on a particular machine in the 
cloud, as well as stored used/generated files on that machine.

OrientDB is a hybrid database system that implements key-
value, document, and graph models. Graph databases allow the 
storage of entities in nodes and edges, which can have proper-
ties. The edges have directional significance and indicate how 
the connected nodes are related. Figure 3 shows the proposed 
graph database schema for the storage of provenance in 
OrientDB using GRAPHED notation.73

Figure 2. document data schema.

Figure 3. Graph database schema.



Wercelens et al 7

Figure 4. Column family data schema.

Cassandra is a non-relational database system based on col-
umns.74 A good practice when using Cassandra is to denormal-
ize the database making it devoid of relationships. In Cassandra, 
it is important to analyze and implement the queries that will 
be performed by the application in the database to generate 
suitable and efficient tables. Data model using Cassandra was 
designed to achieve the minimum response time, even in com-
plex operations, without joins or aggregations present in the 
SQL language. Thus, to analyze all the information necessary 
to answer biologists’ questions, a query-oriented model was 
proposed based on how the data will be accessed. Figure 4 
shows the model developed for Cassandra.

Results and Discussion
There are technical and practical aspects of the findings of this 
article. It was achievable to implement the PROV-DM model 
in different NoSQL database systems to store the data prove-
nance. Unlike relational databases, where data modeling is 
well established through normal forms, NoSQL databases 
demand a particular study to achieve a suitable data model. 
NoSQL databases are schemaless, and notwithstanding pro-
viding flexibility for the data model, it brings a significant 
responsibility to the database administrator. Here, we pre-
sented data models for 3 types of NoSQL to store data prov-
enance according to PROV-DM properly.

PROV-DM has already been shown to be suitable for stor-
ing data sources from Bioinformatics workflows,36,42 even 

though it was not created for this purpose explicitly. With its 
components, PROV-DM is capable of, respectively, dealing 
with agents, entities, activities, and the precedence at which 
they were created, used, or ended.

The Workflows 1 (W1), 2 (W2), and 3 (W3) in each cloud 
environment were repeatedly executed and returned consistent 
results regarding the generated data in the workflows for each 
execution. Google Cloud had an advantage in execution time 
when compared with DigitalOcean and the private cloud, 
delivering a better performance, as can be seen in Table 3. 
Regarding the execution time, and consequently, the costs, 
there was only a little variation detected. These results enable 
an evaluation of the cost based on the execution history, which 
will be a target issue for future works.

Among the service models available in cloud computing, 
the use of IaaS confers advantages: it can collaborate with 
information security issues as the data are less exposed than in 
other service models such as SaaS, for instance, and increase 

Table 3. Total times for workflow execution, capture and storage of 
data provenance.

diGiTALOCEAn GOOGLE CLOUd PRiVATE CLOUd

W1 1h40m11s 20m06s 32m34s

W2 1h27m29s 18m07s 41m35s

W3 2h09m49s 1h15m18s 1h33m01
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the control and flexibility of the computational environment. 
The flexibility of an IaaS environment deployment brings an 
increase in configuration work compared with SaaS, and this is 
precisely a point where the seized solution proves useful 
deploying the Bioinformatics workflows to the cloud with 
minimal technical effort. This study conceptually differs from 
the service model of proposals such as Galaxy,44 as it works 
with IaaS instead of SaaS.

Some of the Bioinformaticians’ most common questions 
about data provenance were answered using the query languages 
of each database. Each database had its own query language and, 
in some cases, it was necessary to create specialized functions, 
such as to obtain the total cost of the workflow, and that required 
changing some initial configuration parameters of the databases. 
MongoDB, which has native support for the arithmetic opera-
tors, was an exception. Table 4 shows samples for queries accord-
ing to the query language of each NoSQL database system.

Beyond the technical results, the findings also lead us to 
some practical considerations this work cover. The omics data 
sequencing is expanding the demand for biological data analy-
ses, including small labs, or even individuals, who can now 
access facilities or even have a portable sequencing platform as 
MinION75 for an affordable price. In contrast, maintain a data 
center is not affordable, and an alternative solution is to hire a 
cloud service to run the analyses.

The presented provenance data schemas have included 
workflow data as well as metadata for cloud configuration. In 
this way, once the cloud contract is terminated, all the workflow 
and its data will be stored in a chosen NoSQL database to be 
easily deployed in any new cloud. This is a key contribution of 
this work, making it possible to reproduce the experiment in 
different clouds with limited effort for computational environ-
ment configuration. The presented conceptual data schemas 

efficiently meet for the reproducibility requirements of the 
experiment in the cloud by ensuring the compatibility of the 
computing platform deployed by a researcher following good 
practices proposed by Kanwal et al.7

From the chosen NoSQL families, the graph database sys-
tem was the most adherent to the PROV-DM model, allow-
ing persistence of the provenance graph in its native form. 
Moreover, it is possible to generate a picture of the data 
provenance aligned to the graphical representations of the 
PROV-DM from a query using an application programming 
interface (API) as Prefuse.76 Figure 5 shows the data prove-
nance for the W1. It is possible to see Ag_Fernanda, the exec-
utor agent of the At _Map_Hisat2 mapping activity, whose 
input data are chromosome.22.hisat2.idx and SRR5181508_
FILTERED.fastq, and the result data SRR5181508.sam. 
Figure 6 shows the data provenance for the W2, where Ag_
Fernanda executed the At_Filt_Trimmomatic activity using 
the inputERR885455_1.fastq and ERR885455_2.fastq, 
resulting in the filtered files.

Behind, Figure 7 shows the filtering phase data provenance 
for the W3. The input data are ERR037801_1.fastq and 
ERR037801_2.fastq. It is possible to see the executor agent 
Ag_Polyane of the At_Filt_Trimmomatic activity, resulting in 
the filtered files.

Conclusions
Bioinformatics workflows have contributed significantly to 
solving biological problems through omic data analysis. As 
with every scientific experiment, reproducibility is an impor-
tant factor, plus in in silico experiments, extra elements need to 
be considered to ensure that factor. Two of these elements are 
the computational environment and the data provenance. 
Along with these elements, there are practical issues that 

Table 4. Query examples in each noSQL for common questions about data provenance.

WHAT ARE THE nAMES And VERSiOnS OF THE PROGRAMS USEd TO PERFORM THE WORKFLOW 1 ACTiViTiES?

MongodB db.project.aggregate([{$match:{$and:[{id:”1”},
{“experiment.id”:”1”},]}}, {$unwind:”$experiment.activity”},
{$group:{_id:{program:”$experiment.activity.program_name”,
version:‘$experiment.activity.program_version’}}}])

Cassandra SELECT name_program_Activ, version_program_Activ
FROM provenance.ExpBioActivity WHERE id_Exp=1;

OrientdB SELECT program, version FROM activity GROUP By program WHERE id_Exp=1;

WHAT iS THE GOOGLE CLOUd COnFiGURATiOn USEd TO RUn THE WORKFLOW (MACHinES, PROCESSORS, MEMORy, ETC.)?

MongodB db.provider.find({name_Provider:”Google Cloud”,
“cluster.name_Cluster”:”provBio”},
{_id:0, “cluster.num_Machine_Cluster”:1, machine:1})

Cassandra SELECT num_Mac_Cluster, type_Mac, so_Mac, cpu_Mac, ram_Mac, disk_Mac,
disk_type_Mac, price_Mac, region_Mac, zone_Mac
FROM provenance.ExpBioCloud WHERE name_Provider=“Google Cloud”;

OrientdB SELECT num_mac_cluster, type, operation_system, cpu, ram_memory, disk,
disk_type, localization, price, billing_type FROM machine
WHERE name_Provider=“Google Cloud”;
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impose some restrictions, such as resources for maintaining 
such an environment, time, skilled operators, and the storage of 
data provenance in a retrieval way.

In this study, we explored the service model IaaS of cloud 
computing environment while capturing and persisting data 

provenance of typical Bioinformatics workflows in NoSQL 
databases from 3 different families. The data provenance sup-
ports the capture of both data and its trajectory, as well as 
metadata about the computational environment. Thus, the 
findings showed that the proposed schemas for storing the 

Figure 5. Graph of provenance generated from the mapping of Workflow 1.

Figure 6. Graph of provenance generated from the filtering of Workflow 2.
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provenance data in NoSQL databases enabled replication of 
the experiments by allowing them to be deployed in a cloud 
environment with low technical efforts, offering a viable 
alternative.

Regarding the time, all used NoSQL databases presented 
good performance for storing the data, displaying an insignifi-
cant difference in the data storage time. In our evaluation, the 
graph database is the best choice among the examined data-
bases because it is more adherent to the PROV-DM. In future 
works, we intend to investigate issues related to data security 
and cost prediction based on the history of executions stored 
from the data source.
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