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Abstract
Background: Translational control mediated by non-coding microRNAs (miRNAs) plays a key role in the mechanism of 
cellular resistance to anti-cancer drug treatment. Dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS, TS) 
are two of the most important targets for antifolate- and fluoropyrimidine-based chemotherapies in the past 50 years. 
In this study, we investigated the roles of miR-215 in the chemoresistance to DHFR inhibitor methotrexate (MTX) and TS 
inhibitor Tomudex (TDX).

Results: The protein levels of both DHFR and TS were suppressed by miR-215 without the alteration of the target 
mRNA transcript levels. Interestingly, despite the down-regulation of DHFR and TS proteins, ectopic expression of miR-
215 resulted in a decreased sensitivity to MTX and TDX. Paradoxically, gene-specific small-interfering RNAs (siRNAs) 
against DHFR or TS had the opposite effect, increasing sensitivity to MTX and TDX. Further studies revealed that over-
expression of miR-215 inhibited cell proliferation and triggered cell cycle arrest at G2 phase, and that this effect was 
accompanied by a p53-dependent up-regulation of p21. The inhibitory effect on cell proliferation was more 
pronounced in cell lines containing wild-type p53, but was not seen in cells transfected with siRNAs against DHFR or 
TS. Moreover, denticleless protein homolog (DTL), a cell cycle-regulated nuclear and centrosome protein, was 
confirmed to be one of the critical targets of miR-215, and knock-down of DTL by siRNA resulted in enhanced G2-arrest, 
p53 and p21 induction, and reduced cell proliferation. Additionally, cells subjected to siRNA against DTL exhibited 
increased chemoresistance to MTX and TDX. Endogenous miR-215 was elevated about 3-fold in CD133+HI/CD44+HI 
colon cancer stem cells that exhibit slow proliferating rate and chemoresistance compared to control bulk CD133+/
CD44+ colon cancer cells.

Conclusions: Taken together, our results indicate that miR-215, through the suppression of DTL expression, induces a 
decreased cell proliferation by causing G2-arrest, thereby leading to an increase in chemoresistance to MTX and TDX. 
The findings of this study suggest that miR-215 may play a significant role in the mechanism of tumor chemoresistance 
and it may have a unique potential as a novel biomarker candidate.

Background
Antifolate- and fluoropyrimindine-based chemotherapies
are widely used to reduce the recurrence rates and
improve the survival of a number of tumors, including
osteosarcoma and colorectal cancer. However, resistance
to chemotherapeutic agents is still one of the major rea-
sons for the failure of cancer treatment. Previous efforts
have mainly focused on the relationship between the tar-
get levels of dihydrofolate reductase (DHFR) or thymidy-

late synthase (TYMS, TS) and their response to inhibitors
such as methotrexate (MTX) and Tomudex (TDX). One
of the important chemotherapeutic targets for antifolate-
based chemotherapy, DHFR, catalyzes the reduction of
dihydrofolate to tetrahydrofolate as the one-carbon
donor essential for the de novo synthesis of thymidylate
(dTMP), a precursor for DNA biosynthesis [1]. TS cata-
lyzes the reductive methylation of dUMP to dTMP [2].
Due to their critical functions, both DHFR and TS have
been the major anti-cancer targets for the past 50 years.
However, it still remains a debated issue whether DHFR
or TS can be used as predictive or prognostic biomarkers
[3-6]. Clearly, the time has come to move beyond discus-
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sions of target/drug relationships, and broaden our
search to include novel biomarkers that would allow us to
better relate clinical response to chemotherapy.

It has been well documented that post-transcriptional
and translational controls play a key role in the mecha-
nism of cellular resistance to anti-cancer drug treatment
[7-12]. One relatively newly-identified mechanism of
translational control is mediated by small, non-coding
single-stranded RNAs termed microRNAs (miRNAs).
miRNAs are complementary to and regulate the transla-
tion of one or more mRNA molecules, most likely by
binding to their 3'UTRs and inhibiting mRNA translation
or facilitating mRNA cleavage in mammalian cells [13],
although many of the mechanistic details are yet to be
elucidated [14,15]. Furthermore, a given species of
miRNA can perfectly or imperfectly base pair with multi-
ple targets, allowing it to potentially regulate the transla-
tion of numerous mRNAs. It has been predicted that over
30% of the human protein coding genes are post-tran-
scriptionally regulated by this mechanism [16-18]. Given
the major roles of miRNAs in the regulation of protein
expression in general, it is crucial to understand the con-
tributions of miRNAs to tumor chemoresistance.

Previous study from our laboratory has shown a num-
ber of miRNAs may be directly regulated by tumor sup-
pressor gene p53 [19], and this novel mechanism has
been proved to be critical as part of the p53 function in
regulating cell cycle and proliferation [20-24]. Recently,
we have also confirmed that the expression of miR-192 is
directly regulated by p53 and that one of the major tar-
gets of miR-192 is DHFR [25]. To date no miRNAs have
been reported to target TS, whose expression is known to
be regulated at transcriptional and post-transcriptional
levels.

In this study, we described a novel mechanism of
chemoresistance mediated by miR-215. We provided
experimental evidence that although miR-215 reduced
the expression of both DHFR and TS, the over-expression
of miR-215 also counter-intuitively decreased chemosen-
sitivity to the DHFR inhibitor MTX and the TS inhibitor
TDX. In contrast, small-interfering RNAs (siRNAs)
mediated knock-down of DHFR or TS increased cellular
sensitivity to MTX or TDX, respectively. This difference
was likely due, at least to a large degree, to reduced cell
proliferation rate and cell cycle G2-arrest mediated by
miR-215 through down-regulation of denticleless protein
homolog (DTL) and increased p53 and p21. DTL, also
known as retinoic acid-regulated nuclear matrix-associ-
ated protein (RAMP), or DNA replication factor 2
(CDT2), is reported to be correlated with the cell prolifer-
ation, cell cycle arrest and cell invasion in hepatocellular
carcinoma, breast cancer and gastric cancer [26-28]. Fur-
thermore, the expression of miR-215 was elevated in

CD133+HI/CD44+HI human colon cancer stem cells,
leading to their slow proliferation rate and allowing them
to resist the damage caused by chemotherapeutic agents
[29]. Inversely, the expression of miR-215 was signifi-
cantly decreased in colorectal tumor specimens com-
pared to adjacent normal colorectal tissues, contributing
to the fast-proliferating, chemotherapy-sensitive pheno-
type of differentiated cancer cells. As a result, miR-215
may be a potential important target for developing novel
anti-cancer therapeutics and a biomarker candidate in
tumor chemoresistance.

Methods
Cell culture and reagents
The human osteosarcoma cell lines U-2 OS, MG63 were
obtained from the American Type Culture Collection
(ATCC). The human colon cancer cell lines HCT 116 (wt-
p53) and HCT 116 (null-p53) were a gift from Professor
Bert Vogelstein (The Johns Hopkins University). U-2 OS,
HCT 116 (wt-p53) and HCT 116 (null-p53) cells were
maintained in McCoy's 5A medium (Gibco Laboratories),
and MG63 cells were maintained in Eagle's Minimum
Essential Medium (ATCC) respectively. All the media
were supplemented with 10% dialyzed fetal bovine serum
(HyClone Laboratories). MTX, TDX, cisplatin and doxo-
rubicin were purchased from Sigma-Aldrich.

Patients and samples
Microscopically confirmed tumor samples and paired
adjacent normal tissues were obtained from 24 patients
undergoing surgical resection of primary colorectal ade-
nocarcinoma at the Department of General, Visceral and
Transplantation Surgery, University of Ulm, Germany.
Following surgery, samples from tumor and adjacent nor-
mal tissues were frozen in liquid nitrogen and stored at -
80°C for subsequent RNA extraction. Patient consent
forms were obtained from all patients according to the
institutional regulations. The characteristics of these
patients are shown in Additional file 1.

Isolation of colon cancer stem cells
HCT 116 (wt-p53) cells were sorted with multiparametric
flow cytometry using BD FACS Aria cell sorter (Becton
Dickinson) under sterile conditions. Cells were prepared
and labeled with conjugated anti-human CD133-PE
(clone 105902; R&D Systems) and CD44-FITC (clone
F10-44-2; R&D Systems). Antibodies were diluted in
MACS buffer containing 5% BSA, 1 mM EDTA and 15-
20% blocking reagent (Miltenyi Biotec) to inhibit non-
specific binding to non-target cells. After 15 min incuba-
tion at 4°C, staining cells were washed, resuspended in
500 μl of MACS buffer, and sorted.
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Transfections of miR-215 and siRNAs specific for DHFR, TS 
or DTL
U-2 OS, MG63, HCT 116 (wt-p53) and HCT 116 (null-
p53) cells (2 × 105) were plated in six-well plates and
transfected with 100 nM of either miR-215 mimics or
non-specific miRNA (Ambion) after 24 h by Oligo-
fectamine (Invitrogen) according to the manufacturer's
protocols. siRNA against DHFR (ON-TARGET plus
SMARTpool L-008799-00-0010, human DHFR,
NM_000791), siRNA against TS [30], and siRNA against
DTL (ON-TARGET plus SMARTpool L-020543-00-0005,
human DTL, NM_016448) were purchased from Dhar-
macon and transfected with Oligofectamine at a final
concentration of 100 nM.

miR-215 knock-down
To knock down endogenous miR-215, HCT 116 (wt-p53)
cells were transfected with 100 nM of scramble-miR
locked nucleic acid (LNA-control) or LNA anti-miR215
(LNA-miR215) oligonucleotides by Lipofectamine 2000
(Invitrogen) in six-well plates (2 × 105 cells/well). LNA-
control and LNA-miR215 were purchased from Exiqon.
To mimic the stress situation, HCT 116 (wt-p53) and
HCT 116 (null-p53) cells were first transfected with 100
nM of miR-215 in six-well plates (2 × 105 cells/well), 24 h
later, 100 nM of LNA-control or LNA-miR215 were
transfected into the cells respectively.

RNA isolation
Total RNAs, including miRNAs, were isolated using TRI-
zol reagent (Invitrogen) according to the manufacturer's
instructions (see Additional file 2).

Real time qRT-PCR analysis of miR-215
The relative quantity of miR-215 was evaluated by real
time qRT-PCR (details see Additional file 2).

Real time qRT-PCR analysis of mRNA expression
The levels of DHFR and TS mRNAs were determined as
described in Additional file 2.

Cell proliferation and cell cycle analyses
Cell proliferation and cell cycle analyses were performed,
for details see Additional file 2.

Western immunoblot analysis and antibodies
Western immunoblot was performed, details and infor-
mation for antibodies see Additional file 2.

Plasmid construction, transfection and luciferase assays
pMIR-REPORT Luciferase miRNA Expression Reporter
Vector (Ambion) was used to determine the targets of
miR-215. Double stranded DNA oligonucleotides con-
taining the miR-215 binding sequence (wild-type, under-
lined) or a mismatch sequence (mutant, italic) of the

3'UTR of DHFR or TS mRNAs and the HindIII and SpeI
restriction site overhangs were synthesized (IDT). After
annealing, double strand oligonucleotides were inserted
into the pMIR-REPORT plasmid, downstream of the fire-
fly luciferase reporter. The sequences of these synthe-
sized oligonucleotides are listed in Additional file 3. The
3'UTR of TS includes 2 binding sites of miR-215 at 84-
104 bp (wild type-1) and 216-236 bp (wild type-2) respec-
tively. Transfection and luciferase assays were performed
as described in Additional file 2.

MTX and TDX chemosensitivity
U-2 OS and HCT 116 (wt-p53) cells were re-plated in 96-
well plates at 2 × 103 cells/well in triplicate after being
transfected with miR-215 mimics, non-specific miRNA,
or siRNAs against DHFR, TS or DTL in 100 μl of
medium. After twenty-four hours, 10-200 nM of MTX or
TDX in 100 μl medium was added, and the cells were
incubated for another 72 h. WST-1 was added to each
well (10 μl), and after 2 h incubation, optical absorbance
was measured at 450 and 630 nm respectively. HCT 116
(wt-p53) cells were transfected with LNA antisense miR-
NAs and assayed for MTX sensitivity using the same
methods described above.

Statistical analysis
All experiments were repeated at least twice. Statistical
significance between the two groups of data was evalu-
ated by Student's t test (two-tailed). Asterisks indicate
significant differences of experimental groups compared
with the corresponding control condition. Statistical
analysis was performed using GraphPad Prism software 5
(GraphPad, Inc.). The expression ΔCT value of miR-215 in
each clinical sample was calculated by normalizing with
its internal control RNU6B and relative quantitation val-
ues were plotted using SDS software v1.2 (Applied Bio-
systems). The statistically significant difference in
expression level between tumor and normal tissues was
calculated using a paired Wilcoxon signed-rank test, and
the statistical analysis was performed by MedCalc® 10.0.2
(MedCalc software, Belgium). Differences were consid-
ered statistically significant at P < 0.05.

Results and Discussion
The nature of the relationship, DHFR or TS expression
and their response to the inhibitors MTX or TDX has
been long debated [31]. More broadly, it is also becoming
increasingly clear that progress in the area of cancer
treatment necessitates that we move beyond the target/
drug relationship and begin to consider more seriously
the value of biomarkers in the evaluation of clinical
response to treatment. In this study, rather than focusing
only on the interactions of DHFR or TS levels, we investi-
gated the mechanisms of chemoresistance from a new
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angle by considering the roles played by miRNAs. Our
findings suggest that the influences of miR-215 on
chemosensitivity to MTX or TDX are more important
than the target levels (DHFR, TS) alone.

DHFR and TS are direct targets of miR-215
Given the significance of DHFR and TS as two of the
major targets of anti-cancer chemotherapy, we used a
bioinformatics approach to identify miRNAs that were
predicted to bind to DHFR and TS mRNAs and therefore
function in their regulation. Using TargetScan and PicTar
in the miRNAs database (http://www.mirbase.org), we
found that miR-215 was predicted to have a potential
interaction site at the 3'UTR of DHFR mRNA and two
sites at the 3'UTR of the TS mRNA (Figure 1A). Ectopic
expression of miR-215 by transient transfection
decreased the expression of both DHFR and TS proteins
in both osteosarcoma U-2 OS and colon cancer HCT 116
(wt-p53) cells analyzed by Western immunoblot analysis
(Figure 1B). However, only a slight reduction of DHFR or
TS mRNAs expression was observed in HCT 116 (wt-
p53) cells (Additional file 4A-B), and the results in U-2
OS cells were consistent with HCT 116 (wt-p53) cells

(data not shown). This indicates that the suppression of
DHFR or TS expression by miR-215 is, in a large part,
reducing the protein translation. By contrast, the
decreased expression of DHFR and TS by siRNAs (Addi-
tional file 5A-B) was clearly caused by mRNA degrada-
tion (Additional file 4A-B), and similar results were found
in U-2 OS cells (data not shown). To provide direct evi-
dence that miR-215 interacts with the 3'UTRs of DHFR
or TS mRNAs, luciferase reporter constructs were pre-
pared by inserting the DHFR or TS 3'UTRs containing
the putative miR-215 binding sites into the downstream
of the firefly luciferase reporter gene. Our results clearly
demonstrated a significant decrease of luciferase activity
compared to either mutant or empty vector controls
upon transient over-expression of miR-215 (Figure 1C).
Based on these results, we conclude that DHFR and TS
are among some of the direct targets of miR-215.

Interestingly, a recent report describing a microarray
expression analysis for miR-215 targets did not identify
DHFR or TS [32], in a large part because the approach
was dependent on mRNA target degradation. In fact, any
analysis based on the examination of steady state total
RNA levels would be likely to miss these important tar-
gets.

miR-215 inhibits cell proliferation
Recent studies have clearly demonstrated that miRNAs
play important roles in multiple biological processes,
such as development, differentiation, cell proliferation,
apoptosis, metabolism, and stress response, many of
which are often perturbed in cancer [24,33]. Some miR-
NAs have been identified acting as either oncogenes or
tumor suppressors, so to investigate the potential impact
of miR-215 on cell growth, cell proliferation assays were
performed in both U-2 OS and HCT 116 (wt-p53) cells. A
significant inhibition of cell proliferation (over 40%) was
observed in either U-2 OS or HCT 116 (wt-p53) cells
compared with the non-specific miRNA control after 5
days (Figure 2A-B). The inhibitory effect was more pro-
found in cells containing wild-type p53 than cells without
functional p53 (Figure 2C-D), suggesting that this
reduced cell proliferation may be caused by cell cycle
arrest or cell senescence.

Specific miRNAs have been found to regulate cell cycle
progression and apoptosis, which represents a new layer
of complexity in the cell cycle regulation [34]. Here, we
focused on the cell cycle changes induced by miR-215
through examining its impact on cell cycle control using
flow cytometry. The proportion of cells in the G2 phase
was higher in miR-215 transfected U-2 OS cells than that
in non-specific miRNA control cells, whereas the propor-
tion of cells in the S phase was much lower than that in
the negative miRNA control cells, with the relative quan-
tity of G2/S ratio >2-fold (Figure 3A). Similar results were

Figure 1 DHFR and TS are the direct targets of miR-215. (A) The 
3'UTR of DHFR mRNA contains a putative binding site of miR-215. The 
3'UTR of TS harbors two putative binding sites of miR-215. (B) The 
DHFR and TS protein levels were down-regulated in osteosarcoma U-
2 OS and colon cancer HCT 116 (wt-p53) cells transfected with miR-215 
(100 nM) by Western immunoblot analysis. Oligofectamine alone (ve-
hicle control) and non-specific miRNA (miR control) were used as the 
negative controls. (C) The impacts of miR-215 on DHFR and TS expres-
sion by luciferase assays. HCT 116 (wt-p53) cells were cotransfected 
with 100 ng of pMIR-REPORT constructs (including wild-type DHFR or 
TS 3'UTRs and their corresponding mutant controls), 1 ng of Renilla lu-
ciferase plasmid phRL-SV40 and 100 nM of miR-215. Firefly luciferase 
activity for each condition was normalized by Renilla internal control. 
The value of relative luciferase activity for empty vector (control) was 
set as 1, the values for wild-type or mutant constructs were calculated 
as fold induction. ** P < 0.01, compared to the control, Student's t test 
(two-tailed). Each condition was repeated 3 times in triplicate and error 
bars represent standard deviations.
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observed in HCT 116 (wt-p53) colon cancer cells trans-
fected with miR-215 (Figure 3C). Our results suggest that
the reduced proliferation rate is due to the decreased S
phase and increased G2 checkpoint control.

We also noticed that the effect of miR-215 on cell pro-
liferation and cell cycle control were in part dependent on
the status of p53, as the effect was much less in cell lines
containing mutant or deleted p53 (Figure 2C-D and Fig-
ure 3B and 3D). This is consistent with recent reports
that miR-215 contributes to cell cycle control and cell
proliferation mediated by p53 [32,35]. It's known that p53
plays an important role in stem cell quiescence process
[36]. We believe that we have also added a microRNA
component to the p53-regulated network in stem cell
quiescence.

miR-215 increases the expression of cell cycle control genes 
p53 and p21 by down-regulation of DTL
p53 and p21, a downstream target of the p53 growth con-
trol pathway, are reported to block cells at the G2 check-
point mainly through inhibition of Cdc2 activity, the
cyclin-dependent kinase that normally drives cells into
mitosis and which is the ultimate target of pathways that
mediate rapid arrest in G2 in response to DNA damage
[37]. We found that miR-215 can induce G2-arrest in U-2
OS and HCT 116 (wt-p53) cells, so to further investigate
the mechanism of cell proliferation inhibition by miR-
215, we transfected miR-215 into U-2 OS and HCT 116
(wt-p53) cells and evaluated the levels of cell cycle control
genes p53 and p21 by Western immunoblot analysis (Fig-

ure 4). The results showed that over-expression of miR-
215 caused a significant increase of the p53 and p21 pro-
tein in both U-2 OS and HCT 116 (wt-p53) cells. Thus,
our results indicate that miR-215 contributes to the inhi-
bition of cell proliferation at least partially by the induc-
tion of G2-arrest in U-2 OS and HCT 116 (wt-p53) cells
through over-expression of p53 and p21.

We then asked what possibilities might contribute to
the induction of p53 and p21 by miR-215. Georges et al.
[32] reported that miR-215 induced cell cycle arrest by
targeting a number of G1 and G2 checkpoint regulators.
They confirmed that eighteen transcripts were direct
downstream targets of miR-215, including denticleless
protein homolog (DTL), a cell cycle G2/M checkpoint
regulatory protein [28,38]. Moreover, DTL is thought to
interact with both DDB1-CUL4 and MDM2-p53 ligase
complexes [39,40]. Inactivation of DTL has been found to
impair these complexes and stabilize p53 by preventing
its ubiquitination, increasing the levels of p53 and its tar-
get p21 [28]. Here, we hypothesized that miR-215 might
suppress DTL, the destabilizing factor of p53, to promote
p53 stabilization and subsequently inhibit cell growth and
cause cell cycle G2-arrest. First, we confirmed that miR-
215 down-regulated DTL protein expression by Western
immunoblot, and that knock-down of DTL by siRNA
induced p53 and p21 expression to the same extent as
miR-215 (Figure 5A). We next investigated the effects of
DTL knock-down on cell proliferation and cell cycle in
HCT 116 (wt-p53) cells, and found that cell proliferation
was reduced significantly (about 43%) compared to nega-
tive control after 5 days (Figure 5B). Flow cytometry
showed that the proportion of cells in the G2 phase was
higher in HCT 116 (wt-p53) cells transfected with siRNA
targeting DTL than that in negative control cells, while
the proportion of cells in the S phase decreased, with the
relative quantity of G2/S ratio >2-fold (Figure 5C). These
results were similar to those observed in HCT 116 (wt-
p53) cells transfected with miR-215 (Figure 2B and 3C).
Taken together, our results indicate that miR-215 inhibits
cell proliferation by the induction of G2-arrest through
down-regulation of G2 checkpoint regulator DTL and
up-regulation of p53 and p21.

Reduced chemosensitivity to MTX or TDX by miR-215 is 
caused by the reduction of DTL expression
To evaluate the impact of miR-215 on chemosensitivity,
we used MTX or TDX to treat HCT 116 (wt-p53) cells
transfected with either miR-215, non-specific miRNA, or
siRNAs against DHFR or TS. Examination revealed that
cells transfected with siRNAs specific for DHFR or TS
showed a considerably heightened sensitivity to both
MTX and TDX (Figure 6A-B). This is consistent with
previous reports that tumors with lower expression of
DHFR or TS are more sensitive to antifolate treatment

Figure 2 miR-215 inhibits cell proliferation partly dependent on 
the p53 status in cancer cell lines. Each cell type was transfected 
with 100 nM of miR control or miR-215 and cell numbers were deter-
mined by the WST-1 assays. miR control was used as the negative con-
trol. A remarkable inhibition of cell proliferation was observed in the 
p53 wild-type cell lines, U-2 OS and HCT 116 (wt-p53) (A and B), where-
as much less effect was observed in the p53 mutant osteosarcoma 
MG63 cells or p53 knockout colon cancer HCT 116 (null-p53) cells (C 
and D). Numbers are indicated as mean ± SD.
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[1,3,30,41]. However, the cells transfected with miR-215
were considerably less sensitive to both chemotherapeu-
tic agents than were control cells (Figure 6A-B). Similar
results were obtained with U-2 OS cells (data not shown).
Van Triest et al. [42] and Peters et al. [43] found there is
no significant relationship between the TS levels and
TDX sensitivity and suggested that the sensitivity to the
TS-directed antifolate is unlikely to be determined by one
single determinant. Since miR-215 potentially regulates
hundreds of mRNA transcripts, its global impact on
genes and pathways has the potential to be more impor-

tant for the resistance mechanism. Based on the results of
cell proliferation and cell cycle between miR-215 and siR-
NAs against DHFR or TS, we reasoned that the opposite
impact of miR-215 on chemosensitivity vs. siRNAs spe-
cific to DHFR or TS may be largely due to the reduced
cell proliferation rate (Figure 2) through decreased S
phase and increased G2-arrest (Figure 3). MTX and TDX
are considered to be cell cycle-specific agents and mainly
affect cells in the S phase [43-47]. In general, slowly pro-
liferating cells are far more resistant to chemotherapeutic
drug treatment, particularly slowly proliferating tumor
stem cells [29]. Since siRNAs specific for DHFR and TS
reduced the levels of their targets without affecting the
rate of cell proliferation, they greatly enhanced the toxic-
ity of DHFR and TS inhibitors (Additional file 5C-D). To
identify the possible target(s) of miR-215 responsible for
the reduced cell proliferation and cell cycle G2-arrest, we
investigated several miR-215-mediated targets with a role
in cell cycle control (data not shown). As mentioned
above, we discovered that one of them, DTL, was directly
responsible for G2-arrest and the induction of p53 and
p21 (Figure 5). We then investigated the impact of DTL
expression on MTX and TDX chemosensitivity in HCT

Figure 3 miR-215 induces cell cycle p53-dependent G2-arrest. The values of G1/S and G2/S ratio in the miR control were set as 1, the bar graphs 
showed the relative quantity of G1/S and G2/S ratio in the miR-215 transfected cells compared to the miR control as mean ± SD. This experiment was 
repeated two separate times, and similar results were obtained. The representative flow cytometry pattern was shown.
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116 (wt-p53) cells by performing siRNA-mediated knock-
down of DTL. When cells were transfected with siRNA
targeting DTL, they exhibited a significant increase in
chemoresistance to both MTX and TDX (Figure 6C-D)
similar to miR-215 (Figure 6A-B). Taken together, our
results suggest that miR-215 may affect chemoresistance

to MTX and TDX by suppressing DTL expression,
thereby increasing G2-arrest and reducing the proportion
of time spent in S phase, during which MTX and TDX are
most effective.

We reasoned that if our conclusion was correct, and
that the mechanism of miR-215-mediated resistance lies
in its ability to trigger G2-arrest with slow cell prolifera-
tion, then altering miR-215 levels should have no effect
on the toxicity of agents whose actions are cell cycle-
independent. To test this, we repeated the previous drug
treatment experiments in HCT 116 (wt-p53) cells, but
replacing MTX and TDX with the DNA-targeting agents-
cisplatin and doxorubicin. As shown in Additional file
6A-B, no significant difference in chemosensitivity was
observed between miR-215 transfected cells and negative
control cells. Similar results were also found in cells
transfected with siRNA against DTL (Additional file 6C-
D). These results further support our conclusion that
miR-215-mediated MTX and TDX resistance is due to its
effects on the cell cycle and suggest that the resistance
mechanism mediated by miR-215 is specific to cell cycle-
dependent drugs.

Impact of endogenous miR-215 on cell proliferation, cell 
cycle and chemosensitivity
We have so far accessed the functional significance of
miR-215 using a knock-in approach. This, to a certain
extent, mimics a cellular stress response in which miR-
215 is induced. The results showed that exogenous miR-
215 reduced cell proliferation with increased cell cycle
control and chemoresistance. To further elucidate the
impact of endogenous miR-215 on cell proliferation, cell
cycle and chemosensitivity, we performed a series of
knock-down experiments using locked nucleic acid
(LNA) oligonucleotides (a scramble-miR LNA negative
control, and a LNA antisense miR-215) to test the biolog-
ical significance of endogenous miR-215 in HCT 116 (wt-
p53) cells. Antagonizing the endogenous miR-215
enhanced the cell proliferation rate by 23% compared to
the LNA negative control (Additional file 7A), and
increased the sensitivity to MTX treatment (Additional
file 7B). The expression of TS and DHFR were increased
by knocking down miR-215 using Western immunoblot
analysis (Additional file 7C). These observations further
demonstrate the important effects of endogenous miR-
215 on cell proliferation and chemosensitivity.

To test whether we can reverse the cell cycle impact
caused by exogenous miR-215, we antagonized miR-215
by transfecting cells with 100 nM LNA antisense miR-
NAs. We observed that the percentage of cells in the G2
phase decreased from 37% to 24%, and percentage of cells
in the S phase increased from 19% to 34% (Additional file
8A, top panel) in the HCT 116 (wt-p53) cell line, while
HCT 116 (null-p53) cells showed no change in the G2

Figure 5 miR-215 inhibits cell proliferation and triggers cell cycle 
G2-arrest by down-regulation of DTL and subsequent increased 
p53 and p21 in HCT 116 (wt-p53) cells. (A) The DTL protein was 
down-regulated in colon cancer HCT 116 (wt-p53) cells transfected 
with miR-215 (100 nM) analyzed by Western immunoblot analysis, DTL 
specific siRNA (100 nM) was used as the positive control. (B) Suppres-
sion of DTL by DTL specific siRNA resulted in growth inhibition in HCT 
116 (wt-p53) cells. Numbers are indicated as mean ± SD. (C) Down-reg-
ulation of DTL triggered cell cycle G2-arrest in HCT 116 (wt-p53) cells 
transfected with DTL specific siRNA. This experiment was repeated two 
separate times, and similar results were obtained. The representative 
flow cytometry pattern was shown.
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and S phases (Additional file 8A, bottom panel). These
results further support the notion that miR-215 is impor-
tant in regulating the cell cycle in a manner of depending
on p53 status. Strikingly, antagonizing miR-215 also
attenuated the induction of p53 and p21 (Additional file
8B). These results are highly consistent with the data
obtained from exogenous miR-215 over-expression
experiments.

Elevated expression of miR-215 in human colon cancer 
stem cells may contribute to chemoresistance
Cancer stem cells (CSC), as their name implies, are can-
cer cells that possess the characteristics associated with
normal stem cells, in particular the ability to give rise to
all cell types found in a particular cancer sample. In con-
trast with other more differentiated cancers, however,
CSCs exhibit a low rate of division and proliferation that
allows them to resist chemotherapies and radiation [29],
both of which preferentially affect highly proliferative
cells, making CSCs a major reason for the failure of che-
motherapy. With this in mind, we analyzed the miR-215
expression levels from isolated CD133+HI/CD44+HI
colon cancer stem cells from cultured HCT 116 (wt-p53)
cells using real time qRT-PCR analysis (Additional file
9B). We used CD133 and CD44 as two selection markers
to isolate colon cancer stem cells from HCT 116 (wt-p53)
cells (Additional file 9A) because CD133 and CD44 have
been shown to be two of the important markers for the
isolation of colon cancer stem cells [48-51]. The details of
characterization of CD133+HI/CD44+HI colon cancer
stem cells have been previously reported [51]. Expression
of miR-215 in the CD133+HI/CD44+HI colon cancer
stem cells was nearly 3-fold higher than that in the con-
trol bulk CD133+/CD44+ colon cancer cells (Additional
file 9B). These results suggest that colon cancer stem cells
may utilize miR-215 to slow cell proliferation and avoid
damage caused by chemotherapy until receiving a prolif-
eration and differentiation signal, further verifying the
impact of miR-215 on cell proliferation and chemother-
apy resistance. To further confirm that DHFR and TS are
the targets of miR-215, the expression of both DHFR and
TS were quantified in CD133+HI/CD44+HI colon cancer
stem cells and the control bulk CD133+/CD44+ colon
cancer cells. We found DHFR and TS protein levels were
remarkably down-regulated in the CD133+HI/CD44+HI
colon cancer stem cells based on the relative higher miR-
215 expression level (Additional file 9C). This result, in
turn, suggests that miR-215 is more important than the
levels of DHFR or TS in the chemoresistance.

Decreased expression of miR-215 in human colorectal 
cancer specimens
Previous studies from our laboratory have shown that
certain miRNAs were associated with the development

and prognosis in colorectal cancer [52]. To provide
potential relevance of miR-215 in colorectal cancer, we
profiled the expression of miR-215 in the same set of clin-
ical samples (24 colorectal tumor specimens vs. adjacent
normal colorectal tissues) using real time qRT-PCR anal-
ysis. The expression of miR-215 was significantly
decreased (P < 0.01) in colorectal tumor specimens com-
pared to adjacent normal tissues (Additional file 10).
These results indicate that the fast proliferating pheno-
type in the majority of differentiated colorectal tumor
cells are associated with the reduction of miR-215 expres-
sion. This further supports our hypothesis that the small
fraction of tumor stem cells with a slow proliferation rate
is mediated, at least in part, by miR-215. Based on these
findings, it is clear that the roles miR-215 plays in regulat-
ing cellular behavior are too complex for it to be simply
defined as a tumor suppressor based on its ability to slow
cell proliferation and cause cell cycle arrest under certain
conditions, and it has to be defined in the right cellular
context.

Conclusions
Taken together, our results clearly indicate that miR-215
over-expression results in the resistance to DHFR inhibi-
tor MTX or TS inhibitor TDX treatment. This is achieved
largely by the reduced proliferation rate and cell cycle
arrest mediated by miR-215 through down-regulation of
DTL, despite the fact that miR-215 also down-regulates
the expression of both DHFR and TS. The elevated
expression of miR-215 in colon cancer stem cells with
slow proliferation rate and resistance to chemotherapy
further supports the roles of miR-215 in cell proliferation
and chemotherapy resistance. This study provides a novel
mechanism of chemoresistance mediated by miR-215,
suggesting that it may have a unique potential as a novel
biomarker candidate.

Additional material

Additional file 1 Supplementary Table 1. Characteristics of the 24 col-
orectal cancer patients.
Additional file 2 Methods. Document detailing the methods used.
Additional file 3 Supplementary Table 2. Sequences of synthesized oli-
gonucleotides for the miR-215 binding site(s) of DHFR and TS.
Additional file 4 Real time qRT-PCR analysis of DHFR mRNA (A) or TS 
mRNA levels (B) in HCT-116 (wt-p53) cells transfected with miR-215 or 
siRNAs specific for DHFR or TS. Oligofectamine alone (vehicle control) 
and non-specific siRNA (negative control) were negative controls, the value 
of DHFR mRNA or TS mRNA in the negative control was set at 1, the relative 
amount in siRNAs against DHFR and TS or miR-215 transfected cells was 
indicated as fold induction. *P < 0.05, compared to the negative control, 
Student's t test (two-tailed). Each condition was repeated 3 times and error 
bars represent standard deviations.
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Additional file 5 Cells transfected with DHFR or TS gene specific siR-
NAs maintain similar proliferation rate compared to the negative con-
trol. (A and B) Western immunoblot analysis of protein expression levels of 
DHFR and TS by siRNAs against DHFR or TS. (C and D) The impacts of siRNAs 
against DHFR or TS on the cell proliferation. Non-specific siRNA (negative 
control) was used as the negative control.
Additional file 6 miR-215 has no effect on the cytotoxicity of cisplatin 
and doxorubicin. HCT 116 (wt-p53) cells transfected with miR-215 mimics, 
non-specific miRNA, or non-targeting siRNA and siRNA against DTL were 
incubated with cispaltin (0.625-10 μM) or doxorubicin (25-500 nM) for 72 h 
and cell viability was measured by WST-1 at 450 and 630 nm respectively.
Additional file 7 Knock-down of endogenous miR-215 enhances the 
cell proliferation and chemosensitivity to MTX. (A) HCT 116 (wt-p53) 
cells were transfected with 100 nM of scramble-miR locked nucleic acid 
(LNA-control) or LNA anti-miR215 oligonucleotide (LNA-miR215) by Lipo-
fectamine 2000, cell proliferation analysis was performed as described in 
Additional file 2. (B) HCT 116 (wt-p53) cells were transfected with LNA-con-
trol or LNA-miR215 and treated with MTX for 72 h, viable cells were 
accessed by WST-1 assays. (C) Proteins were extracted at 48 h after transfec-
tion with LNA-miR215 and subjected to Western immunoblot analysis to 
detect DHFR and TS, LNA-control was used as the negative control.
Additional file 8 Antagonizing miR-215 by LNA anti-miR reverses the 
impact of miR-215 on the cell cycle. (A) Knock-down miR-215 decreased 
G2 phase and increased S phase of the cell cycle in HCT 116 (wt-p53) cells, 
no such effects were found in HCT 116 (null-p53) cells. HCT 116 (wt-p53) 
cells and HCT 116 (null-p53) cells were transfected with 100 nM miR-215 for 
24 h. Cell cycle analysis was performed after transfected with 100 nM LNA-
miR215 for 48 h. (B) In parallel, LNA-miR215 prevented the induction of p53 
and p21 expression in HCT 116 (wt-p53) cells analyzed by Western immu-
noblot analysis. LNA-control was the negative control. This experiment was 
repeated two separate times, and similar results were obtained. The repre-
sentative flow cytometry pattern was shown.
Additional file 9 The expression of miR-215 in human colon cancer 
stem cells is elevated. (A) FACS analysis was performed to sort colon can-
cer stem cells using CD133 and CD44 as the markers. CD133+HI/CD44+HI 
cells were considered as the colon cancer stem cells. CD133+/CD44+ and 
CD133NEG/CD44NEG were considered as the colon cancer cells. (B) Expres-
sion of miR-215 in human colon cancer stem cells was analyzed by real-
time qRT-PCR. The value of miR-215 in the CD133+/CD44+ colon cancer 
cells was set at 1, the relative amount in CD133+HI/CD44+HI colon cancer 
stem cells and CD133NEG/CD44NEG colon cancer cells was showed as the 
fold induction. (C) The expression of DHFR and TS proteins was decreased 
in CD133+HI/CD44+HI colon cancer stem cells compared to control cell 
population analyzed by Western immunoblot analysis.
Additional file 10 miR-215 expression is decreased in colorectal can-
cer compared to normal colorectal specimens by real time qRT-PCR 
analysis. Expression level of miR-215 was normalized by the internal con-
trol RNU6B in each sample. P = 0.0002, two-tailed paired Wilcoxon test.
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