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1ETH Zürich, Institute of Integrative Biology, Universit€atsstr. 16, Zürich, Switzerland
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Abstract

The genotype–phenotype (GP) map is a central concept in evolutionary biology as it describes the mapping of molecular
genetic variation onto phenotypic trait variation. Our understanding of that mapping remains partial, especially when
trying to link functional clustering of pleiotropic gene effects with patterns of phenotypic trait co-variation. Only on rare
occasions have studies been able to fully explore that link and tend to show poor correspondence between modular
structures within the GP map and among phenotypes. By dissecting the structure of the GP map of the replicative
capacity of HIV-1 in 15 drug environments, we provide a detailed view of that mapping from mutational pleiotropic
variation to phenotypic co-variation, including epistatic effects of a set of amino-acid substitutions in the reverse
transcriptase and protease genes. We show that epistasis increases the pleiotropic degree of single mutations and
provides modularity to the GP map of drug resistance in HIV-1. Moreover, modules of epistatic pleiotropic effects within
the GP map match the phenotypic modules of correlated replicative capacity among drug classes. Epistasis thus increases
the evolvability of cross-resistance in HIV by providing more drug- and class-specific pleiotropic profiles to the main
effects of the mutations. We discuss the implications for the evolution of cross-resistance in HIV.
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Introduction

A central goal of evolutionary biology is to understand how
genetic variation maps onto phenotypic variation, and ulti-
mately fitness. Many phenotypic traits are complex traits af-
fected by many genes, as for instance Alzheimer’s disease or
type 2 diabetes in humans (Mackay et al. 2009; Plomin et al.
2009). The genes affecting such traits often affect other traits
as well, and are thus pleiotropic. The way they affect trait
variation also often depends on their interactions with other
genes. There is thus pleiotropy and epistasis in the GP map
(Hansen 2006; Phillips 2008). The way pleiotropic and epi-
static gene effects are organized within the GP map is ex-
pected to play a capital role in the capacity of living organisms
to adapt and evolve (Wagner and Altenberg 1996; Hansen
2006; Wagner et al. 2007; Armbruster et al. 2014). In particular,
the modular clustering of pleiotropic effects among sets of
traits allows phenotypic modules to respond to selection in-
dependently from each other, potentially increasing the
evolvability of the organism (Wagner and Altenberg 1996;
Wagner et al. 2007; Armbruster et al. 2014). Trait genetic
integration (i.e., higher density of pleiotropic links within
than between modules; fig. 1B) may be favored when coor-
dinated changes at multiple traits are necessary, or disfavored
when pleiotropic links act as genetic constraints on evolution
(leading to parcellation, see fig. 1B). Indeed, when several traits

are affected by a common set of pleiotropic loci, as within a
module, they become less evolutionary independent because
changes in allelic frequencies at those loci will affect all traits,
and changes favorable to one trait may be detrimental to the
other traits (Otto 2004). This would be the case if, for instance
two traits are genetically correlated while selection acts to
change only one of them, while keeping the other constant.
Evolution may break such pleiotropic constraints, or build
them up, if variation in pleiotropy exists at the underlying
genes. Trait integration is often deduced from trait pheno-
typic or genetic correlations within a population (fig. 1C) and
is expected to reflect the degree of genetic independence of
the traits (Pigliucci 2003; Armbruster et al. 2014). Genetic
correlations among traits are function of the correlation
among pleiotropic mutational effects at the underlying genes
(fig. 1C), among other more transient sources of genetic
covariances (e.g., linkage disequilibrium, drift). Variation in
genetic covariation among traits thus depends on variation
in the pleiotropic degree and in the correlation of the effects
of pleiotropic mutations. Which of these two properties
of pleiotropic mutations is more likely to vary and to con-
tribute to trait correlations in natural systems is mostly
unknown.

What role does epistasis play in the evolution of the GP
map? Epistasis may cause pleiotropy to vary at a locus be-
cause pleiotropy is also a property of a genetic interaction,
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be it between two mutations within or between genes. For
instance, two mutations in a gene may have lower pleiotro-
pic degree when alone than when together in the same
sequence (fig. 1A). Epistasis may thus provide the genetic
variation necessary for the evolution of pleiotropy
(Guillaume and Otto 2012; Pavlicev and Wagner 2012;
Rueffler et al. 2012) and restructure genetic correlations
among traits to, for instance, match patterns of trait covari-
ation favored by selection (Jones et al. 2014). These effects of
epistasis may be even more important on the long run than
its single trait effect of altering evolutionary paths to higher
fitness peaks (Weinreich et al. 2006; Poelwijk et al. 2007;
Franke et al. 2011) by alleviating pleiotropic constraints on
trait evolution. Epistatic pleiotropy, whereby the pleiotropic
degree of a mutation depends on its interaction with other
mutations (Wolf et al. 2005, 2006), is indeed thought of as a
potent source of variation in pleiotropy and thus an impor-
tant factor affecting the evolution of the structure of the GP
map of genetically correlated traits (Hansen 2006; Pavlicev
et al. 2011; Pavlicev and Wagner 2012).

The goal of our work is to uncover both the distribution of
the pleiotropic degree and the among-trait covariation of mu-
tations and their pairwise interactions affecting multiple traits
to understand the genetic basis and evolvability of phenotypic
correlations. Access to such data is challenging but would
enable us to ask how phenotypic modularity is reflected within
the GP map, and vice-versa. We indeed have little evidence so
far that the patterning of the pleiotropic effects within the GP
map directly affects the correlational structure of the pheno-
types. For instance, studies of mouse bone structures show
little correspondence between pleiotropic modules of QTL
affecting morphological traits and the genetic variance–covari-
ance structure of those traits (Hallgr�ımsson and Lieberman
2008; Roseman et al. 2009). Within module integration of
pleiotropic effects may not cause elevated trait genetic corre-
lation if the underlying genes bear pleiotropic allelic values
that cancel each other because sometimes positive and

sometimes negative, compensating for each other’s effects
(i.e., hidden pleiotropy). Simulations confirm that without cor-
relation of the allelic pleiotropic effects within modules, no
clear correlational pattern will emerge at the phenotypic level
despite pleiotropy of the underlying loci (Polster 2013).

We use an extensive dataset of fitness measurements of
70,080 patient-derived viral particles of HIV-1B in 15 different
antiretroviral (ARV, all abbreviations are listed in Table 4)
drug environments that we treat as our phenotypic traits
(Petropoulos et al. 2000). The fitness effects of the amino-
acid variants occurring in two genes, the reverse transcriptase
and the protease, have been previously estimated together
with their pairwise interaction effects in each environment
(Hinkley et al. 2011). We are thus able to describe the distri-
bution of pleiotropy and epistatic pleiotropy of the muta-
tions, and the genetic variance–covariance structure of their
single and interaction effects on the 15 drug resistance traits.
Previous studies have found pleiotropy and epistasis in all
types of organisms, from bacteria and viruses to vertebrates
and plants, including disease genes in humans (Moore 2003;
Azevedo et al. 2006; Cordell 2009). Epistatic interactions have
been shown to happen among mutations within (Weinreich
et al. 2006; Ortlund et al. 2007; Hinkley et al. 2011) and be-
tween genes (reviewed in Phillips 2008), and a few studies
have measured genome-wide distributions of epistasis,
mostly in bacteria (Elena and Lenski 1997) and viruses
(Bonhoeffer et al. 2004). Genome-wide distributions of
whole-gene pleiotropy have also been described in model
systems using gene knock-out/-down technique (Giaever
et al. 2002; Dudley et al. 2005; Sönnichsen et al. 2005). Even
so, we are still missing measurements of the mutational var-
iation in pleiotropy and we only start to apprehend the ex-
tent of epistatic pleiotropy (Wolf et al. 2005, 2006) and its
contribution to variation in trait correlations (Cheverud et al.
1997, 2004; Pavlicev et al. 2008). In contrast, in this study, we
are able to link patterns of mutational variation in pleiotropy,
epistasis, and the co-variation of their effect with patterns of

A B C

FIG. 1. (A) two mutations A and B affect each one trait when alone and affect each two traits when together on the same sequence. The epistatic
interaction between A and B thus has pleiotropy one and adds one trait to the trait repertoire of both A and B. (B) Genotype–phenotype maps,
with edges between genes (empty circles) and traits (solid circles) representing the pleiotropic effects of the genes. Parcellation results from the
decrease of the number of edges between trait modules (1–2 and 3–4). Integration is the reverse process (re-drawn from Wagner and Altenberg
1996). (C) A mutation in gene a has effects a1 on trait 1 and a2 on trait 2. The genetic correlation between a1 and a2 is rl . The two square grids below
represent the strength of the among-trait correlations (genetic or phenotypic) resulting from the two GP maps in (B). The modular phenotypes
(on the right) have lower correlations between modules (yellow) than within (red).
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phenotypic trait co-variation. In other words, we are able to
fully describe the structure of the GP map of drug resistance
in HIV-1, which has not been achieved before.

In HIV, pleiotropy and epistasis may play a fundamental
role in the evolution of resistance to multiple drugs, or cross-
resistance. Since the advent of ARV drug therapies, resis-
tances to single and multiple drugs have appeared and
cross-resistance mutations have been cataloged (Rhee
et al. 2003; Bennett et al. 2009). The acquisition of cross-
resistance mutations may compromise treatment options of
combination ARV therapies and cause substantial threat to
the health of HIV infected patients (Bartlett et al. 2006;
Wittkop et al. 2011; WHO 2012). Understanding the genetic
basis of cross-resistance is thus essential to evaluate its evo-
lutionary potential. However, quantitative estimates of the
evolvability of cross-resistance can only be provided by
system-based approaches. Two such approaches have
been applied to the HIV dataset used here (Petropoulos
et al. 2000), which is arguably the largest dataset available.
First, Hinkley et al. (2011) inferred the fitness landscape of
HIV-1 in the 15 drug environments and showed that within-
gene epistasis significantly contributes to the genetic varia-
tion in fitness, while between-gene epistasis contributes very
little. Second, Martins et al. (2010) showed significant mod-
ular co-variation of fitness estimates in the different drug
environments that matches the different ARV classes; the
protease inhibitors (PIs), nucleoside reverse transcriptase in-
hibitors (NRTIs), and nonnucleoside reverse transcriptase
inhibitors (NNRTIs). What they could not elucidate is the
mutational origin of the clustering because their study re-
mained at the phenotypic level. It is thus unclear whether
phenotypic modularity is contributed by modularity of the

main effects of single mutations or of the interaction effects
of double mutations within the two ARV targeted genes,
reverse transcriptase and protease. The structure of the GP
map of drug resistance in HIV-1 is thus not elucidated yet.

In this study, we test whether the GP map of HIV drug
resistance traits has a modular structure that corresponds to
the modules of correlated phenotypes. Such a test has never
been performed using concomitant single-gene mutational
and phenotypic data. With the dataset at hand, we show that
mutation interactions have modular epistatic pleiotropic ef-
fects that tend to increase the pleiotropy of single mutations,
and confer modularity to mutational pleiotropic effects that
match with the pattern of phenotypic co-variation.

Results

HIV Fitness Dataset
We use the estimates of fitness effects of mutations within the
reverse transcriptase (RT) and protease (PR) genes of HIV-1
published by Hinkley et al. (2011), based on fitness measure-
ments of 70,080 patient-derived viral particles of HIV-1B in 15
different ARV drug environments (described in Methods) and
one drug-free environment (Petropoulos et al. 2000). Briefly,
fitness is estimated as the replicative capacity of a test vector
(NL4-3 HIV clone) engineered to undergo only one round of
replication and into which the patient-derived HIV-1B se-
quences were inserted (full details in Petropoulos et al.
2000). These fitness values associated with the sequences
were then used to estimate the single and double (pairwise
interactions) mutation effects of amino-acid (a.-a.) substitu-
tions within the two genes (511 in PR and 1,348 in RT). To this
end, Hinkley et al. (2011) developed a machine learning
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FIG. 2. Distributions of the pleiotropic degree (PD) of single (left) and double (right) mutations. Open bars with red lining represent the random
expectations of the PD distributions obtained after 10,000 randomizations of significant main and epistatic effects (see “Methods” section).
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approach, generalized kernel ridge regression (GKRR), to fit a
model called MEEP that predicts the log-fitness of the sam-
pled sequences (virions) as the sum of the main effects (ME)
and pairwise epistatic effects (EP) of the set of a.-a. composing
each sequence, for each environment separately (see
“Methods” section for details). The GKRR provides estimates
of fitness effects of 1,859 single mutations (main effects) and
1,090,889 possible pairwise combinations of those mutations
(epistatic effects) (Hinkley et al. 2011). We reduced the epi-
static dataset by excluding nonindependent interactions be-
tween nonpolymorphic sites and interactions present in less
than 10 sequences, resulting in a net total of 556,125 epistatic
effects per environment. Furthermore, we developed a
method to estimate the pleiotropy of each single and double
mutation from the GKRR data based on a bootstrapping
approach (see “Methods” section for details). This step is
necessary to infer the graph structure of the GP map from
an estimate of the pleiotropic degree (PD) of the mutations
and their interactions. A proxy of the PD of a mutation, or of a
gene knock-out, is classically given by the number of discrete
traits on which it has a significant effect (Dudley et al. 2005;
Ohya et al. 2005; Ostrowski et al. 2005). We obtain the PD of
each single and double mutation by counting their number of
significant effects in the 16 environments (PD2 ½0; 16�) using
their bootstrap confidence intervals in each environment.

Pleiotropy and Epistatic Pleiotropy
The distributions of the PD of single mutations (PDME) and of
epistatic interactions (PDEP) are shown in figure 2. The two
distributions are fat-tailed and enriched for fully pleiotropic
mutations, that is mutations having an effect in all 16 envi-
ronments. They are also significantly different from random
distributions obtained by permutation, as shown in figure 2
and by Kolmogorov–Smirnov tests (ME: D¼ 0.7059, P val-
ue¼ 4:19� 10�4; EP: D¼ 0.8235, P value¼ 5:13� 10�6).

Epistasis modifies pleiotropy of single mutations by chang-
ing their trait repertoire, that is, by changing the set of traits
they significantly affect as a single mutation (PDME) when in
interaction with another modifier mutation. The epistatic
repertoire is defined as PDMEEPi�j

¼ PDMEi
[ PDEPi�j

(see
fig. 3). We found that mutations have an average PDMEEP of
9.22 (64.89), larger than the average PDME or PDEP (6.14 and
6.45, respectively, see fig. 4). We expect PDMEEP to be larger
than PDME or PDEP because of the additive nature of the
MEEP model (i.e., the total effect of a mutation in interaction
with another mutation is the addition of the main and epi-
static effect of that mutation, fig. 3). However, on an average,
mutation interactions increase trait repertoires (fig. 4) above
what is expected under pure additivity of the trait repertoires
of the two mutations, for which we expect PDadd

MEEP ¼ 8:81
(Wilcoxon, p < 2:2� 10�16). The additive expectation is
obtained as the union of the repertoires of the two interacting
mutations: PDadd

MEEP ¼ PDMEi
[ PDMEj

. Departures from this
expectation are caused by addition of traits that are specific
to the mutation interaction (i.e., the private traits of the in-
teraction, see fig. 3), or subtraction of traits not affected by the
interaction. Decomposition of PDMEEP into its additive and
nonadditive components shows that, on an average, epistasis

FIG. 3. Venn diagrams of the trait repertoires of two mutations (A and
B) and their interaction (A� B). Numbers represent traits (or envi-
ronments) harboring a significant main or epistatic effect of mutation
A and B. Mutation A is the focal mutation with PDME ¼ 7 and rep-
ertoire ¼ f1; 2; 5; 6; 7; 8; 10g. Mutation B is the modifier mutation
with PDME ¼ 5 and repertoire ¼ f3; 4; 7; 8; 9g. The resulting inter-
action has PDEP;A�B ¼ 6 with repertoire¼ f5; 6; 7; 9; 11; 13g, which
thus partially overlaps with the repertoires of A and B. The total
pleiotropy of A in interaction with B is given by
PDMEEP;A�B¼ PDME;A [ PDEP;A�B ¼ 10, as shown on the second
row. The repertoire of mutation A thus “gains” three traits in inter-
action with B, of which one gives an additive increase (trait 9, added
from mutation B’s repertoire) and two give a nonadditive increase
(traits 11 and 13). Traits 11 and 13 are called the private traits of the
interaction because they pertain to the interaction’s repertoire only.

FIG. 4. Relationship between the PD of single mutations and their
average PDMEEP, that is the average number of environments they
affect across all their significant interactions. The solid line represents
the 1:1 relationship.
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causes an additive increase of trait repertoires of 1.62 traits and
a nonadditive increase of 2.42 private traits, thus summing to
an average epistatic increase of about four traits. These changes
are smaller than their random expectations (2.09 and 3.25 for
additive and nonadditive increases, respectively) at P< 0.0001,
obtained from 10,000 randomizations (see “Methods” section).
The additive increase is also smaller than expected under com-
plete additivity (3.63), showing that some traits are not affected
in interaction. Finally, 68% of the 73% of mutations that show
an increase of PD in interaction (or 50% of all mutations) do so
by obtaining private traits from their interactions.

Structure of the GP Map of Fitness among Drugs
The structure of the GP map of phenotypic traits is often
deduced from the pattern of trait genetic covariation under
the premises that genetic covariation is a reflection of the
underlying organization of pleiotropic allelic effects. To test
for this correspondence, we, first, compare covariance matri-
ces of main and epistatic effects of mutations with the ob-
served covariance matrix of virion fitness values and, second,
test whether allelic pleiotropic effects form modules similar to
the modules of covariation of fitness values among genotypes,
that is, at the phenotypic level. The covariation of mutational
pleiotropic effects is conventionally reported as the M-matrix,
the mutational variance–covariance matrix (Camara and
Pigliucci 1999; Estes et al. 2005). We report estimates of the
two M-matrices of main and epistatic effects calculated as the
within environment variance (on the diagonal) and between-
environment covariance (off-diagonal) of mutational effects
(main or epistatic) and test whether the genetic covariation
of the phenotypic traits stems directly from the pattern of
mutational covariation. We thus compare M-matrices with
the G-matrix holding the variance–covariance structure of
the 70,080 fitness (genotypic) values in the 16 environments.
G-matrices hold the within environment variances and be-
tween environment covariances of sequence fitness values on
and off the diagonal, respectively. Furthermore, to better ap-
preciate the importance of epistasis in structuring the GP
map of drug resistance, we compare three G-matrices with

each other: the SEQ G-matrix obtained from the original fit-
ness estimates of the 70,080 sequences, the ME G-matrix
obtained from the reconstructed fitness values of the se-
quences using estimated main effects only, and the MEEP
G-matrix obtained from the predicted sequence fitness values
using the full MEEP model.

Viral Fitness Is Modular among Drug Classes
Viral fitness clusters among drug classes, as shown by patterns
of genetic correlations (fig. 5) and principal component anal-
ysis (PCA) of the G-matrices (see fig. 6 and supplementary figs.
S5–S7, Supplementary Material online). The NRTI class has
greater drug specificity with two submodules, one composed
of the cytidine (3TC) and guanosine (ABC, ddI) analogs and
the other of the thymidine (d4T, ZDV) and adenosine (TFV)
analogs (see also Martins et al. 2010). Overall, correlations are
high (table 1), particularly among NNRTIs (0.92) and PIs
(0.89). The same modular pattern as in the SEQ G-matrix is
found in the MEEP G-matrix (fig. 5). The ME sequence fitness
G-matrix, however, shows much higher correlations among
all drug classes, without clear modular structure, suggesting a
larger integration of the GP map at the level of main effects.

The lack of modularity of the main effects and the
similarity between the SEQ and the MEEP viral fitness are
confirmed when using evolutionary metrics to compare the
G-matrices (see “Methods” section). In particular, the auton-
omy of a G-matrix measures the degree of genetic modular
integration of phenotypic traits: higher autonomy is reached
when traits within modules are more strongly genetically re-
lated to each other than to other traits in other modules
(Hansen and Houle 2008). We find that the MEEP and SEQ
matrices have the highest autonomy and thus better inte-
grated modules than the ME matrix (table 2a). Second, the
effective dimensionality nD provides a weighted modularity
measure representing the number of independent trait mod-
ules with equal variance (Kirkpatrick 2009). Here, the MEEP
matrix has the highest number of independent trait dimen-
sions, followed by SEQ and ME (table 2a). Finally, the random
skewers approach provides a matrix similarity measure in the
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FIG. 5. Heatmaps of the correlation matrices of fitness measurements of observed sequence data (SEQ), estimates of main effects (ME), and
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form of a vector correlation coefficient (Cheverud 1996) (see
“Methods” section). This analysis shows that the MEEP and
SEQ matrices are the most similar among the three matrices
(table 2c). The MEEP matrix then captures most of the cor-
relation structure present in the SEQ matrix and provides a
good estimate of the multivariate trait structure of viral fit-
ness, although it exacerbates the modularity found in the
original fitness data.

The PCA confirms the clustering among drug classes
(fig. 6), although drug classes do not differentiate along the
first PC, with roughly equal loadings of the 16 environments.
PC1 explains 50% of total fitness variation in the SEQ dataset
(fig. 6), and 84% and 47% for ME and MEEP, respectively. PC1
is similar to a size vector discriminating high versus low
average fitness values of generally highly correlated sequence
fitness values among drugs. PC2 nevertheless differentiates
the NNRTIs from the other drug environments, especially
within the SEQ dataset, whereas PC3 further differentiates
the NRTIs from the PIs and NNRTIs, although mainly in
SEQ and MEEP. Interestingly, that third PC differentiates

among the two NRTI sub-groups in the MEEP dataset, where
3TC, ABC, and ddI have negative loadings on PC3. That gen-
eral drug-class modular structure is largely confirmed by hi-
erarchical clustering analysis (see supplementary figs. S5–S7,
Supplementary Material online), which more clearly shows
the two NRTIs sub-groups. The stability of the PCs is very high
when tested by sub-sampling and bootstrapping (see
Supplementary Information).

Mutational Covariation Is Less Modular than Viral
Fitness Covariation
The modularity of trait covariation within the G-matrix may
have two nonexclusive sources: (1) elevated correlation of
pleiotropic allelic values among traits within modules and
(2) clustering of pleiotropic effects within modules. The pre-
vious results suggest that EP should differ from ME in at least
one of those two aspects, which we evaluate by comparing
their M-matrix and by investigating the modularity of their
respective GP map.

Table 1. Mean Correlations Within and Between Drug Classes in Sequence Fitness.

Sequence Data (SEQ) Main Effects (ME) MEEP
PIs NRTIs NNRTIs PIs NRTIs NNRTIs PIs NRTIs NNRTIs

PIs 0.89 0.46 0.24 0.97 0.90 0.68 0.89 0.45 0.11
NRTIs 0.62 0.34 0.92 0.76 0.54 0.26
NNRTIs 0.92 0.88 0.89

FIG. 6. Principal component analysis of the G-matrices of sequence viral fitness (SEQ), of the main effects only (ME), and of the main and epistatic
effects (MEEP) of the mutations in reverse transcriptase and protease. Gray dots indicate the relative positions of data points (virus log-fitness)
within the two principal components (PCs) and arrows symbolize the positions of the original traits (drug environments) in this new phenotypic
space. Drug classes are highlighted with colors. ND, no-drug condition.
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The M-matrix of the main effects is very close to its G-
matrix (table 2a and b, first column), whereas the EP matrix
has lower nD and autonomy than the MEEP matrix (table 2a
and b, second column). The two M-matrices have similar
modularity, although epistatic effects have slightly higher au-
tonomy (table 2b). Epistatic effects are then much less mod-
ular than the modularity of the MEEP data would suggest.
Consequently, the covariation of mutational epistatic effects
cannot explain the modular covariation found among geno-
types in the MEEP or SEQ G-matrices. We thus speculate that
it is the combination of main and epistatic effects within the
observed sequences that contributes to the higher modularity
seen in the MEEP and SEQ data. That combinatorial aspect of
the data is given by the graph structure of the GP map and
thus depends on the distribution of pleiotropy of the main
and epistatic effects among the traits, which we evaluate next.

Epistatic Pleiotropic Effects Are More Modular than
Main Effects
To measure the clustering of main and epistatic effects within
the GP map, we use the parcellation statistic MP of Mezey
et al. (2000). MP measures the lack of pleiotropic effects be-
tween nonoverlapping sets of traits (modules). We found
that the main effects are significantly less modular
(MPðMEÞ ¼ 3734, P¼ 0.0018) and the epistatic effects more
modular (MPðEPÞ ¼ 1; 624; 637, P< 0.0001) than expected by
chance, based on comparison with randomized sets of ME
and EP within environments for a four-module partitioning of
the data (see “Methods” section). Furthermore, epistatic ef-
fects have much larger standardized parcellation than main
effects, with M̂PðMEÞ ¼ �2:85 and M̂PðEPÞ ¼ 535:74 (see
“Methods” section). Among all possible clustering of the 15
drug traits, there will be some that maximize the parcellation
of the ME data compared with randomized sets. Instead of
conducting an exhaustive search, we tested two other trait
combinations suggested by the clustering analysis: a two-
module clustering {{NNTRIs}–{NRTIsþ PIs}} and a three-
module clustering {{NNTRIs}–{3TC, ABC, ddI}–{TFV, ZDV,
d4T,þ PIs}} (see supplementary fig. S7, Supplementary
Material online). The parcellation of ME is significantly larger
than expected by chance for the two-module case (P< 0.
0001), but significantly smaller for the three-module case
(P¼ 0.0003). The parcellation of EP is always significantly
larger with P< 0.0001. Together, this shows that EP form

well supported modules that match those found in the viral
sequence fitness data, whereas ME cluster among a smaller
partitioning of two modules, confirming that pleiotropy is less
modular for main than for epistatic effects.

Epistatic Effects Trade-off More among Drug Classes
Fitness trade-offs among drug classes are not clearly apparent
from the analysis of correlational patterns: the pairwise ge-
netic correlations between drug environments are positive
and often large. Trade-offs might, however, exist and explain
part of the variation in genetic correlations. Indeed, the pro-
portion of antagonistic EP between two drug environments
(i.e., positive in one environment and negative in the other) is
larger in drug pairs between (5.2%) than within (0.7%) drug
classes, on an average (Wilcoxon: p ¼ 8:48� 10�12). Main
effects show lower proportions of antagonistic effects in drug
pairs, with 1.5% between and 0.3% within drug classes on an
average. The difference remains when accounting for the net
effects of the mutations, calculated by summing main and
epistatic effects of each interaction (1.5% between drug clas-
ses and 0.49% within, Wilcoxon: p ¼ 1:42� 10�8).
Interestingly, the higher proportion of antagonism between
drug classes is largely caused by the NNRTI mutations with
the other drug classes (8.8% and 2.5% for EPs and net effects,
respectively), compared with the level of antagonism among
PIs and NRTIs (1.6% and 0.55% for EPs and net effects, re-
spectively). Moreover, the proportions of pairwise antagonis-
tic EP are strongly negatively correlated to the pairwise
correlations of fitness values in the SEQ matrix
(rpearson ¼ �0:77; t103 ¼ �12:16; p < 2:2� 10�16). By in-
troducing variation in the sign of pleiotropy in addition to
variation in its extent, epistasis causes lower correlations
among drug environments because of larger trade-offs in
net mutational fitness effects.

More Highly Correlated Traits Are More Genetically
Integrated Traits
Is the correlation of fitness values within drug classes (phe-
notypic integration) indicative of the degree of pleiotropy of
the mutations (genetic integration)? We looked at two as-
pects of mutation pleiotropy: (1) the proportion of significant
mutations that are fully pleiotropic in each drug class (i.e.,
have PD¼ 3 in NNRTIs, and PD¼ 6 in NRTIs and PIs) and (2)
the average pleiotropic degree of the significant mutations

Table 2. Covariance Matrix Comparisons.

(a) G-matrices ME MEEP SEQ
nD 1.16 (1.157, 1.161) 2.08 (2.07, 2.09) 1.90 (1.89, 1.92)
�a 0.07 (0.072, 0.074) 0.16 (0.161, 0.163) 0.16 (0.159, 0.164)

(b) M-matrices ME EP
nD 1.11 (1.072, 1.163) 1.10 (1.079, 1.129)
�a 0.05 (0.033, 0.072) 0.07 (0.066, 0.076)

(c) Random skewers ME vs. MEEP ME vs. SEQ MEEP vs. SEQ
vector correlation 0.75 0.86 0.95

NOTE.— (a) Effective dimensionality (nD, a measure of modularity), and autonomy (�a, a measure of genetic independence) of the fitness covariance matrices. (b) Same metrics
for the mutational covariance matrices of main (ME) and epistatic (EP) effects. (c) Similarity of the ME, MEEP and sequence (SEQ) fitness covariance matrices measured with
Random skewers (see “Methods” section). When provided, values in parenthesis are the 2.5% and 97.5% bootstrap confidence limits of 10,000 bootstrap replicates (see Supp.
Information, PCA stability section).
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relative to the maximum pleiotropy in each drug class (i.e.,
“relative” pleiotropy in table 3). Among the three classes,
NNRTIs have the highest average correlation of fitness values,
followed by PIs and NRTIs (table 1). Accordingly, single and
double mutations with significant effects in NNRTIs are more
fully pleiotropic and have a higher average pleiotropic degree
than mutations in PIs, and in NRTIs (table 3). Therefore, more
phenotypically correlated traits are here also more genetically
integrated traits, with regards to the among-trait density of
pleiotropy of their underlying mutations. Together with re-
sults from the previous section, phenotypic integration is
supported by more pleiotropic links and less antagonistic
mutational effects within than between drug classes.

Intra versus Inter-Genic Epistasis
Until now we have kept all epistatic interactions within and
between reverse transcriptase and protease. To our knowl-
edge, it has not been investigated whether mutations within
reverse transcriptase may affect the inhibitory effects of
drugs targeting protease, and vice versa. Hinkley et al.
(2011) tested for the effect of inter-protein epistasis but
found little influence of inter-genic interactions on the over-
all variation in viral fitness within drug environments. By
removing inter-genic interactions, we find that the intra-
genic EP M-matrix has slightly lower modularity
(nD ¼ 1:06; 95% CI¼ [1.064, 1.067]), with unchanged au-
tonomy (�a ¼ 0:07; 95% CI¼ [0.067, 0.073]) compared with
the full EP M-matrix (table 2). Recalculating sequence fitness
with intra-genic interactions only in the MEEP model further
shows that inter-genic EP have little effect on the modularity
(nD;intra ¼ 2:08; 95% CI¼ [2.06, 2.09]) and autonomy
(�aintra ¼ 0:13; 95% CI¼ [0.132, 0.134]) of the MEEP G-ma-
trix. The structure of the GP map of drug resistance is thus
little affected by inter-genic epistasis between RT and PR.

Discussion
Our analysis of the genetic co-variation of fitness of HIV-1B
among ARV drugs confirms that there exists high potential
for the evolution of cross-resistance. Evaluation of the re-
sponse of HIV to selection imposed by multiple ARV treat-
ments can be conducted using quantitative genetics theory
based on the genetic variance–covariance matrix (the G-ma-
trix) of fitness in multiple environments (Falconer 1952;
Lande 1979; Via and Lande 1985). As first noted by
Falconer (1952), considering the genetic correlation between
trait values in two different environments is not different
from the genetic correlation of two different traits in the

same environment. The differential environmental effects of
the single and double mutations are thus rightly interpreted
as pleiotropic effects structuring the GP map of fitness in
multiple environments. In HIV, we expect a positively corre-
lated response of cross-resistance to multiple ARV drugs be-
cause the majority of genetic variation in fitness lies along the
first PC of the SEQ G-matrix, which is shared among all HIV
fitness traits. This is even more true for within drug class
cross-resistance, especially within NNRTIs and PIs, which are
more correlated and can be seen as near-identical traits.
Alternatively, a weaker cross-resistance is expected for HIV
evolving under less correlated ARV treatments, as when taken
from two different ARV classes or from the two different sub-
modules within the NRTIs. It is indeed known that NRTIs
have higher drug-specific resistance mutations than other
ARV classes (Harrigan and Larder 2002; Martins et al. 2010;
Arts and Hazuda 2012).

From the same token, drug combinations with the lowest
potential for cross-resistance evolution are combinations with
lowest pairwise or three-way correlations, when mimicking
combination therapies. Based on our results, combinations
of one NNRTI with a PI would have lowest potential for
cross-resistance, as would one NNRTI with an NRTI. Within
the NRTI class, combinations of TFV with either 3TC or ABC
would also minimize the potential for cross-resistance.
Interestingly, recommendations from the International AIDS
Society (Hammer et al. 2008) precisely involve combinations
of EFV (NNRTI) with two NTRIs such as TFV with 3TC or ABC,
or one RTV-boosted PI (LPV) with two of these NRTIs. Our
predictions are in line with those recommendations, although
NNRTIs would seem more adequate in combination with PIs.
Nevertheless, from our data, TFV is the NRTI with lowest
correlations with the PIs. Of course, medical recommenda-
tions take more criteria in consideration than the potential for
cross-resistance evolution from in vitro data. For instance,
each drug has its own pharmacokinetics and side effects,
and may elicit specific combinations of resistance mutations,
especially among NRTIs (Ali et al. 2010; Cihlar and Ray 2010;
Arts and Hazuda 2012). This, in part, justifies the fact that we
kept all drug environments separate, although NNRTIs and PIs
could be considered as single trait-environments based on
their high within module average correlations, which would
lower the average pleiotropic degree.

About Measures of Pleiotropy
We have measured pleiotropy by performing an
environment-wise exclusion of nonsignificant mutational ef-
fects under the rational that nearly neutral mutations of small
effects can be discarded because not significantly contributing
to fitness variation in a given environment. This approach is
expected to provide an acceptable proxy of the pleiotropic
degree of a mutation, or a gene, when detection thresholds
are not too low (Wagner and Zhang 2012). The advantage of
this measure is to correspond to the definition of pleiotropy
used in theoretical studies as being the number of discrete
phenotypic traits that are affected by a mutation (Chevin
et al. 2010; Lourenço et al. 2011). Its evolutionary properties
are thus well understood. It may, nevertheless, lead to a

Table 3. Proportion of Significant Main and Epistatic Effects that are
Fully Pleiotropic Within Drug Class, and the Average Pleiotropic
Degree of Significant Mutations Relative to the Maximum Within-
Class Pleiotropy (three for NNRTI, and six for NRTI and PI).

Drug Class Full Pleiotropy Relative Pleiotropy

ME EP ME EP

NNRTI 0.49 0.52 0.73 0.76
NRTI 0.23 0.18 0.55 0.53
PI 0.38 0.29 0.65 0.6
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downward-biased estimate of pleiotropy resulting in the char-
acteristic L-shaped PD distribution found previously because
of low detectability of mutational effects of otherwise fully
pleiotropic mutations (Hill and Zhang 2012). Although our
PD distributions may also be biased towards lower values,
they drastically differ from previous distributions by their
high frequency of fully pleiotropic mutations (fig. 2). That
shape is not predicted as an outcome of detection bias,
even when genetic correlations among traits are high (Hill
and Zhang 2012). Furthermore, the shape of the PD distribu-
tions is robust to our significance filtering because not af-
fected when using only the most or the least frequent
mutations. A bias may exist because mutation frequency is
strongly negatively correlated with the size of bootstrap con-
fidence intervals (see “Methods” section) and more frequent
mutations may thus be more pleiotropic. Yet, PDME of the
most frequent mutations (i.e., 403 out of 404 a.a. of the con-
sensus sequence) has the same median of two traits and same
distribution with a similar enrichment of fully pleiotropic mu-
tations as the full distribution (supplementary fig. S1,
Supplementary Material online). Similar PD distributions are
found for less frequent mutations and for interactions (sup
plementary figs. S2 and S3, Supplementary Material online). In
sum, given that nonpleiotropic mutations have lower abso-
lute effect sizes than mutations with large PDs, we have ef-
fectively eliminated mutations that would, on an average, less
affect fitness variation in the presence of selection than more
pleiotropic mutations (supplementary fig. S4, Supplementary
Material online). Altogether, this gives us confidence that our
PD estimates are robust and biologically meaningful.

General Implications
Studying mutations within two essential genes of a virus al-
lowed us to uncover a direct link between mutational varia-
tion in pleiotropy and the pattern of covariation among the

phenotypes. This relationship is not expected to be as direct
in higher organisms where the ontogeny of phenotypes in-
volves multiple loci and intermingled developmental pro-
cesses, which may rewrite the character relationships in
slightly different ways at each developmental stage. In this
“palimpsest” ontological model (Hallgr�ımsson and Lieberman
2008), the influence of the underlying genes is obscured by
the constant rewriting of the phenotypes. The best known
example is the mouse cranial and mandibular morphological
traits, where pleiotropic effects of mapped QTL show signif-
icant modularity relative to basal developmental units
(Mezey et al. 2000) but not to phenotypic units (Roseman
et al. 2009). In a simpler organism like HIV, the influence of the
genes is directly integrated into phenotypic variation avoiding
being drowned out by a succession of developmental pro-
cesses. Nevertheless, a similar direct relationship between GP
map and phenotypic structures may be expected in higher
organisms for more basal phenotypes. An example would be
molecular phenotypes, such as gene expression traits where
co-variation in expression may be a direct function of the
activity of pleiotropic gene regulatory elements. Recent tran-
scriptomics studies support that idea and have uncovered
heritable variation of gene expression in a few organisms
[e.g., Drosophila melanogaster (Ayroles et al. 2009); three-
spine sticklebacks (Leder et al. 2015)], and indirectly suggest
the presence of pleiotropy in gene regulation by reporting
significant genetic covariance in gene expression (e.g., in D.
serrata: McGuigan et al. 2014).

The extent of epistatic pleiotropy in other organisms is
little known beside a few QTL studies in mice (Wolf et al.
2005, 2006), in which a small number of epistatic interactions
among QTL for morphological traits were shown to contrib-
ute less to the phenotypic covariance of the traits than single
pleiotropic QTL, and did not change the trait covariances. In
contrast, we show a large effect of epistatic pleiotropy on trait
covariation. Moreover, we found that although a large pro-
portion of single mutations do not significantly affect fitness
in any environments, they will gain significant effects in in-
teraction and change the pleiotropic effects of their interact-
ing partners. Such mutations can be viewed as modifiers of
pleiotropy with potentially large effects on trait covariances
(Pavlicev and Wagner 2012). Similar effects have been found
by mapping loci that affect the relationship between traits
but remain hidden to the analysis of single effects. Such
relationshipQTL have been shown to affect the trait covaria-
tion of mice morphological traits (Cheverud et al. 2004;
Pavlicev et al. 2008). Interestingly, although our study drasti-
cally differs in scope and scale, we show that the same phe-
nomena take place in organisms as different as a virus and a
mouse.

Our study contributes to better understand the relation-
ship between M- and G-matrices. Little is known about their
correspondence in living species, and direct estimates of M-
matrices are scarce (but see Camara and Pigliucci 1999; Estes
et al. 2005; Houle and Fierst 2013). The correlation of the
allelic effects of pleiotropic genes encapsulated in the M-ma-
trix has important evolutionary consequences because, if
nonrandom, it creates stable patterns of genetic and

Table 4. Abbreviations used in the Text.

GP map genotype–phenotype map
ARV antiretroviral
a.-a. amino-acid
PI protease inhibitor
NRTI nucleoside reverse transcriptase inhibitor
NNRTI nonnucleoside reverse transcriptase inhibitor
RT reverse transcriptase
PR protease
GKRR generalized kernel ridge regression
ME main effects
EP epistatic effects
PD pleiotropic degree
PDME pleiotropic degree of the main effects
PDEP pleiotropic degree of the epistatic effects
PDMEEP pleiotropic degree of the main and epistatic effects
M-matrix across-trait variance–covariance matrix of

mutational effects
G-matrix across-trait variance–covariance matrix of

genotype values
SEQ the G-matrix of observed genotypic values

of samples viral a.-a. sequences
PCA principal component analysis
PC1 first principal component
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phenotypic correlations among phenotypic characters (Jones
et al. 2003) that override the effects of other sources of genetic
covariance among pleiotropic allelic effects (e.g., linkage
(Lande 1980), drift (Griswold et al. 2007), migration
(Guillaume and Whitlock 2007), correlational selection
(Jones et al. 2003)). The correlational pattern of phenotypes
then depends on how much the structure of the M-matrix
translates into heritable genetic covariation of the traits, en-
capsulated in the G-matrix. We show that the correlational
structure within the M-matrices of main and epistatic effects
are poor predictors of the covariation of fitness among drug
environments. Therefore, patterns of trait integration here
depend on the distribution of the pleiotropic effects among
the traits within the GP map. This indicates that the precise
structure of the GP map cannot be ignored as a cause of trait
covariation or genetic constraints, and, hence, as a means of
their evolution by modification of gene pleiotropy (Guillaume
and Otto 2012; Pavlicev and Wagner 2012).

Conclusions
By studying phenotypic variation and its underlying muta-
tional variation, we were able to link phenotypic with pleio-
tropic modularity. We showed that in HIV-1, a modular
epistatic GP map leads to a modular phenotype. The main
effects also play an important role by quantifying the effects
that are shared among environments. They, however, lack
modularity in the correlations and in the patterning of their
pleiotropic effects within the GP map. Epistasis modulates
these effects and although it increases pleiotropy, it does so
in a modular fashion, and provides more drug-specific and
class-specific profiles to viral fitness. Our findings have strong
implications for our understanding of the evolutionary po-
tential of drug resistance against multiple drugs in HIV. More
generally, they suggest that epistasis may play a fundamental
role in shaping the evolvability of living organisms by directly
affecting the structure of the GP map and the strength of
genetic correlations of phenotypic traits.

Materials and Methods

Experimental Data
Our analyses are based on a sample of 70,080 patient-derived
HIV-1 sequences assayed for fitness in 16 different environ-
ments: one drug-free and 15 in presence of one antiretroviral
drug (Petropoulos et al. 2000). The replicative capacity (fit-
ness) of each sample was measured by inserting the full se-
quence of the protease gene (99 amino acids) and most of the
reverse transcriptase gene (amino acids 1–305) of the patient-
derived virion into the backbone of an HIV-derived test vec-
tor used for routine drug resistance testing. The test vector is
based on the NL4-3 molecular HIV clone and has been mod-
ified such that it undergoes only one round of replication (full
details are in Petropoulos et al. 2000). The fitness of each
sequence is the number of virus progeny produced after
one replication cycle relative to that of the base test vector,
and provides an estimate of viral fitness in each environment.
The 15 drugs used belong to three different classes: protease
inhibitors (PIs), nucleoside reverse transcriptase inhibitors

(NRTIs) and nonnucleoside reverse transcriptase inhibitors
(NNRTIs). The six PI drugs are amprenavir (AMP), indinavir
(IDV), lopinavir (LPV), nelfinavir (NFV), ritonavir (RTV), and
saquinavir (SQV), the six NRTI drugs are abacavir (ABC), di-
danosine (ddI), lamivudine (3TC), stavudine (d4T), zidovu-
dine (ZDV), and tenofovir (TFV), and the three NNRTI drugs
are delavirdine (DLV), efavirenz (EFV), and nevirapine (NVP).
For each drug, the replicative capacity of a virus on drugs was
given by the interpolated value measured at the drug con-
centration at which the NL4-3 based control virus has 10% of
its replicative capacity in the absence of drug (the IC90 for
NL4-3 was used as the reference drug concentration for every
subsequent measurement).

Estimates of Single and Double Mutation Effects
Amino acid sequences of the protease gene and the partial
reverse transcriptase gene were obtained by population se-
quencing for all virus samples included in this analysis
(Petropoulos et al. 2000). Because of this population sequenc-
ing, sequences are defined in terms of probabilities of allele
occurrences for each locus. The effects of all single and double
mutations present in the sequence dataset were then esti-
mated using a generalized kernel ridge regression (GKRR)
procedure (Hinkley et al. 2011). In brief, the GKRR is a ma-
chine learning approach fitting a general linear model in
which the number of parameters to estimate by far outnum-
bers observation points. It avoids over-fitting of the model by
using a training sub-dataset completely independent from
the sub-dataset from which the parameters are estimated.
The model fitted by Hinkley et al. (2011), called MEEP, is:

logðWiÞ ¼ Iþ
XNM

j¼1

sijmj þ
XNE

k¼1

sik�k;

where Wi is the replicative capacity (fitness) of sequence i, mj

represents the main effect (ME) of the jth amino-acid variant
and sij is the probability of that variant occurring in a ran-
domly selected sequence from the population of sequence i.
Similarly, �k represents the interaction epistatic effect (EP) of
the kth combination of variants and sik is a variable that ac-
counts for the presence or absence of that combination of
variants in the sequence. The s parameters may be different
from 0 or 1 because of population sequencing of the HIV viral
sequences and the possible ambiguities caused by site-specific
amino-acid polymorphism. I, the intercept, represents the log
fitness of the reference sequence of the test vector (see details
in Hinkley et al. 2011). In total, 1,859 alleles are present at the
404 amino-acid positions, with 1,090,889 possible interac-
tions. Among these, we excluded nonindependent interac-
tions between nonpolymorphic sites and those interactions
present in less than 10 sequences, resulting in a net total of
556,125 epistatic effects. Amino-acid variants with less than
ten copies in the whole sequence dataset were also excluded
in Hinkley et al. (2011).

Bootstrapping of GKRR Estimates
To provide an estimate of the accuracy of the GKRR method
to detect small effects, we bootstrapped the MEEP model by
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resampling the fitness of each viral sequence from the ob-
served values, with replacement. We performed 1,000 boot-
straps in the NODRUG environment. Because the bootstrap
confidence intervals (CI) are strongly correlated among drug
environments, we generated 400 bootstrap estimates in the
EFV, 3TC, and LPV drug environments, hence bootstrapping
one drug per drug class. The number of bootstraps is limited
because of the extremely high computational demand of the
procedure, and because little variation in confidence interval
sizes is detected above 200 bootstrap replicates. Moreover,
the per-mutation CI sizes among those three drug environ-
ments are highly correlated (rPearson > 95% and 99% for CIs of
main and epistatic effects, respectively). More variation in CIs
exist among mutations within environments, with the most
frequent mutations having the smallest CIs
(qSpearman ¼ �0:73;�0:67;�0:72;�0:72, in NODRUG,
EFV, 3TC, and LPV, respectively, all P < 2:2� 10�16). The
size of the CI of a mutation thus depends on the amount of
information available in the dataset instead of its effect size.

Randomization Tests
We assessed the significance of the observed distributions of
pleiotropy and epistatic pleiotropy using different randomi-
zation tests. First, we tested for the significance of the distri-
butions of PDME and PDEP by randomizing the significant
single and double mutation effects among the 16 environ-
ments. For this, we built a 1,859� 16 matrix for the ME data
and a 556,125�16 matrix for the EP data, with 1s and 0s
indicating significant and nonsignificant effects, respectively.
Each matrix was shuffled 10,000 times from which we calcu-
lated the mean PD distributions. Second, to test for the sig-
nificance of the observed pattern of epistatic pleiotropy, we
permuted the significant MEs and EPs within each environ-
ment to generate random expectations of repertoire compo-
sition while keeping the significance levels constant per
environment for main and epistatic effects. This randomiza-
tion scheme allows us to test for the null hypothesis of uni-
versal pleiotropy under which the epistatic pleiotropic effects
(the private traits) would be caused by the failure of detecting
the corresponding main effects in the interacting mutations.
It thus tests whether the degree of nonadditive epistatic plei-
otropy we observe is an artifact of the significance filtering we
used. For this, we generated a null distribution of the average
number of private traits per interaction by performing 10,000
permutations of the 1,859 main and 556,125 epistatic effects
in each environment. A P value associated with our point
estimate of privateness can be readily obtained by finding the
empirical percentile from that bootstrapped distribution.
Finally, we also test whether the additivity of the interaction
departs from its null expectation under the same assumption.

Evolutionary Statistics
Autonomy
The autonomy of a set of traits provides a measure of the
integration of the GP map: it represents the “proportion of
evolvability that remains after conditioning on other traits”
(p1207; Hansen and Houle 2008). GP maps with more inte-
grated modules of traits that are genetically less related to

other such modules will thus have higher autonomy.
Corrected formula for autonomy �a is in Hansen and Houle
(2009).

Effective dimensionality
The effective dimensionality measures the contrast between
the first (k1) and lower-rank eigenvalues (ki) of a covariance
matrix and is nD ¼

P
ki=k1, which can be interpreted as a

weighted modularity measure representing independent
modules with equal variance (Kirkpatrick 2009).

Random skewers
The random skewers approach measures the average vector
correlation (average angle) of the selection response vectors
of two covariance matrices submitted to the same set of
random selection vectors (Cheverud 1996). We used 10,000
random selection vectors (random skewers) to provide an
estimate of the similarity in the orientation of the covariance
matrices in phenotype space.

The covariance matrices (M and G-matrices) were
themselves generated by measuring all pairwise environment
covariances of within environment genotypic values
(G-matrices) or of all within environment significant
mutational effects (M-matrices).

Parcellation
We computed the parcellation of the GP maps of the main
(MPðMEÞ) and epistatic (MPðEPÞ) effects with the parcellation
statistic MP of Mezey et al. (2000). Because the method re-
quires a pre-defined set of modules, we first used the four
modules that we found in the phenotypic SEQ matrix, ex-
cluding the NODRUG environment. The significance of the
observed parcellation is evaluated against the parcellation of
randomized sets of ME and EP within environments (see
“Randomization Tests” section above).

To compare the parcellation of two networks of different
sizes, we defined the following standardized parcellation
index:

M̂P ¼
MP � �MPðrandÞ
SDðMPðrandÞÞ

;

which is the difference of observed parcellation to the mean
random parcellation in units of standard deviation.

All tests and analyses were performed with R v3.0.2 (R Core
Team 2012). PCA and hierarchical cluster analysis were per-
formed with prcomp and pvclust functions in R, respectively.

Supplementary Material
Supplementary figures S1–S7 are available at Molecular
Biology and Evolution online (http://www.mbe.oxfordjour
nals.org/).

Acknowledgments
We wish to thank Mihaela Pavlicev, Mary Poss, Jobran Chebib,
Roger Kouyos, and Jeremy Draghi for their helpful comments
on previous versions of this article, and Louis du Plessis and
Trevor Hinkley for their invaluable help with GKRR. The

Epistasis and Pleiotropy Affect the Modularity of the Genotype–Phenotype Map . doi:10.1093/molbev/msw206 MBE

3223

Deleted Text: t
Deleted Text: -
Deleted Text: -
Deleted Text: s
Deleted Text: : 
Deleted Text: (
Deleted Text: )
Deleted Text: : 
Deleted Text: : 
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw206/-/DC1
http://www.mbe.oxfordjournals.org/
http://www.mbe.oxfordjournals.org/


quality of the article was greatly improved after full peer-
review at Axios Review (Vancouver, Canada) and comments
of two anonymous reviewers. This work was supported by the
Swiss National Science Foundation (grants PP00P3_144846/1
and PZ00P3_141987/1 to F.G.), and the ETH Zurich (Research
Grant ETH-10 09-3 to R.P.) S.B. acknowledges support by the
Swiss National Science Foundation.

References
Ali A, Bandaranayake RM, Cai Y, King NM, Kolli M, Mittal S, Murzycki JF,

Nalam MNL, Nalivaika EA, €Ozen A, et al. 2010. Molecular basis for
drug resistance in HIV-1 protease. Viruses 2(11):2509–2535.
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Kücherer C, Obel N, von Wyl V, Masquelier B, et al. 2011. Effect of
transmitted drug resistance on virological and immunological re-
sponse to initial combination antiretroviral therapy for HIV
(EuroCoord-CHAIN joint project): a European multicohort study.
Lancet Infect Dis. 11(5):363–371.

Wolf JB, Leamy LJ, Routman EJ, Cheverud JM. 2005. Epistatic plei-
otropy and the genetic architecture of covariation within early
and late-developing skull trait complexes in mice. Genetics
171(2):683–694.

Wolf JB, Pomp D, Eisen EJ, Cheverud JM, Leamy LJ. 2006. The contribu-
tion of epistatic pleiotropy to the genetic architecture of covariation
among polygenic traits in mice. Evol Dev. 8(5):468–476.

Epistasis and Pleiotropy Affect the Modularity of the Genotype–Phenotype Map . doi:10.1093/molbev/msw206 MBE

3225


	msw206-TF2

