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The pathophysiologic mechanisms underpinning idiopathic normal pressure
hydrocephalus (iNPH), a clinically diagnosed dementia-causing disorder, continue
to be explored. An increasing body of evidence implicates multiple systems in the
pathogenesis of this condition, though a unifying causative etiology remains elusive.
Increased knowledge of the aberrations involved has shed light on the iNPH phenotype
and has helped to guide prognostication for treatment with cerebrospinal fluid diversion.
In this review, we highlight the central role of the cerebrovasculature in pathogenesis,
from hydrocephalus formation to cerebral blood flow derangements, blood-brain barrier
breakdown, and glymphatic pathway dysfunction. We offer potential avenues for
increasing our understanding of how this disease occurs.

Keywords: idiopathic normal pressure hydrocephalus (iNPH), glymphatic circulation, ventriculoperitoneal (VP)
shunt, cerebral blood flow, dementia, communicating hydrocephalus, blood brain barrier (BBB) breakdown

INTRODUCTION

Idiopathic normal pressure hydrocephalus (iNPH) is a common dementia-causing neurological
disorder seen in the elderly, with 120 new cases per year per 100,000 population greater than
70 years (Iseki et al., 2014; Martín-Láez et al., 2015). iNPH classically presents with the clinical
triad of gait disturbance, urinary incontinence, and dementia, with gait disturbance typically
presenting first and cognitive manifestations arising later. The hallmark of the disease is an
enlarged ventricular system without an increase in intracranial pressure (ICP). Despite progress in
characterizing iNPH and its natural history, its pathophysiology has not been clearly defined.

Treatment for iNPH is centered around cerebrospinal fluid (CSF) shunting, which leads
to improvement in symptoms, including dementia, in many patients (Toma et al., 2013). This
distinguishes iNPH from other causes of dementia which are largely irreversible and hence
represents an opportunity to characterize mechanisms contributing to cognitive impairment.
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Ultimately, clinical responses to shunting are varied, and
long-term outcomes indicate that while shunting improves the
natural history, the durability of treatment is less than with
other etiologies of hydrocephalus (Junkkari et al., 2021). Taken
together, these data suggest that ventriculomegaly alone does
not account for the natural history of iNPH, challenging the
traditional role of CSF dynamics and appealing for a better
understanding of iNPH’s underlying pathogenesis.

iNPH has been examined from many view points, ranging
from intracranial pressure dynamics, traditional radiographic
parameters, advanced neuroimaging modalities, analysis of
regional and global cerebral perfusion, and changes at the
cellular and molecular levels, including the activity of the
glymphatic pathways and the blood-brain barrier. Conclusions
to be drawn from this disparate body of work are unsettled.
In this manuscript, we review recent evidence related to the
pathophysiology of iNPH in the context of current theories,
noting areas of interest for future study. In particular, we focus on
changes involving the cerebrovasculature, which may be central
to pathogenesis.

CLINICAL FEATURES

The diagnosis of iNPH involves a combination of clinical
symptoms, radiologic findings, and results of diagnostic
evaluations (Table 1; Relkin et al., 2005; Nakajima et al.,
2021). The criteria for probable iNPH differ somewhat between
American/European and Japanese guidelines and are listed
separately in Table 1. While both guidelines are accepted
and used in practice, the broader radiographic criteria in the
American/European guidelines may lead to a greater proportion
of patients classified as probable iNPH (Andersson et al., 2017).
Confounding the work-up of iNPH is the lack of specificity in
diagnostic criteria and overlapping features shared with other
neurodegenerative conditions including Alzheimer’s disease
and other movement disorders including Parkinsonism. Gait
disturbance is the most common feature and typically is the first
symptom to arise (Hebb and Cusimano, 2001).

Diagnostic radiographic features include ventricular
enlargement with an Evans index of 0.3 or greater (Figure 1;
Jacobs and Kinkel, 1976; George et al., 1995). Other common
findings on brain imaging include a callosal angle of 90 degrees
or less (Borzage et al., 2021), periventricular hyperintensities,
and enlargement of the temporal horns (Relkin et al., 2005).
A trial of CSF drainage is often undertaken to aid in the
diagnosis, commonly via the lumbar subarachnoid space.
Clinical benefit after temporary CSF drainage is strongly
predictive of improvement in at least one symptom after
shunting (Marmarou et al., 2005; Toma et al., 2013). In patients
unable or unwilling to receive a shunt, serial lumbar punctures
may be a treatment option (Isik et al., 2019).

Frustrating the iNPH clinical picture, there is not a clear
neuroanatomic basis for the condition’s manifestations. It was
originally held that stretching of white matter tracts from
ventricular dilation led to iNPH’s clinical findings (Hakim
and Adams, 1965), but there are several limitations with this
hypothesis. First, it is not immediately obvious which white

matter tracts would be causative. While the corticospinal tracts
are clearly at risk for stretch, corticospinal tract-related gait
disorders tend to differ from the hypokinesia and disequilibrium
typical of iNPH (Rubino, 2002; Bugalho and Guimarães,
2007; Baker, 2018). Second, ventricular volume prior to CSF
diversion-a surrogate for white matter tract stretching-does not
correlate with the degree of symptomatology (Neikter et al.,
2020). Third, other causes of ventriculomegaly both pathological
(e.g., obstructive hydrocephalus) and physiological (e.g., ex vacuo
hydrocephalus), do not typically cause gait disturbance as a
primary manifestation. Fourth, the actual decrease in ventricular
size after shunting is fairlymodest in clinical responders, typically
resulting in less than a 10% reduction in Evan’s index (Neikter
et al., 2020). Thus, while changes in the corticospinal tracts and
corpus callosum correlating with iNPH have been noted in some
studies using tractography and transcranial magnetic stimulation
(Röricht et al., 1998; Mataró et al., 2007; Siasios et al., 2016; Sarica
et al., 2021), it is difficult to correlate symptomatic improvement
following CSF drainage with decreased stretching of white matter
tracts alone, and these changes may ultimately be epiphenomena.

Some authors have hypothesized that dysfunction of the
cortico-basal ganglia-thalamo-cortical (CBGTC) is involved
in iNPH (Curran and Lang, 1994; Lenfeldt et al., 2008),
though the CBGTC loop may not explain dementia and
urinary incontinence. Recent investigations have implicated
striatal dopamine reuptake transporter density in iNPH gait
impairment, offering a potential mechanism for basal ganglia
dysfunction (Pozzi et al., 2021; Todisco et al., 2021). Other
research has implicated frontal lobe dysfunction in not only the
cognitive and urinary disturbances, but also gait disorder as well
(Bugalho and Guimarães, 2007). As multiple lesional effects are
suggested in iNPH, a fruitful approach to understanding the
neuroanatomic basis may involve network-level investigations of
functional connectivity (Griffa et al., 2020).

THEORIES ON PATHOGENESIS

Given shared features with other neurodegenerative conditions,
iNPH is defined as a unique entity by ventricular enlargement.
Our efforts to understand the etiology of the disease are thus
inextricably tied to understanding how hydrocephalus develops
in iNPH patients.

Generally speaking, communicating hydrocephalus in iNPH
and other etiologies results from an imbalance between CSF
formation and removal. This is thought to be due to impairment
in the return of CSF to the circulation in most cases, through
scarring or obstruction of the arachnoid granulations (Chen
et al., 2017). A compelling anecdote to challenge this trad
itional model is the observation that subarachnoid spaces
are not universally dilated in communicating hydrocephalus
(Egnor et al., 2002; Greitz, 2004). It warrants mention that in
chronic states of hydrocephalus, CSF absorption is coupled to
production; that is, while hydrocephalus may initially occur
because of impaired absorption of CSF, the imbalance is a
transient phenomenon, and the compensated state implies that a
new equilibrium between absorption and production is reached.
Theoretically, the new equilibrium may be reached through
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TABLE 1 | American/European (Relkin et al., 2005) and Japanese (Nakajima et al., 2021) criteria for probable idiopathic normal pressure hydrocephalus.

American/European Japanese

Clinical Gait/balance disturbance
One impairment involving either cognition or urination

More than one symptom in the clinical triad: gait
disturbance, cognitive impairment, and urinary incontinence

Historical Insidious onset of symptoms with progression over time
Age >40 years at symptom onset
Symptom duration for at least 3–6 months
No previous insult which could lead to secondary hydrocephalus
No other neurologic, psychiatric, or medical cause for symptoms

Age ≥60 years
No obvious preceding diseases causing ventricular dilation
(e.g., subarachnoid hemorrhage, meningitis, head injury)
Clinical symptoms not completely explained by other
neurological or non-neurological disease.

Investigational Ventricular enlargement without macroscopic obstruction with Evans
Index >0.3
At least one of the following features:
1. Enlargement of temporal horns without hippocampal atrophy
2. Callosal angle of ∼90 degrees or less
3. Evidence of altered brain water content including periventricular
signal changes
4. Aqueductal or fourth ventricular flow void seen on MRI
CSF opening pressure on lumbar puncture between 5–18 mmHg
(70–245 mmH2O)

Ventricular enlargement with Evans Index >0.3
CSF opening pressure ≤200 mm H2O, normal CSF content
One of the following two features:
1. Neuroimaging features of narrowing of the sulci and
subarachnoid space over the high convexity/midline surface
(DESH) with gait disturbance: small stride, shuffle, instability
during walking, and increase in instability on turning
2. Improvement of symptoms after CSF tap test and/or
drainage test

FIGURE 1 | Computed tomography (CT) scan from a 70-year-old man with iNPH. (A) Axial image demonstrating Evans Index, which is the ratio of the maximum
bifrontal horn width (X) to the maximum biparietal internal diameter of the skull (Y). An Evans Index >0.3 is present in iNPH. (B) Coronal image demonstrating callosal
angle, here measured to 68 degrees. Normal callosal angles are greater than 90 degrees, while acute callosal angles occur in iNPH. Disproportionately enlarged
subarachnoid space hydrocephalus (DESH) is apparent, as the Sylvian fissures are dilated out of proportion to sulci near the convexity.

increased CSF absorption through other means, or by decreased
CSF production.

Unlike other types of communicating hydrocephalus, such
as subarachnoid hemorrhage, a lesion causing impaired CSF
outflow is not apparent in iNPH. An alternative explanation
of communicating hydrocephalus, however, invokes arterial
pulsations. In this theory, homeostasis of the CSF spaces
including the ventricles relies on the normal propagation through

the cerebrovasculature of pulsations delivered through the
cardiac cycle. In cases in which cerebral arteries lose compliance,
the additional pulse pressure is delivered distally to the capillaries
and veins, which may alter CSF dynamics in such a way to
produce ventriculomegaly (Egnor et al., 2002; Greitz, 2004).
Preliminary evidence suggests that CSF drainage may improve
vascular compliance and, subsequently, CBF (Bateman, 2000).
Hence, as there is not a lesion to block CSF egress at the

Frontiers in Aging Neuroscience | www.frontiersin.org 3 April 2022 | Volume 14 | Article 866313

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Bonney et al. Pathogenesis of iNPH

level of the arachnoid granulations in the traditional model of
communicating hydrocephalus, impaired vascular compliance
may be sufficient to produce iNPH.

Pulsations transferred through the elastic arterial system cause
movement of CSF back and forth through the aqueduct during
the cardiac cycle (Marmarou et al., 1978; Linninger et al., 2005;
Kahlon et al., 2007; Scollato et al., 2008; Ringstad et al., 2015;
Yamada et al., 2020). In healthy adults the net movement of
ventricular CSF is craniocaudal, however, in iNPH patients,
the net movement is typically reversed, towards the third and
lateral ventricles (Kim et al., 1999; Penn et al., 2011; Ringstad
et al., 2016), which results in transependymal flow of ventricular
CSF into the interstitial space (Ringstad et al., 2017). The
flow pattern often reverts to anterograde flow after shunting
(Ringstad et al., 2016). Clinical study of CSF dynamics in iNPH
indicates elevated resistance to CSF outflow and increased CSF
pulsatility. These features predict treatment response after CSF
diversion, indicating normalization of CSF dynamics and a more
physiologic state (Eide and Sorteberg, 2008, 2010; Malm et al.,
2011; Qvarlander et al., 2013; Jacobsson et al., 2018).

That iNPH may fundamentally represent a vascular disorder
is intriguing, given the high incidence of vascular risk
factors including hypertension and diabetes in iNPH patients
(Eide and Pripp, 2014; Jaraj et al., 2016; Israelsson et al.,
2017). Supporting this notion is the near-ubiquitous finding
of deep white matter and periventricular lesions in iNPH
(Krauss et al., 1997), hallmarks of small vessel disease.
Variations in regional hypoperfusion and degree of hypoxic
changes may help explain the clinical heterogeneity of iNPH
and poor responses to shunting. Our view is that iNPH
is fundamentally a cerebrovasculature disorder. Impaired
compliance triggers a cascade of events culminating in the
development of hydrocephalus, which subsequently begins
a cycle that unchecked eventually progresses to irreversible
dementia and neurologic injury. Shunting reverses some of
the clinical manifestations, although even with treatment the
disease is associated with progressive morbidity, which suggests
a component of irreversible small vessel disease. Below we
discuss three interrelated systems that may be central to the
development and progression of iNPH: cerebral blood flow, the
glymphatic system, and the blood-brain barrier. A flow diagram
demonstrating possible pathogenic relationships is depicted in
Figure 2.

DEFICIENT CEREBRAL BLOOD FLOW
(CBF)

Our understanding of the role of cerebral blood flow (CBF)
in iNPH has evolved considerably in the last two decades. In
early work, consistent patterns could not be drawn between the
association between various CBF changes and: (1) the diagnosis
of iNPH, (2) disease severity, or (3) improvement after shunting,
which may have been due in part to disparate imaging protocols,
inconsistent diagnostic criteria, and small sample sizes (Owler
and Pickard, 2001). More recently, several studies reported
regional hypoperfusion in critical areas, suggesting that vascular
insufficiency is relevant to iNPH.

A number of studies have found regional CBF deficits in iNPH
patients compared to age-matched healthy controls, including
deficits in the periventricular white matter (Momjian et al.,
2004; Ziegelitz et al., 2014, 2016; Virhammar et al., 2017),
lentiform nucleus (Owler et al., 2004a; Ziegelitz et al., 2014,
2016; Virhammar et al., 2017), thalamus (Owler et al., 2004a;
Virhammar et al., 2017), caudate (Owler et al., 2004a), and basal
medial frontal cortex (Ziegelitz et al., 2014). Global reductions
have been identified as well (Momjian et al., 2004; Owler et al.,
2004a; Ziegelitz et al., 2014, 2016). One study noted inverse
correlations between thalamic and putaminal CBF and severity of
iNPH (Owler et al., 2004a), but most studies found no association
between the magnitude of global or regional CBF values and
severity of iNPH.

Clinical improvements after CSF drainage have been
associated with improvements in CBF in the lateral and frontal
white matter regions (Virhammar et al., 2014), periventricular
white matter (Ziegelitz et al., 2015, 2016; Satow et al., 2017),
periventricular thalamus (Ziegelitz et al., 2015), medial frontal
region (Klinge et al., 2008), supplemental motor area (Lenfeldt
et al., 2008), brainstem (Agerskov et al., 2020), and globally
(Chang et al., 2009). Relating to prognostic variables prior to
treatment, one study found decreased preoperative CBF in basal
frontal lobes and anterior cingulate region in iNPH patients who
responded to shunting compared to non-responders (Murakami
et al., 2007). However, in most studies, no associations were
found between preoperative regional CBF values and clinical
response to shunting.

In light of this body of work, it is useful to consider the clinical
findings in iNPH as the result of hypoperfusion. Depending
on the extent of the CBF deficit, hypoperfusion may account
fo rany or all findings of iNPH. Bladder dysfunction in iNPH
is typically referable to detrusor overactivity, which may occur
through effects on the frontal lobe or basal ganglia (Andersson,
2004; Sakakibara et al., 2008, 2012). Similarly, both the frontal
lobe and basal ganglia have been implicated in gait disturbances
that characterize iNPH (Bugalho and Guimarães, 2007). While
cognitive impairment may be considered a diffuse lesion,
some evidence suggests early frontal involvement in iNPH,
consisting of psychomotor slowing and impaired attention rather
than memory deficits, before progressing to more profound
impairment (Iddon et al., 1999; Ogino et al., 2006; Picascia et al.,
2015). With improved perfusion after shunting, symptoms may
regress unless infarcts have already occurred.

The mechanism of impaired perfusion of deep gray matter
and periventricular white matter is a subject of debate.
Hypoperfusion may result from compression of the deep
vascularity, compression of superficial venous outflow, impaired
autoregulation, changes related to transependymal flow, or
some combination of these factors (Momjian et al., 2004;
Owler et al., 2004b; Bateman, 2008; Scollato et al., 2008;
Chang et al., 2009). While a shunt would potentially improve
any of these factors, the manner by which improvement in
CBF occurs after shunting has not been well characterized.
The effect of CSF drainage on cerebral perfusion pressure
(CPP) through decreased ICP is limited as the ICP is not
elevated, raising questions as to whether improved CPP
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FIGURE 2 | Flow diagram demonstrating possible pathogenic relationships in iNPH.

alone may explain CBF changes (Eide and Sorteberg, 2010).
One explanation may involve the CSF pulsatility curve, in
which a relatively small change in ICP leads to decreased
CSF pulsatility which may have downstream effects on CBF
(Qvarlander et al., 2013).

IMPAIRED GLYMPHATIC CIRCULATION

The glymphatic (glial-lymphatic) system is a recently discovered
homeostatic mechanism by which fluid moves through the
brain parenchyma, acting as a waste disposal mechanism for
brain tissue (Figure 3; Iliff et al., 2012; Nedergaard, 2013). In
brief, subarachnoid CSF is pumped along periarterial channels
by arterial pulsations (Iliff et al., 2013; Mestre et al., 2018)
and enters the interstitial compartment through aquaporin-4
transporters within astrocyte endfeet (Plog and Nedergaard,
2018). CSF joins interstitial fluid and moves through the
interstitial space towards perivenous and perineural channels
through which it is removed from the brain. These efflux
pathways include perisinusal lymphatic vessels that drain into
extracranial lymphatics (Louveau et al., 2015; Ahn et al.,
2019). Glymphatic circulation constitutes a primary role in
the clearance of toxoids and waste products from the brain
parenchyma, akin to the lymphatic function of other organs
(Jessen et al., 2015), and is most active during sleep (Kang et al.,
2009; Shokri-Kojori et al., 2018).

Mounting evidence suggests impairment of the
glymphatic system by multiple mechanisms contributes to
neurodegenerative diseases (Rasmussen et al., 2018). Much
of the advances in understanding these pathways hail from
the recognition that dysfunction of the glymphatic system
contributes to amyloid-beta buildup in Alzheimer’s disease
(Rasmussen et al., 2018; Mestre et al., 2020). Other conditions
associated with glymphatic impairment relevant to iNPH
include aging (Zhou et al., 2020), diabetes (Jiang et al., 2017),
and hypertension (Mestre et al., 2018).

Clinical evaluation of iNPH patients demonstrates sluggish
glymphatic flow (Ringstad et al., 2017; Eide and Ringstad, 2019;

FIGURE 3 | Glymphatic influx (yellow arrows) occurs along periarterial
channels within subarachnoid spaces (white) and enters the parenchyma
(blue) through aquaporin-4 transporters on astrocytic endfeet. Subarachnoid
CSF joins interstitial fluid and passes through the brain, delivering substances
to and from the parenchyma before being absorbed along perivenous and
perineural channels. Impaired glymphatic circulation may result in part from
impaired influx through poor arterial compliance and results in progressive
neurotoxicity contributing to iNPH’s clinical manifestations.

Bae et al., 2021). Lumbar intrathecal gadobutrol injection in
iNPH patients resulted in delayed enhancement of subarachnoid
spaces and cortical surfaces, compared to younger patients
receiving gadobutrol for workup of intracranial hypotension
(Ringstad et al., 2017). The age difference between the two patient
groups somewhat limits the study’s conclusions, as even healthy
older people have impaired glymphatic function (Zhou et al.,
2020). Given that glymphatic dysfunction also is involved in
Alzheimer’s disease (Tarasoff-Conway et al., 2015), this may
represent a common pathway for cognitive decline in the two
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conditions (Reeves et al., 2020), but may not necessarily be
related to urinary incontinence and gait in iNPH.

One theory posited to explain glymphatic impairment
in iNPH is loss of arterial compliance. As vessels become
increasingly stiff, the pump driving glymphatic influx is
weakened, resulting in the buildup of waste substances in
the interstitial fluid. This may in part explain the retrograde
movement of subarachnoid CSF into the ventricular system, as
the outflow resistance increases along glymphatic pathways. It is
possible that the improvement in CSF dynamics after shunting
(Ringstad et al., 2016) improves the glymphatic flow and thus
cognition. However, that this could represent a primary insult in
iNPH has been called into question (Gallina et al., 2020).

Another potential mechanism for glymphatic impairment is
through reduced expression of aquaporin-4 channels, which has
been demonstrated in iNPH patients (Hasan-Olive et al., 2019).
In Alzheimer’s disease, decreased expression of aquaporin-4
leads to impaired clearance of misfolded proteins, which
results in neurotoxicity and cognitive decline (Xu et al., 2015;
Zeppenfeld et al., 2017). Glymphatic impairment in iNPH may
lead to a similar buildup of waste products with resultant
neurotoxicity that leads to cognitive dysfunction. Improvement
in the glymphatic flow after shunting iNPH and subsequent
clearance of accumulated interstitial substances may improve
neuronal function and hence cognition after shunting, though
this is untested.

BLOOD-BRAIN BARRIER BREAKDOWN

The blood-brain barrier (BBB), the brain’s unique microvascular
interface consisting of endothelial tight junctions, pericytes,
and astrocytic endfeet, plays a critical role in maintaining the
optimal conditions for proper neuronal functioning by acting
as a selective barrier between the blood and brain (Figure 4;
Bradbury et al., 1963; Bernacki et al., 2008; Abbott et al.,
2010). The BBB prevents the entry of toxins while facilitating
the transportation of metabolites and nutrients into the CNS.
Given its role in homeostasis and neuroprotection, the BBB
has been investigated in a host of neurological disorders
(Sweeney et al., 2018; Profaci et al., 2020).

Several investigations have demonstrated pathology related
to the BBB in iNPH patients. Distorted and thickened
basement membranes and degenerated pericyte processes
were demonstrated in biopsy specimens from iNPH patients
(Eidsvaag et al., 2017; Eide and Hansson, 2020). Pericytes are
essential components of the BBB and play important roles
in induction, maintenance, and selective permeability (Abbott,
2002; Armulik et al., 2010). Pericyte degeneration has been
shown to cause increased permeability to water and both
low- and high-molecular-weight tracers, creating a leaky BBB
(Armulik et al., 2010).

Additional evidence for compromise of the BBB was
identified in iNPH patients through the extravasation of fibrin,
a blood coagulation protein, in frontal biopsy specimens (Eide
and Hansson, 2020). In this study, scattered fibrin staining
around capillaries within cortical layers was seen in all iNPH
patients compared to fewer than 30% of patients with other

FIGURE 4 | The blood-brain barrier consists of endothelial tight junctions,
pericytes, and astrocytic endfeet. A leaky blood-brain barrier through
dysfunction of one or multiple of these constituent parts has been
demonstrated in iNPH.

neurological diseases (Eide and Hansson, 2020). Increased
fibrin deposition in the brain parenchyma in NPH biopsies
correlated with increased levels of glial fibrillary acidic protein
(GFAP), a marker of reactive astrogliosis (Eide and Hansson,
2020). Astrogliosis decreases compliance, which may in turn
contribute to altered CSF dynamics in NPH (Lu et al., 2011;
Fattahi et al., 2016). Both the degree of fibrin extravasation and
astrogliosis correlated with reduced expression of aquaporin-4
transporters on perivascular astrocytic endfeet in biopsies of
NPH patients, suggesting a link with glymphatic function
(Eide and Hansson, 2018, 2020).

BBB dysfunction in iNPH may be related to deficient
CBF. In a murine model of chronic cerebral hypoperfusion,
hypoxia-induced injury to pericytes lead to BBB disruption
(Liu et al., 2019). Though not tested in iNPH, a similar
mechanism may explain pericyte injury and subsequent loss
of BBB integrity. Pericyte dysfunction and other BBB insults
have been demonstrated through means such as inflammation,
hyperglycemia, and ischemia in Alzheimer’s disease, traumatic
brain injury, and other disorders (Erickson and Banks, 2013).

CONCLUSIONS

From the initial insult leading to hydrocephalus and onset
of clinical manifestations to the irreversible changes occurring
later in untreated cases, the cerebrovasculature is closely tied
to the pathogenesis of iNPH. Relevant mechanisms include
diminished CBF, glymphatic disruption, and changes to the
BBB. Additional work is needed to further characterize how
these pathophysiologic mechanisms inter-relate. Further, future
studies should address how these pathologic features are reversed
with shunting, which will provide insights into both iNPH and
other neurodegenerative conditions. Answers to these questions
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will shed light on improving clinical responses and enhancing the
durability of shunting.
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