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Cavity quantum electrodynamics describes the fundamental interactions between light  
and matter, and how they can be controlled by shaping the local environment. For example, 
optical microcavities allow high-efficiency detection and manipulation of single atoms. In this 
regime, fluctuations of atom number are on the order of the mean number, which can lead to 
signal fluctuations in excess of the noise on the incident probe field. Here we demonstrate, 
however, that nonlinearities and multi-atom statistics can together serve to suppress the effects 
of atomic fluctuations when making local density measurements on clouds of cold atoms.  
We measure atom densities below 1 per cavity mode volume near the photon shot-noise limit. 
This is in direct contrast to previous experiments where fluctuations in atom number contribute 
significantly to the noise. Atom detection is shown to be fast and efficient, reaching fidelities  
in excess of 97% after 10 µs and 99.9% after 30 µs. 
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High-finesse optical resonators can improve the sensitivity 
of atom detection by increasing the lifetime of photons and 
confining them to a small volume1. Long photon lifetime, 

controlled by cavity length and mirror reflectivity, increases the 
effective optical thickness of an intracavity sample by a factor on the 
order of the finesse F1. Small mode volume, which depends only 
on the geometry of the resonator, increases the energy density per 
photon and, therefore, the Einstein coefficients describing transition 
rates. Thus, the spontaneous emission rate of an atom is increased 
by coupling it to a resonant cavity2. Importantly, all the extra pho-
tons are emitted into the cavity mode, making it possible to detect 
fluorescence even at very low atom density. For sufficiently small 
mode volumes, a single cavity photon becomes intense enough to 
saturate the atomic transition. In this regime, vacuum fluctuations 
modify the spectral properties of the coupled atom-cavity system3 
in such a way as to allow detection at the single-atom level4–7.

Recently, there has been growing interest in cold-atom experi-
ments with atomic density distributions extending throughout or 
beyond the range of the cavity field8–12. For multiple atoms, the 
radiative behaviour can be coherent13,14. Although the gas may be 
dilute, the common coupling to the electromagnetic field produces 
effective long-range interactions between the atoms that can lead to 
self-organization15,16 and collective motion17, as well as super-radi-
ant Rayleigh scattering and collective atomic recoil lasing18. Recently 
experimenters have exploited these effects to realize a quantum 
phase transition from a Bose–Einstein condensate to a supersolid19.

A central parameter in describing cavity-enhanced detection is 
the dimensionless single-atom cooperativity20, C1 = g2/(2κγ), where 
2g is the single-photon Rabi frequency at the peak of the cavity 
intensity distribution, 2κ is the cavity linewidth (full width at half 
maximum), and 2γ is the natural atomic linewidth. The cooperativ-
ity determines both the effect of a single atom on the cavity spec-
trum, and the rate of fluorescence into the cavity.

In the case of multiple atoms, the cooperativity is generalized by 
defining CN = C1Neff, where the effective atom number is (ref. 21) 
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with ρ(r) being the atomic density, L the cavity length, and 
χ(r) = sin(2πz/λ)exp[ − (x2 + y2)/w2] the cavity field mode function 
(λ is the wavelength). It is important to note that Neff is a random 
variable, generally distinct from its mean value 〈Neff〉. When the atom 
cloud is much larger than the cavity mode volume Ncav = πw2L/4, the 
mean atom density is approximately uniform over the interaction 
region, and 〈Neff〉 ≈ ρ(0)Vcav. At low densities, single-atom physics 
dominates, whereas, at higher densities, multi-atom effects become 
important 21.

Here we perform local density measurements on large dilute 
clouds of atoms in the crossover regime, paying particular attention 
to signal fluctuations. We show that even at densities on the order of 
one atom per cavity mode volume, the effects of atomic shot noise 
are heavily suppressed. We then compare our results with state-of-
the-art experiments on single trapped atoms, demonstrating a fast 
detection time and high fidelity.

Results
Optical noise suppression. Our apparatus, shown schematically 
in Figure 1, has been described in detail in refs 7,22 (Methods). 
We detect atoms either by measuring changes in the intensity of 
a probe beam reflected from the cavity; or detecting fluorescence 
when exciting the atoms uniformly with a laser beam propagating 
transverse to the cavity axis. We refer to these simply as reflection 
and fluorescence measurements, respectively. If atoms are present 
and the cavity and lasers are resonant with the free-space atomic 
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transition, then the steady-state rate of photons travelling from the 
cavity to the detector is (ref. 23) 
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where Jin is the number of incident probe photons per second and b2 
characterizes the reflection fringe contrast in the absence of atoms. 
The cooperativities for reflection (CN) and fluorescence (CN′) are not 
generally the same because they depend on the polarization of the 
probe light and the excitation light, respectively24 (see Methods). In 
fluorescence, s = 1/2(Ω/γ)2 is the free-space saturation parameter for 
excitation driven at a Rabi frequency Ω, whereas ξ is the probability 
for an intracavity photon to pass from the cavity into the fibre. 
Finally, we have used the facts that (g/κ)4  1, and that the atomic 
excited state fraction is small in our reflection measurements. For 
this work, g/(2π) = 98.4(1.6) MHz, κ/(2π) = 5200(100) MHz, and 
γ/(2π) = 3 MHz, giving C1 = 0.307(11).

It is important to note that Jout as described by equation (2) is only  
linear in atom density for small values of the cooperativity; for 
reflection measurements Jout saturates with increasing CN, while for 
fluorescence Jout reaches a maximum when C′N = 1/2(1 + s)1/2 and 
then rolls over and vanishes. We will show that this allows us to 
operate in a regime where we remain sensitive to variations in mean 
atomic density while damping out the effects of large instantaneous 
fluctuations.

Figure 2a shows the results of repeated reflection measurements 
of clouds falling through the cavity. A circularly polarized probe 
drives the atomic cycling transition, maximizing the atom-field 
coupling strength. At early and late times, there are no atoms in the 
cavity, so the reflected light is at its minimum value, determined by 
the incident probe power and the empty cavity fringe contrast. The 
reflected intensity rises when there are atoms in the cavity. These 
experimental runs are averaged in Figure 2b, which also shows a fit to 
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Figure 1 | Schematic of experiment. (not to scale) Clouds of 87Rb atoms 
are laser cooled and dropped through a high-finesse optical microcavity. In 
the experiment, the atomic density is approximately Gaussian with a width 
three orders of magnitude larger than the cavity mode waist, allowing 
us to make a local density approximation for the atoms. The system is 
probed either by monitoring the cavity reflection, with Jin incident photons 
per second, or by observing fluorescence into the cavity mode induced 
by a laser beam with Rabi frequency Ω (and Jin = 0). In either case the 
output stream of Jout photons per second is detected using a single photon 
counting module.
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the evolution expected from equation (2) with a peak 〈Neff〉 = 1.06(4), 
corresponding to only 4.9(2)×108 atoms cm − 3. For reference, the 
dashed line shows the expected reflection with a single atom maxi-
mally coupled to the cavity mode. Note that the 10 ms width of  
the curve reflects the size of the cloud, which is determined by 
its temperature. By contrast, the typical transit time for a single  
atom passing through the width of the cavity mode is ~14 µs, so 
the cloud is very large compared with the extent of the cavity field.  
Individual transits are revealed in Figure 2c, where we show the 
measured second-order (intensity) correlation, given by 

g k t k t
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where k is the number of photons counted during a time window 
centred on t, and τ is the relative delay between windows. Overbars 
denote an average over t using a 500 µs segment of data, through-
out which Neff is approximately constant. The solid red curve shows  
the expectation for a single atom crossing the cavity according to 
equation (2). The only free parameter is the amplitude of the peak,  
which accounts for having more than one atom pass through the 
cavity during the trace, but with not all atoms optimally coupled.  
In Figure 2d, we plot as a function of time the variance of the photon 
counts divided by the mean, evaluated over the 300 repetitions of the 
experiment. Although one might have expected to see an increased 
variance with the arrival of the atom cloud, there is, in fact, no sign 
of such an increase. We return to this point below, when we see  
similarly low noise levels in our fluorescence measurements.

(3)(3)

Figure 3a shows the fluorescence signal. As the cloud falls 
through the cavity we switch on a resonant excitation beam whose 
(downward) propagation direction and polarization are both per-
pendicular to the cavity axis. The photon-count rate immediately 
jumps to a high level as a result of the laser-induced fluorescence. 
Independent reflection measurements determine that the initial 
〈Neff〉 = 1.24(5). Although the atom number is nearly constant over 
several ms during the reflection measurements, the signal here 
decays roughly exponentially with a time constant of order 100 µs. 
This is because the atoms are heated and pushed out of the cavity by 
the excitation light24, which is much more intense than the probe 
light used in reflection measurements. In Figure 3b, we plot how the 
variance of the fluorescence count over 250 repetitions varies with 
the mean number of counts. Once again, we see that the fluctuations 
are very near the photon shot-noise limit, which is indicated by the 
solid line.

We reiterate that these results are in direct contrast to similar 
experiments operating in the linear regime, that is, when the pho-
ton counts are strictly proportional to atom number or density. For 
example, we can compare our results in Figure 3b with Figure 2b 
of ref. 25, which used micro-optics to detect atoms without a cav-
ity. They observed that the ratio of variance to mean doubled in 
the presence of atoms. To calculate the noise level for fluorescence 
detection in the linear regime, one can apply Mandel’s theory as 
described in ref. 26. Atomic motion is negligible over a single 1 µs 
time bin, so we consider each bin to have a fixed number of atoms 
N, producing a Poissonian photon count k with a mean of α photons 
per atom (the background count is negligible compared with α). 
As N fluctuates over repeated experiments, the photon counts obey 
Var(k)/〈k〉 = 1 + αVar(N)/〈N〉. If atoms are positioned randomly with 
a uniform probability distribution, the number of atoms in a given 
volume follows a Poisson distribution and Var(k)/〈k〉 = 1 + α, inde-
pendent of 〈N〉. In our experiment, the yield of fluorescence photons 
for one (hypothetical, maximally coupled) atom is 0.42(2) in 1 µs. 
Clearly this theory does not describe our experiment, whose meas-
ured value of [Var(k)/〈k〉 − 1] = 0.09(3) is much smaller.

Our measurements require a different analysis, as the assumption 
of linearity is violated in equation (2) and the variable Neff should 
be considered rather than N. We proceed as follows. Our experi-
ment operates with mean intracavity photon number 〈n〉 ≡ 〈a†a〉 1, 
and κ − 1  g − 1, meaning excitations of the cavity field result in  
immediate emission of photons rather than reabsorption by atoms. 
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Figure 2 | Reflection measurements. (a) Detected photon counts for 300 
identical experiments. The atoms are released at 39.5 ms. Counts increase 
from blue to red. Data were taken with 2 µs resolution, and the image was 
then re-binned to 1 ms. (b) The data in red are averages over the 300 drops 
shown in (a), whereas the white curve is a fit to equation (2) assuming a 
Gaussian dependence of CN on time; the dashed blue line gives the value 
expected from a single atom maximally coupled to the cavity mode.  
(c) Second-order correlation g(2)(τ) as a function of time delay τ. Red points 
are from data with 〈Neff〉 = 0.225(17), and blue points are taken without 
atoms; error bars show the standard error of the mean at each delay time 
from 50 trials. The solid curves are the theoretical expectations. (d) Ratio 
of ensemble variance to mean versus time. The red curve is calculated 
from the raw data in (a) for each 2 µs time bin, and then a 100 µs running 
average is applied to smooth the result; the white line  
is the photon shot-noise level.
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Figure 3 | Fluorescence measurements. (a) Fluorescence pulse, averaged 
over 250 drops. The exciting laser is pulsed on after the peak atomic 
density has passed through the cavity. At the start of the pulse, shown in 
detail in the inset, 〈Neff〉 = 1.24(5). This is slightly larger than in Figure 2 due 
to a higher atom number in the initial MOT. (b) Variance of fluorescence 
counts as a function of mean. Red circles are from the data used in (a), and 
blue triangles are from a set where the drive beam is pulsed on at a later 
time in the drop, with initial 〈Neff〉 = 0.50(2). The green line is the photon 
shot-noise limit. The grey box corresponds to the inset in (a).
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Over a sufficiently short time T, the probability of emitting a photon 
is just 2κ〈a†a〉T. Then we have 

Var Var( ) 1 2 (( ))k
k

T n
n〈 〉

= +
〈〈 〉〉

k xe

where ε is the total collection efficiency from fibre to detector, and 
T is assumed to be much longer than any correlation times for the 
fluorescence (for example, 1/γ, κ/g2). Double brackets denote statis-
tics taken over the conditional distribution of n given a fixed Neff, 
and the distribution of Neff itself. We obtain n through the master 
equation for the density matrix, and use the results of ref. 21 for 
the probability density for Neff (Methods). The value of 〈k〉 obtained 
in this way is almost identical to what one obtains by simply  
setting CN = C1〈Neff〉 in equation (2). For the fluctuations, we obtain  
Var(k)/〈k〉 = 1.095(8), in excellent agreement with our observed 
value. A similar treatment of the reflection measurements in  
(Fig. 2) gives Var(k)/〈k〉 = 1.005(2), consistent with the value 1.002(4) 
from the data. Note that for the two types of measurement, the  
ratio Var(Neff)/〈Neff〉 = 3/8 is the same, but the nonlinearity of Jout is 
quite different. Calculations for both types of measurement, with 
the same 〈Neff〉 and Jin adjusted to have equal numbers of signal 
photons, show that the noise suppression is still much stronger  
for reflection. This stems from the saturation of the reflection signal 
at large instantaneous Neff versus the roll-over of the fluorescence. 
For both measurements, we conclude that the statistics of Neff and 
the nonlinearity of the interactions are jointly responsible for the 
strong optical noise suppression that we observe.

Discrete detection. Our measurements do not involve trapping 
single atoms within the cavity mode. However, we have shown 
that our signal fluctuations are near the photon shot noise limit, 
effectively allowing us to neglect fluctuations in Neff. This allows a 
direct comparison between our measurements on falling clouds 
and experiments where noise in the atom number is inherently 
absent due to preparation of single trapped atoms. In this context, 
we discuss the discrete detection problem, for example, distinguish-
ing between hyperfine ground states. Because the detection linew-
idth is three orders of magnitude smaller than the level splitting, 
the |F = 1〉 ground state is effectively dark in our system24. When 
atom number fluctuations are suppressed, discrete detection with 
〈Neff〉 = 1 is thus equivalent to the problem of determining whether a 
single trapped atom fluoresces or not, which is relevant for quantum 
information processing27,28. We therefore take detection of 〈Neff〉 = 1 
as the benchmark for comparison with other experiments. From 
our fluorescence measurements at 〈Neff〉 = 1.24(5), we extrapolate 
a mean photon count rate at 〈Neff〉 = 1 of S1 = 420(20) ms − 1. Table 1 
shows that this is high in comparison with other atom detection  
experiments. Following ref. 26, we could define the single-atom effi-
ciency of the detector as η = 1 − exp( − S1T). This is the probability of 
counting   1 photon during the measurement time T, when an atom 
is present and assuming Poissonian photon counts with negligible 
background. This rises rapidly with our high count rate, reaching  
98.5(3)% in only 10 µs.

For most applications, however, it is not enough to detect the 
bright state (logical 1) efficiently; the detector must also be able to 
identify the dark state (logical 0) correctly. A more useful figure of 
merit is thus the fidelity, which is the probability of a correct meas-
urement result. Let us take the detection of   K photons as indicat-
ing logical 1, and  < K as logical 0. Then, for Poissonian distributions, 
the single-photon fidelity is FK = 1 = (1 − P)e − BT + P[1 − e − (S + B)T], where 
B is the background photon counting rate and P is the probability 
that the state being measured is logical 1. The first (second) term is 
the probability of having logical 0 (1) and identifying it correctly. 
The four logical possibilities are shown schematically in (Fig. 4a). 
The red curve in (Fig. 4b) shows the expected value of FK = 1 in our 

(4)(4)

experiment over a data set for which 〈Neff〉 = 1.24 and P = 1/2. The 
fidelity rises quickly as the detection of logical 1 becomes increas-
ingly successful but eventually falls, due to false positives from the 
background. Superimposed on this curve are our measured values of 
the fidelity versus detection time, which agree well with our expec-
tations. In general, the maximum fidelity F1max increases with S/B, 
reaching its peak at a time T1max proportional to 1/S for fixed S/B.

Table 1 compares our values of F1max and T1max with those for 
other atom detection experiments. The highest fidelity by far is that 
of ref. 27, whereas our high signal rates result in the shortest detec-
tion time. It is worth noting that the measurements in refs 27,28 
are non-destructive, whereas the rest are carried out on resonance. 
Lossless fluorescence detection of single trapped atoms in free space 
has been observed with 95% (98.6%) accuracy in 0.3 ms (1.5 ms) 31,32.  
Additionally, recent refinements to our cavity manufacturing pro
cess have increased the finesse by two orders of magnitude 33. This 
suggests the possibility of single-atom strong coupling with g>(κ,γ) 
and C1 in the hundreds, allowing non-destructive measurements in 
our system as well.

A simple way to improve the fidelity is to increase the detection 
threshold K. This leads to the general result 
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Figure 4 | Detection fidelity. (a) Calculating the fidelity. Given two atomic 
states there are four possible outcomes of the experiment. Columns (rows) 
correspond to the actual (identified) state. In each box, the upper quantity 
is the probability to have the state, and the lower is the probability to make 
the identification; the total probability for the corresponding outcome is the 
product of the two. Correct identifications are in green (diagonal), and their 
sum equals the fidelity as given by equation (5) in the text. (b) Detection 
fidelity FK(T) for K = 1, 2, and 3 counts (red , blue ∆, and green ). Points 
are from 500 measurements with p = 1/2 and curves show equation (5), 
assuming Poisson distributions with mean signal and background count 
rates obtained from the data at the beginning of the pulse (the width of the 
curves reflects the statistical uncertainties in these rates). The steps in the 
data are in units of the minimum resolution of 0.2% for 500 trials.

Table 1 | Comparison with other experiments.

Ref.  S1  B  F1max, T1max F2max

 26 5.6 0.28 90.9,544 97.5
 25 36 0.311 97.6,132 99.8
 29 54.5 2.18 92.2,60 98.1
 30 0.13 0.05 72.1,9853 80.5
 27 94 0.05 99.773,80 99.99982
 28 190 1.4 97.87,26 99.85
This work 420(20) 3.84(6) 97.46(13), 11.2(4) 99.79(2)

Rates are in cts/ms, fidelities in per cent, and Tlmax in µs. Note that TKmax=KT1max for p=1/2. Refs 
26,29,27,28 use cavities, while refs 25,30 use optical waveguides without cavities. Refs 27,28 
describe non-destructive detection.
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where Γ[K,a] is the incomplete gamma function. These fidelities are 
plotted in Figure 4 versus measurement time T for the cases of K = 2 
and 3. They peak at 99.79 and 99.98% when T = 22.4 µs and 33.6 µs, 
respectively. The data points again show that our measurements are 
consistent with expectations. Similar methods were exploited in ref. 
29, where two photons were required within a short-time window to 
register a logical 1 result. With a 1-µs detection window they found 
that 99.719(6)% of observed 2-photon coincidences were due to 
atoms and described this percentage as the fidelity. In that experi-
ment, however, there was only a 0.2% chance that the logical 1 state 
would produce a 2-photon count in the detection window. Thus, 
although the detection confidence was high, the efficiency was low, 
resulting in a low fidelity in the usual sense that we adopt here.

Discussion
We have characterized a cavity-enhanced atom detector with low 
noise and high spatial resolution (set by the small cavity mode 
waist). We have shown that the nonlinear, multi-atom nature of the 
interactions results in a strong suppression of signal noise due to 
atomic fluctuations. Our detector is fast and efficient, and suitable 
for detecting dilute samples below the level of a single atom per 
mode volume. Although we have focused here on measurements of 
low atomic densities, the dynamic range can be extended upwards 
simply by detuning the cavity and/or the probe field.

We envision a variety of applications for making local density 
measurements on cold atom clouds and quantum gases. For exam-
ple, small impurities can be detected for studies of Fermi polaron 
physics34 and quantum transport35. Cavity-enhanced detection also 
allows a greater collection efficiency for scattered photons than in 
conventional high-numerical-aperture (NA) optical systems20. The 
maximum fraction of photons which can be captured in such sys-
tems is approximately NA2/4, which even for the best available lenses 
is an order of magnitude smaller than the fraction 2CN/(1 + 2CN) that  
can be captured by a cavity with CN~1. This could improve the speed 
and efficiency of atom trap trace analysis, where laser-induced fluo-
rescence is used to detect radioactive atoms for dating environmen-
tal samples over time scales not accessible with 14C (ref. 36). Finally, 
the compatibility of our detector with atom chips makes it attrac-
tive for studying quantum gases in the Tonks-Girardeau regime37. 
Producing one-dimensional gases requires trapping potentials of 
extremely high aspect ratio, as are typical with atom chips, and 
strong interactions require low densities which can be detected 
locally very quickly with our cavity.

Methods
Experiment. We work with 87Rb, near the D2 spectral lines at λ = 780 nm. Our 
optical microcavity is formed between the end of a single-mode optical fibre and 
a spherical surface microfabricated in silicon, both being coated with multi-
layer dielectric mirrors. The resulting plano-concave cavity mode has a length 
of L = 139(1)µm and a waist whose e − 1 field radius is w = 4.46(7)µm. To our 
knowledge, the only Fabry–Perot cavity with a smaller mode waist is the all-fibre 
design of ref. 12 (w = 3.9 µm). Because C1∝F/w2, a small waist makes it possible to 
detect single atoms using a cavity of relatively modest finesse. This relaxes the usual 
need for very high mirror quality and reduces the sensitivity to noise in the cavity 
length. As stated in the main text, g/(2π) = 98.4(1.6) MHz, κ/(2π) = 5200(100) MHz, 
and γ/(2π) = 3 MHz, giving C1 = 0.307(11). We begin each experimental sequence by 
cooling and trapping ~2×107 87Rb atoms in a magneto-optical trap formed above 
a mirror38, followed by sub-Doppler cooling to 16 µK in optical molasses. We then 
release the atoms, which fall through a hole in the mirror and pass through a cavity 
mounted immediately below.

Master equation. The Hamiltonian describing our system is (ћ = 1) 

H i a a i g a
j

N

j j j= − − − +



 −
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
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where we have used the rotating-wave approximation and neglected atomic 
centre-of-mass motion. The operator a annihilates a cavity photon and σj = |g〉〈e| 
lowers the jth atom from the excited state |e〉 to ground state |g〉, and the pump 
strength η∝Jin

1/2 (ref. 23). We have expressed H in a frame rotating with the angular 

(6)(6)

frequency of the laser, and used the fact that the cavity and fields are on resonance 
with the free-space |g〉→|e〉 transition. The system evolves in time according to the 
master equation for the density matrix ρ 

	  
d
dt

i H A
j

N

jr r r= − −
=
∑[ , ] [ ]

0
D

where D A A A A A A Aj j j j j j j[ ] ( )r r r r= + −1
2

† † †, A0≡(2κ)1/2a, and Aj>0≡(2γ)1/2σj.
For reflection measurements, under the assumption 〈a†a〉  1 and with 

〈σj
†σj〉  1 one obtains a coherent intracavity field with amplitude |α| = 〈a†a〉1/2 

obeying 

a h
k

=
+

1
1 2CN

The total field reflected from the cavity comprises a component reflected immedi-
ately from the input/ouput mirror that interferes with the fraction of the intracavity 
field (8) being transmitted back out. This leads to equation (2) for reflection.

For fluorescence, we ignore correlations between atoms, which are distributed 
randomly, and consider a single atom with coupling gNeff

1 2/  experiencing a Rabi 
frequency Ω from the driving laser. The excited state population is 

〈 〉 =
+

s s
g

† 1
2

2
2

2

2 2
Ω

Ω
/

/tot

where 2γtot is the total radiation rate, and we have assumed that the external 
field is much stronger than the cavity field |Ω|2|g|n1/2. From the Purcell effect 
γtot = (1 + 2C′N)γ, with a fraction 2C′N/(1 + 2C′N) going into the cavity mode2. With 
the assumptions and definitions in the text, we recover equation (2). To determine 
C′N, we solved the master equation for a toy model including all 12 of the Zeeman 
substates of the F = 2 ground and F′ = 3 excited states, but neglecting the cavity. The 
equilibrium excited-state populations were determined and the corresponding total 
decay rate of σ ±  transitions was calculated (the quantization axis was taken along 
the cavity axis, so π transitions did not contribute). The calculated dependence of 
Jout on the polarization of the drive laser agreed well with experimental results24. 
The ratio C′N/CN has a weak dependence on s. In this work, C′N/CN = 0.53(2). The 
validity of all our results and conclusions were supported by direct numerical 
solution of equations (6) and (7), as well as quantum jump simulations39–41. For our 
parameters, the intracavity field is indistinguishable from a coherent state for any 
fixed arrangement of atoms and either type of detection.

Probability density for Neff . Carmichael and Sanders derived an expression  
for the probability density P(G)dG for the collective dipole G N≡ eff

1 2/  in ref. 21, 
focusing on the case of travelling-wave cavities. The distribution depends on  
〈Neff〉 and must generally be obtained numerically. Taking into account our  
standing wave geometry, and in the limit 〈Neff〉1, one can obtain an approximate 
distribution for G. Transforming to Neff gives 

P N N N N N
N

N( ) exp ( )
eff eff

eff eff

eff
effd d= − − 〈 〉

〈 〉










4
3

2

where N is a normalization factor that approaches 2/(3π〈Neff〉)1/2 as Neff→. Note 
that in this limit, one obtains by inspection Var(Neff)/〈Neff〉 = 3/8, which holds for all 
〈Neff〉 in a Fabry-Perot cavity, highlighting the difference between Neff and the total 
number of atoms in a small volume around the cavity. We have used the full nume
rical distribution for analysing our results with 〈Neff〉 = 1.24(5). However, we note 
that even in this regime the approximation (10) predicts Var(k)/〈k〉 = 1.081(6) for 
our fluorescence measurements, which is still in agreement with our observations. 
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