
w
w
w
.t
he

-in
no

va
tio

n.
or
g

REPORT
Improving risk stratification for 2022 European LeukemiaNet favorable-
risk patients with acute myeloid leukemia
Kellie J. Archer,1,* Han Fu,2 Krzysztof Mrózek,3 Deedra Nicolet,3,4 Alice S. Mims,3 Geoffrey L. Uy,5 Wendy Stock,6 John C. Byrd,7 Wolfgang Hiddemann,8

Klaus H. Metzeler,9 Christian Rausch,8 Utz Krug,10 Cristina Sauerland,11 Dennis Görlich,11 Wolfgang E. Berdel,12 Bernhard J. Woermann,13 Jan Braess,9

Karsten Spiekermann,8 Tobias Herold,8 and Ann-Kathrin Eisfeld3

*Correspondence: archer.43@osu.edu

Received: March 25, 2024; Accepted: October 17, 2024; Published Online: October 21, 2024; https://doi.org/10.1016/j.xinn.2024.100719

ª 2024 The Author(s). Published by Elsevier Inc. on behalf of Youth Innovation Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- Assignment of AML patients to the 2022 ELN Favorable genetic-risk group has important clinical implications.

- Using our training set our model identified three subgroups that differed significantly by clinical outcome.

- We validated our model using an independent test set which demonstrated excellent performance.

- The identified transcripts may usefully differentiate patient subgroups and serve as a prognostic signature.

- Our novel regularized mixture cure model can be used to fit models to high-dimensional covariate spaces.
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Assignment of patients diagnosed with acute myeloid leukemia (AML) to the
2022 European LeukemiaNet (ELN) favorable genetic risk group has impor-
tant clinical implications, as allogeneic stem cell transplantation in first
complete remission (CR) is not advised due to a relatively good outcome of
patients receiving chemotherapy alone and transplant-associated mortality.
However, not all favorable genetic risk patients experience long-term
relapse-free survival (RFS), making recognition of patients who would most
likely be cured of high importance. We analyzed 297 patients aged<60 years
with de novoAML classified as 2022 ELN favorable genetic risk who achieved
a CR and had RNA sequencing (RNA-seq) and gene mutation data from diag-
nostic samples available (Alliance trial A152010). To identify prognostically
relevant transcripts that can distinguish patients cured frompatients suscep-
tible to lower or higher riskof relapseor death,wefit a regularizedmixturecure
model (MCM) where RNA-seq expression values were our candidate covari-
ates. To validate the identified transcripts, we analyzed 75 patients with de
novo AML aged <60 years included in the 2022 ELN favorable genetic risk
group who achieved a CR in an independent test set from Gene Expression
Omnibus (GSE37642). Our MCM identified 145 transcripts associated with
cure or long-term RFS and 149 transcripts associated with latency or
shorter-term time to relapse. The area under the curve and C-statistic were,
respectively, 0.946 and 0.856 for our training set and 0.877 and 0.857 for
our test set. Our results suggest that the favorable risk group includes distinct
transcriptionally defined subgroupswithdifferent biological properties,which
may be useful for refining this genetic risk category.
INTRODUCTION
The European LeukemiaNet (ELN) genetic risk classification was updated in

2022 by an international expert panel and stratifies patients with acute myeloid
leukemia (AML) into three genetic risk groups: favorable, intermediate, and
adverse.1 Evaluation of these genetic risk groups using large cohorts of patients
with AML demonstrated that, generally, they are associated with achievement of
complete remission (CR), relapse rates, duration of disease-free survival, and
overall survival (OS).2,3 However, for some endpoints, clinical outcome did not
differ between genetic risk groups in selected subsets of patients; for example,
African Americans, Hispanics, and patients aged 60 years and older.2 Moreover,
the 2022 ELN classification conferred slightly worse accuracy in predicting OS
than the 2017 ELN one.3 Therefore, performance of the 2022 ELN genetic risk
groups in predicting clinical outcomes is still suboptimal and may benefit from
inclusion of thus far unrecognized, prognostically significant features.

The Cox proportional hazards (PH)model is the most frequently usedmethod
for assessing the effect of a covariate on a time-to-event outcome, such as OS or
relapse-free survival (RFS), and assumes independent time-to-event, non-infor-
ll
mative censoring, a constant hazard ratio over time, and that all subjects are
at risk of the event of interest throughout the observation period. Various groups
have shown that advances in therapy for leukemia and myelodysplastic syn-
drome have increasedOS rates.4,5 Thus, observed increases in long-termsurvival
of patients with AML, especially those in the ELN favorable genetic risk group,
indicate that a non-negligible subset of treated patients are cured; in other words,
experience long-term RFS. Therefore, when a cured subset comprises the data-
set, the Cox PH assumption that all subjects are at risk of the event of interest
throughout the observation period and the assumption that there is a constant
hazard ratio are violated.6 Additionally, estimating the effects of covariates on
both the probability of cure and the time to event for patients susceptible to
the event (i.e., relapse or death; these patients are hereafter referred to as suscep-
tible) could be informative7 but cannot be estimated using a Cox PH model.8

When a cure fraction exists, mixture cure models should be used instead.
We posit that, due to substantial differences between ELN genetic risk and age

groups, development of signatures within homogeneous subgroups of AML is
warranted. We recently developed a high-dimensional mixture cure model
(MCM) that can be fit when the number of predictors (transcripts) exceeds the
number of samples.9 Because of genetic heterogeneity of the 2022 ELN favor-
able genetic risk group, here we used RNA sequencing (RNA-seq) on a well-char-
acterized cohort of 2022 ELN favorable genetic risk patients with long-term
follow-up and fit our novel high-dimensional MCM to identify prognostically rele-
vant transcripts that could potentially better distinguish subgroups of these pa-
tients with disparate outcomes. Subsequently, we assessed whether the identi-
fied genes were prognostically relevant using an independent test set.

RESULTS
Baseline demographic and clinical characteristics of the 297 patients in our

training set and 75 patients in our test set appear in Table 1. For our training
set, patients alive at their last follow-up were followed an average of 9.3 years
(range, 7.3 months to 21.5 years), whereas the estimated time at which 95%
of patients should experience relapse or death was 5.2 years. These estimates,
together with the long plateau in the RFS curve (Figure 1A) and the rejected
null hypothesis of insufficient follow-up (p < 0.0001), indicate that the training
set had sufficient follow-up. The estimated proportion of cure was 40.3%, which
is significantly larger than 0when using either the non-parametric (p = 0.0004) or
parametric test (p < 0.0001). The training and test sets differed only by percent-
age of blasts in the bone marrow (p < 0.001) and frequency of WT1 mutations
(p = 0.006).
When analyzing the RNA-seq data for our training set, there were originally

23,549 transcripts. After filtering to remove transcripts with lower and less vari-
able expression values, 7,993 transcripts remained for fitting a penalized Weibull
MCM. The MCM included 145 transcripts in the incidence portion of the model,
The Innovation 5(6): 100719, November 4, 2024 1

mailto:archer.43@osu.edu
https://doi.org/10.1016/j.xinn.2024.100719
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xinn.2024.100719&domain=pdf


Table 1. Demographic, clinical, and gene mutation data in the training (Alliance) and
test (AMLCG) sets

Characteristica
Training set
(n = 297)

Test set
(n = 75) p Value

Age, years 44 (17–59) 42 (18–59) 0.570

Sex 0.368

Female 133 (44.8) 38 (50.7)

Male 164 (55.2) 37 (49.3)

Hemoglobin, g/dL 9.2 (2.3–25.1) 8.85 (3.5–13.4) 0.365

Platelet count, 3109/L 47 (7–433) 40 (4–301) 0.072

White blood cell
count, 3109/L

26.75 (0.40–
303.60)

24.05 (1.10–
316.0)

0.487

Bone marrow blasts, % 63 (2–97) 75 (20–100) <0.001

Blood blasts, % 54 (0–97) N/A N/A

DNMT3A 0.524

Mutated 63 (21.2) 13 (17.3)

Wild-type 234 (78.8) 62 (82.7)

NRAS 0.092

Mutated 63 (21.2) 23 (30.7)

Wild-type 234 (78.8) 52 (69.3)

SF3B1 0.588

Mutated 5 (1.7) 0

Wild-type 292 (98.3) 75 (100.0)

IDH1 0.598

Mutated 18 (6.1) 6 (8.0)

Wild-type 279 (93.9) 69 (92.0)

CEBPAbzip 1.00

Mutated 58 (19.5) 14 (18.7)

Wild-type 239 (80.5) 61 (81.3)

GATA2 0.319

Mutated 23 (7.7) 3 (4.0)

Wild-type 274 (92.3) 72 (96.0)

TET2 0.482

Mutated 23 (7.7) 8 (10.7)

Wild-type 274 (92.3) 67 (89.3)

NPM1 0.150

Mutated 132 (44.4) 26 (34.7)

Wild-type 165 (55.6) 49 (65.3)

WT1 0.006

Mutated 17 (5.7) 12 (16.0) –

Wild-type 280 (94.3) 63 (84.0)

PTPN11 0.835

Mutated 32 (10.8) 7 (9.3)

Wild-type 265 (89.2) 68 (90.7)

FLT3-TKD 0.589

Table 1. Continued

Characteristica
Training set
(n = 297)

Test set
(n = 75) p Value

Present 43 (14.6) 13 (17.3)

Absent 252 (85.4) 62 (82.7)

FLT3-ITD 0.107

Present 10 (3.4) 6 (8.0)

Absent 284 (96.6) 69 (92.0)

IDH2 0.556

Mutated 14 (4.7) 5 (6.7)

Wild-type 283 (95.3) 70 (93.3)

MLL-PTD 0.097

Present 3 (4.8) 0

Absent 60 (95.2) 73 (100.0)

TP53 1.00

Mutated 1 (0.3) 0

Wild-type 296 (99.7) 75 (100.0)

SRSF2 1.00

Mutated 3 (1.0) 1 (1.3)

Wild-type 292 (99.0) 74 (98.7)

ASXL1 0.265

Mutated 3 (1.0) 2 (2.7)

Wild-type 294 (99.0) 73 (97.3)

RUNX1 1.00

Mutated 2 (0.7) 0

Wild-type 295 (99.3) 75 (100.0)

BCOR 1.00

Mutated 3 (1.0) 1 (1.3)

Wild-type 294 (99.0) 74 (98.7)

aContinuous variables were summarized by reporting the median (range), while cate-
gorical variables were summarized by reporting frequency (percentage).
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which are associated with long-term cure (Table S1), while 149 transcripts were
included in the latency portion of themodel,which areassociatedwith short-term
time to relapse (Table S2), with seven transcripts appearing in both portions of
the model (SPRYD7, ZNF714, KLF11, NR1D2, EOLA1, RNU4-1, and CFAP45). As
expected for the training set, the Kaplan-Meier curves for patients predicted to
be cured versus those predicted to be susceptible (Figure 1B) and for patients
predicted to be susceptible with lower versus higher risk of relapse or death (Fig-
ure 1C) werewell separated. At 5 years, theMCMsignature yielded an area under
the receiver operating characteristic curve (AUC) of 0.946 and a C-statistic of
0.856, indicating good predictive capability of the selected transcripts. Interest-
ingly, when examining baseline demographics and clinical characteristics among
the three resultingMCMrisk groups in the training set (namely, cured, susceptible
with lower risk, and susceptible with higher risk), only frequency of NPM1muta-
tion (p = 0.014) differed significantly (Table 2).
Patients in the test set were diagnosed with AMLmore recently, and their me-

dian follow-up among patients alive at their last follow-up was 8.6 years (range,
1.0–12.6 years). While the Kaplan-Meier curve does not necessarily show that a
cure fraction is present, because this patient cohort consists of younger ELN
favorable genetic risk patients with gene expression data available, we consid-
ered it a useful proxy test set. When mapping the 287 unique transcripts from
our training setMCM signature to the Affymetrix GeneChip test set for validation,
www.cell.com/the-innovation
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Figure 1. Outcomes of patients with AML in the training set (A) Kaplan-Meier curve for RFS. (B) Kaplan-Meier curves for RFS of patients predicted to be cured and those susceptible
to relapse or death using our MCM signature (p < 0.0001, log rank test). (C) Kaplan-Meier curves for RFS of patients predicted to be susceptible to relapse or death, stratified by high
versus low risk of relapse or death using our MCM signature (p < 0.0001, log rank test).
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there were 50 incidence probe sets (Table S3) and 44 latency probe sets
(Table S4) that mapped to 41 and 37 unique genes in the test set MCM, respec-
tively. At 5 years, the test setMCMproduced an AUC of 0.877 and a C-statistic of
0.857, indicating good predictive capability of the selected genes. Figure 2B pre-
sents the Kaplan-Meier estimates for patients predicted to be cured versus pa-
tients predicted to be susceptible in the test set. As desired, those predicted to
be cured had a survival probability of 1 throughout the observation period, while
those predicted to be susceptible group had an estimated survival curve de-
scending toward 0. Figure 2C presents the Kaplan-Meier estimates for patients
predicted to be susceptible with higher or lower risk of relapse in the test set.
These two risk groups among patients predicted to be susceptible were well
separated (p < 0.0001). Baseline demographic and clinical characteristics of pa-
tients in the test set whowere classified as cured, susceptiblewith lower risk, and
susceptible with higher risk by the MCM signature are summarized in Table 3.
There was a significant difference between the three MCM risk groups with
respect to frequencies of DNMT3A (p = 0.018) and IDH1 (p = 0.011) mutations.

Several genes included in ourMCMsignaturewere identified in previously pub-
lished studies as having relevance in AML. Notably, the signature was enriched
for genes previously reported in AML patients with favorable-risk chromosome
abnormalities; namely, inv(16)(p13.1q22) and t(15;17)(q24;q21). Seventeen
genes in our MCM signature (DOCK4, NUP50, SPRY2, HLX, NR4A1, MEST,
MELTF, HSPB1, PML, DUSP2, ARHGEF12, IDS, SPRYD7, TRIM16, PPP1R16B,
MAPKBP1, and RAB11FIP3) were identified as differentially expressed in a com-
parison of pediatric patients with AML harboring inv(16) with those who did not
have inv(16).10 However, in our analyses, these genes were differentially ex-
pressed irrespective of favorable-risk-defining genetic lesions. Eight genes in
our MCM signature (CDKN1C, STAB1, ST3GAL6, CST7, IGFBP2, TLE1, LTK, and
CTSW) were among the top 100 genes in pediatric patients with AML that
were specific to t(15;17), which encodes the PML-RARA protein.11 Relatedly,
ZNF506 regulates transcription and is regulated by the PML protein nuclear
bodies12; both ZNF506 and PML are in our MCM signature, whereas NR4A1,
which plays a role in apoptosis of T lymphocytes, is transcriptionally repressed
by PML.13 Subsequent pathway analyses revealed an enrichment of genes (10
of 17) involved in blood vessel morphogenesis (angiogenesis), which represents
a previously established important biologic process in AMLand other hematolog-
ic malignancies given the essential contribution of vascular endothelial cells to
the vascular niches of the bone marrow microenvironment.14

Other genes in our MCM signature are related to other blood cancers. In a
study of chronic lymphocytic leukemia, 18 genes from our MCM signature
(TNFSF9, MFHAS1, NAGLU, FXYD5, HMGCS1, HMG20B, TSTD1, TMC8, CDT1,
RALA, PIM2, DUSP5, AGPAT1, RGS1, GPR160, INTS6, TIFA, and LSP1) were
ll
among those upregulated at least 2-fold by CD5 when comparing empty vector
and CD5-transfected B cells. In a study of T cell prolymphocytic leukemia (T-PLL),
among genes downregulated in purified inv(14)/t(14;14)-positive T-PLL blood
samples compared to purified CD3+ peripheral blood samples from healthy do-
nors, 14 were in our MCM signature, namely, F2R, ACSL3, DUSP5, RDX, CST7,
FAM98A, IDS, FAS, ENTPD4, INTS6, PPP1R16B, PRKCB, H3-3B, and CTSW.15

GAR1, which contributes to telomerase activity, was downregulated in mononu-
clear cells from chronic lymphocytic leukemia patients compared to normal
controls.16

Topp Gene (accessed on October 2, 2023) was used to provide biological in-
sights with respect to genes included in the training set MCM. Several genes
in our MCM signature were over-represented with respect to specific molecular
functions and pathways. Themolecular function of four genes in ourMCMsigna-
ture (DUSP2, DUSP5, DUSP7, and DUSP14; false discovery rate [FDR] = 0.011) is
mitogen-activated protein kinase phosphatase activity, whereas 40 genes are
involved in transcription regulator activity (HIC1, ERF, SERTAD2, HLX, ETV5,
NR4A1, ZNF440, KLF2, TSTD1, JUN, PRDM8, ZNF506, ZBTB18, MYRF, ZNF14,
NR1D2, PML, ZNF487, KLF11, ZBTB2, MAGED1, ZNF555, MAFK, MED31,
ZNF507, NR4A2, RUNX2, ZBED3, ZNF865, HIVEP3, ZNF865, CITED4, GZF1,
TLE1, ZNF335, TADA2B, SMARCA2, CDYL2, PRKCB, and MXD1; FDR = 0.026).
Three genes in our MCM signature are involved in fatty acid synthase activity
(ELOVL5, ELOVL6, andMCAT; FDR = 0.038). Among genes in ourMCMsignature,
eight (CDKN1C, SERTAD2, JUN,MFGE8, FGD4, PRRG4, SEC14L1, and DNAJC15)
belong to the glucocorticoid receptor pathway (FDR = 0.003), 10 (NAGLU, NEU1,
AP3S1, IDS, ENTPD4, LIPA, ARSA, PPT1, GGA1, and CTSW) belong to the lyso-
some pathway (FDR = 0.003), and four (ELOVL5, ACSL3, ELOVL6, and FADS1)
belong to the omega 9 fatty acid synthesis pathway (FDR = 0.009).

DISCUSSION
The 2022 ELNgenetic risk classification and its 2017 predecessor differentiate

prognosis between three risk groups: favorable, intermediate, and adverse. Pa-
tients aged<60 years included in the 2017 ELN favorable group are generally ex-
pected to dowell, with a 3-year OS rate reported as 64% in one large cohort17 and
a 5-year OS rate reported as 64.2% in another.18 Although a sizable proportion of
patients classified in the 2022 ELN favorable genetic risk group experience long-
term RFS, others are susceptible to relapse. In this study, we applied an MCM to
high-dimensional RNA-seq data and identified important subsets of genes asso-
ciatedwith long-term cure and time to relapse or death. The identified subgroups
(cured and susceptible with lower risk or higher risk of relapse or death) differed
significantly by clinical outcome, suggesting that the 2022 ELN favorable genet-
ic-risk group is heterogeneous and includes distinct subgroups having different
The Innovation 5(6): 100719, November 4, 2024 3



Table 2. Demographic, clinical, and gene mutation data in the training set, categorized by the penalized MCM as cured or susceptible with low risk or high risk

Characteristica Cured (n = 129) Low risk (n = 79) High risk (n = 89) p Value

Age, years 44 (18–59) 43 (19–59) 44 (17–59) 0.495

Sex 0.785

Female 56 (43.4) 38 (48.1) 39 (43.8)

Male 73 (56.6) 41 (51.9) 50 (56.2)

Hemoglobin, g/dL 9.2 (3.1–25.1) 9.1 (4.9–14.0) 9.1 (2.3–14.2) 0.680

Platelet count, 3109/L 50 (8–369) 47 (7–433) 43 (7–271) 0.106

White blood cell count, 3109/L 23.5 (1.8–298.4) 29.9 (0.6–158.5) 27.8 (0.4–303.6) 0.419

Bone marrow blasts, % 61.5 (2–97) 65.0 (18–95) 63.0 (23–95) 0.068

Blood blasts, % 49 (0–97) 57 (0–97) 56 (1–97) 0.198

Cytogenetic groups, %

Core-binding factor AML 52 (40.3) 24 (30.4) 36 (40.4) 0.292

inv(16)(p13.1q22) 30 (23.3) 20 (25.3) 23 (25.8) 0.898

t(8;21)(q22;q22) 22 (17.1) 4 (5.1) 13 (14.6) 0.029

Sole +8 0 2 (2.5) 1 (1.1) 0.108

DNMT3A 0.762

Mutated 30 (23.3) 15 (19.0) 18 (20.2)

Wild-type 99 (76.7) 64 (81.0) 71 (79.8)

NRAS 0.232

Mutated 26 (20.2) 13 (16.5) 24 (27.0)

Wild-type 103 (79.8) 66 (83.5) 65 (73.0)

SF3B1 0.279

Mutated 2 (1.6) 0 3 (3.4)

Wild-type 127 (98.4) 79 (100.0) 86 (96.6)

IDH1 0.318

Mutated 5 (3.9) 7 (8.9) 6 (6.7)

Wild-type 124 (96.1) 72 (91.1) 83 (93.3)

CEBPAbzip 0.612

Mutated 25 (19.4) 13 (16.5) 20 (22.5)

Wild-type 104 (80.6) 66 (83.5) 69 (77.5)

GATA2 0.488

Mutated 10 (7.8) 4 (5.1) 9 (10.1)

Wild-type 119 (92.2) 75 (94.9) 80 (89.9)

TET2 0.138

Mutated 9 (7.0) 10 (12.7) 4 (4.5)

Wild-type 120 (93.0) 69 (87.3) 85 (95.5)

NPM1 0.014

Mutated 53 (41.1) 46 (58.2) 33 (37.1)

Wild-type 76 (58.9) 33 (41.8) 56 (62.9)

WT1 0.182

Mutated 4 (3.1) 7 (8.9) 6 (6.7)

Wild-type 125 (96.9) 72 (91.1) 83 (93.3)

PTPN11 0.158

(Continued on next page)
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Table 2. Continued

Characteristica Cured (n = 129) Low risk (n = 79) High risk (n = 89) p Value

Mutated 10 (7.8) 13 (16.5) 9 (10.1)

Wild-type 119 (92.2) 66 (83.5) 80 (89.9)

FLT3 TKD 0.076

Present 21 (16.4) 15 (19.2) 7 (7.9)

Absent 107 (83.6) 63 (80.8) 82 (92.1)

FLT3 ITD 1.00

Present 4 (3.1) 3 (3.8) 3 (3.4)

Absent 124 (96.9) 75 (96.2) 85 (96.6)

IDH2 0.342

Mutated 4 (3.1) 6 (7.6) 4 (4.5)

Wild-type 125 (96.9) 73 (92.4) 85 (95.5)

MLL-PTD 0.274

Present 3 (10.0) 0 0

Absent 27 (90.0) 23 (100.0) 10 (100.0)

TP53 0.566

Mutated 0 0 1 (1.1)

Wild-type 129 (100.0) 79 (100.0) 88 (98.9)

SRSF2 0.180

Mutated 0 (0.0) 1 (1.3) 2 (2.3)

Wild-type 128 (100.0) 78 (98.7) 86 (97.7)

ASXL1 0.790

Mutated 2 (1.6) 0 1 (1.1)

Wild-type 127 (98.4) 79 (100.0) 88 (98.9)

RUNX1 0.319

Mutated 0 1 (1.3) 1 (1.1)

Wild-type 129 (100.0) 78 (98.7) 88 (98.9)

BCOR 0.469

Mutated 1 (0.8) 0 2 (2.2)

Wild-type 128 (99.2) 79 (100.0) 87 (97.8)

aContinuous variables were summarized by reporting the median (range), while categorical variables were summarized by reporting frequency (percentage).
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expression profiles and biological properties, which may include different sensi-
tivities to therapeutic agents. While we could not directly apply the coefficients
from our training set to our test set due to the differences between the RNA-
seq and Affymetrix platforms, the estimated 5-year AUC of 0.877 and
C-statistic of 0.857 for the more limited set of genes in the Affymetrix
GeneChip test set suggests good predictive capability of the selected genes.
Thus, the identified transcriptsmay be useful in differentiating patient subgroups
andmay serve as a prognostic signature to better inform treatment decisions for
2022 ELN favorable AML patients with different expression characteristics.

In our previous article by Fu et al.,9 we compared our MCM with two
competing mixture cure modeling methods that can handle a high-dimensional
covariate space: C-mix by Bussy et al.19 and sign consistency in cure rate
models (SCinCRM) by Shi et al.20 The C-Mix model includes the MCM as a spe-
cial case and applies to high-dimensional data, but it only allows covariates into
the incidence portion of the model so that covariates are not included in the la-
tency portion of the model. The SCinCRM model can be used to fit a high-
dimensional MCM but imposes a sign-based penalty to promote the same co-
efficient sign in the incidence and latency portions of the model. Our MCM does
ll
not suffer from either restriction. Our extensive simulation studies described in
Fu et al.9 demonstrated that our method outperformed both of these high-
dimensional mixture cure methods and additionally outperformed a penalized
Weibull model that does not take cure into account. While we did not reiterate
our previous findings, we did examine results when fitting a penalized Cox PH
model, as that model would be the most likely alternative method used in a
high-dimensional time-to-event data analysis (supplemental information). Our
MCM outperformed the penalized Cox PH model and allows for the identifica-
tion of three groups; namely, cured, susceptible with lower risk, and susceptible
with higher risk.
Several gene mutations as well as differences in expression of specific genes,

such as BAALC, ERG, EVI1, andMN1,21 have been identified as having prognostic
relevance, though they have not yet entered standards for clinical decision-mak-
ing.22 Recently, a genome-wide association study of 104 patients with core-bind-
ing factor AML identified prognostic models for OS and event-free survival (EFS)
where eachmodel included six SNPs along with age group (<55 vs.R 55 years),
the presence versus absence of exon 17 mutations in the KIT gene, and lactate
dehydrogenase level.23 Others found that inclusion of gene expression in addition
The Innovation 5(6): 100719, November 4, 2024 5



Figure 2. Outcomes of patients with AML in the test set (A) Kaplan-Meier curve for RFS. (B) Kaplan-Meier curves for RFS of patients predicted to be cured and those susceptible to
relapse or death using our MCM signature (p < 0.0001, log rank test). (C) Kaplan-Meier curves for RFS of patients predicted to be susceptible to relapse or death, stratified by high
versus low risk of relapse or death using our MCM signature (p < 0.0001, log rank test).
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to cytogenetic and gene mutation data could enhance the prognostic perfor-
mance of the 2010 ELN genetic risk classification.24 Research to elucidate mu-
tations and transcriptional expression associated with ex vivo drug activity is un-
derway.25 In a review article describing the role of cytogenetics and the addition
of mutation data in AML diagnosis and treatment decision-making, the authors
predicted that gene expression profiling and next-generation sequencing will be
at the center of future AML diagnostics.26 As next-generation sequencing turn-
around times and costs decrease, global genomics and transcriptomics could
be included in genetic risk stratification systems.27

Previous studies applied different methods to high-dimensional gene expres-
sion data for exploring prognostic subgroups in AML. For example, unsupervised
clustering of gene expression data was applied to identify novel subgroups of
AML patients.28 Different genes discriminated between the identified subgroups,
suggesting there is heterogeneity among functional pathways that lead to AML.
Unsupervised clustering of gene expression profiles in core-binding factor AML,
which constitutes a large proportion of ELN favorable patients, identified a sub-
group having shorter OS.29 These previous studies used unsupervised methods
to identify subgroups followed by class comparisons to identify differentially ex-
pressed genes and then applied survival analytic methods to determine whether
the identified subgroups differed by outcome. This is in contrast to others, who
used gene expression profiling to classify favorable-risk AML patients with
balanced rearrangements30 or to identify genes associated with resistance to in-
duction chemotherapy in AML31 or resistant disease.32 The latter study32 com-
bined gene expression with cytogenetics to develop a risk score that outper-
formed existing classifiers, including those based on age, sex, performance
status, white blood cell count, platelet count, bone marrow blasts, type of AML,
mutation status ofNPM1 and FLT3-ITD, and cytogenetics,33 amodified classifier
that additionally included mutations,34 or LSC17 stemness.35,36 However, due to
the low proportion of ELN favorable AML patients with resistant disease, this
classifier’s prognostic performance for OS was limited to only the intermediate
and adverse ELN prognostic groups. A meta-analysis of gene expression across
four microarray studies further identified a compound covariate 24-gene expres-
sion signature that significantly enhanced ELN in predicting OS and EFS, indi-
cating that molecular signatures can improve the prognostic classification of
AML beyond ELN.37 However, their goal was to identify genes that are consis-
tently associated with AML prognosis, so that no age restriction was imposed,
and patients with various cytogenetic and molecular abnormalities were
included; thus, training and validation data spanned all ELN genetic risk groups.
Recently, transcriptomic data had better prognostic performance than clinical,
cytogenetic, and somatic mutation data in predicting OS, although the median
follow-up in the training data was only 263 days38
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In recognition that there is heterogeneity in patient outcomes even within well-
defined molecular subgroups, researchers used various regularized regression
methods predicting OS using 231 predictors that included fusion genes, copy
number alterations, point mutations, gene-gene interactions, demographic fea-
tures, clinical risk factors, and treatment received to identify which patients
should be offered allogeneic hematopoietic cell transplant in thefirst CR in a large
diverse cohort of 1,540 AML patients.39 In contrast, we focused our analyses on
younger 2022 ELN favorable genetic risk AML patients. While we examined the
association between demographic and selectmutations at diagnosis, we derived
a penalized MCM to predict RFS using only transcript expression assessed in
diagnostic samples as our predictors. Our model was effective in separating
2022 ELN favorable genetic risk AML patients into those cured or having a
long-term durable CR and those susceptible to relapse or death with either lower
or higher risk. We also validated our MCM signature by assessing its perfor-
mance using a test set that used a different assay to measure gene expression,
demonstrating its independence.
With respect to signature-defining genes, we noted an inclusion of genes that

have been reported previously in studies on different genetic subsets of ELN
favorable risk AML; namely, inv(16) and t(15;17). However, as the genes reported
previously in an inv(16)-associated signature were found to be deregulated in our
cohort irrespective of cytogenetic subgroup, and as our patient cohort did not
include any t(15;17) AML, it is tempting to speculate that these genes indeed
represent a favorable risk signature rather than genomic responses associated
with the presence or absence of recurrent genetic lesions.

MATERIALS AND METHODS
Patients and treatment

Based on previous research showing that outcome analyses should be stratified by age

group,40 our training set included 297 patients aged <60 years (range, 17–59) diagnosed

with de novo AML (excluding acute promyelocytic leukemia) between 1986 and 2016 and

enrolled on frontline Cancer and Leukemia Group B (CALGB) clinical trials and companion

cytogenetic (CALGB 8461), leukemia tissue bank (CALGB 9665), and molecular (CALGB

20202) studies. CALGB is now part of Alliance for Clinical Trials in Oncology (Alliance). All

patients achieved CR and were classified as favorable genetic risk according to the 2022

ELN.1 Generally, patients received intensive cytarabine and daunorubicin or idarubicin-based

induction treatment. No patient received allogeneic hematopoietic stem cell transplantation

(HSCT) in the first CR on studyprotocols, and off-studypatients who received anHSCTwere

excluded because of missing or incomplete follow-up data. All patients’ karyotypes

underwent central review,41 and, additionally, all patients had RNA-seq and selected gene

mutationdata fromdiagnostic samples available. To validate the performance of ourmodel,

we employed an independent test set from the Acute Myeloid Leukemia German
www.cell.com/the-innovation
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Table 3. Demographic, clinical, and gene mutation data in the test set, categorized by the MCM as cured or susceptible with low or high risk of relapse or death

Characteristica Cured (n = 40) Low risk (n = 19) High risk (n = 16) p Value

Age, years 40.5 (18–59) 43 (20–57) 47.5 (22–58) 0.319

Sex 0.069

Female 17 (42.5) 14 (73.7) 7 (43.8)

Male 23 (57.5) 5 (26.3) 9 (56.2)

Hemoglobin, g/dL 8.7 (3.5–13.4) 9.2 (6.0–12.4) 8.95 (4.2–13.3) 0.944

Platelet count, 3109/L 35 (4–273) 42 (11–268) 47 (14–301) 0.547

White blood cell count, 3109/L 20.35 (3.0–262.5) 26 (1.1–206.0) 43.48 (1.33–316.0) 0.758

Bone marrow blasts, % 70 (20–97) 70 (30–100) 86.5 (30–95) 0.549

DNMT3A 0.018

Mutated 3 (7.5) 7 (36.8) 3 (18.8)

Wild-type 37 (92.5) 12 (63.2) 13 (81.2)

NRAS 0.630

Mutated 14 (35.0) 4 (21.1) 5 (31.2)

Wild-type 26 (65.0) 15 (78.9) 11 (68.8)

SF3B1 N/A

Mutated 0 0 0

Wild-type 40 (100.0) 19 (100.0) 16 (100.0)

IDH1 0.011

Mutated 0 3 (15.8) 3 (18.8)

Wild-type 40 (100.0) 16 (84.2) 13 (81.2)

CEBPAbzip 0.117

Mutated 6 (15.0) 2 (10.5) 6 (37.5)

Wild-type 34 (85.0) 17 (89.5) 10 (62.5)

GATA2 1.00

Mutated 2 (5.0) 1 (5.3) 0

Wild-type 38 (95.0) 18 (94.7) 16 (100.0)

TET2 0.414

Mutated 3 (7.5) 2 (10.5) 3 (18.8)

Wild-type 37 (92.5) 17 (89.5) 13 (81.2)

NPM1 0.184

Mutated 11 (27.5) 10 (52.6) 5 (31.2)

Wild-type 29 (72.5) 9 (47.4) 11 (68.8)

WT1 1.00

Mutated 7 (17.5) 3 (15.8) 2 (12.5)

Wild-type 33 (82.5) 16 (84.2) 14 (87.5)

PTPN11 0.334

Mutated 4 (10.0) 3 (15.8) 0

Wild-type 36 (90.0) 16 (84.2) 16 (100.0)

FLT3 TKD 0.329

Present 7 (17.5) 5 (26.3) 1 (6.2)

Absent 33 (82.5) 14 (73.7) 15 (93.8)

FLT3 ITD 0.862

(Continued on next page)
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Table 3. Continued

Characteristica Cured (n = 40) Low risk (n = 19) High risk (n = 16) p Value

Present 3 (7.5) 2 (10.5) 1 (6.2)

Absent 37 (92.5) 17 (89.5) 15 (93.8)

IDH2 0.826

Mutated 2 (5.0) 2 (10.5) 1 (6.2)

Wild-type 38 (95.0) 17 (89.5) 15 (93.8)

MLL-PTD N/A

Present 0 0 0

Absent 39 (100.0) 19 (100.0) 15 (100.0)

TP53 N/A

Mutated 0 0 0

Wild-type 40 (100.0) 19 (100.0) 16 (100.0)

SRSF2 0.467

Mutated 0 1 (5.3) 0

Wild-type 40 (100.0) 18 (94.7) 16 (100.0)

ASXL1 1.000

Mutated 2 (5.0) 0 0

Wild-type 38 (95.0) 19 (100.0) 16 (100.0)

RUNX1 N/A

Mutated 0 0 0

Wild-type 40 (100.0) 19 (100.0) 16 (100.0)

BCOR 0.467

Mutated 0 1 (5.3) 0

Wild-type 40 (100.0) 18 (94.7) 16 (100.0)

aContinuous variables were summarized by reporting the median (range), while categorical variables were summarized by reporting frequency (percentage).
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Cooperative Group (AMLCG) available under GEO: GSE37642,32,37,42,43 where diagnostic

samples were hybridized to Affymetrix GeneChips. Patients were initially enrolled in the

AMLCG 1999 study (ClinicalTrials.gov: NCT00266136), which actively recruited between

1999 and 2005. We restricted our analysis of the test set to the 75 patients with de novo

AML aged <60 years who were treated on AMLCG trials, achieved a CR, were classified

as favorable genetic risk according to the 2022 ELN,1 and had gene expression data from

pre-treatment samples and relapse data available. In accordance with the Declaration of

Helsinki, patients provided study-specific written informed consent for participation in the

treatment studies. Institutional reviewboard approval of all CALGB/Alliance andAMLCGpro-

tocols was obtained before any research was performed.

Clinical endpoints and statistical analysis
We estimated RFS as the time from achievement of a CR to relapse, death, or last follow-

up, censoring for patients alive without relapse.1 The Kaplan-Meier method was used to es-

timate the proportion of cured patients, or cured fraction, as the survival estimate at the

maximum follow-up time.6,44 The term “cured” typically implies that the patient is immune

to the event of interest. However, because we considered both relapse and death as events,

here, “cured” is synonymous with long-term RFS; in other words, patency of CR. To test

whether therewas a significant cured fraction, the rate parameter for an exponential survival

model was estimated45 and then used to simulate time-to-event data from an exponential

distribution under the condition of the null hypothesis, where 10,000 simulations were

used.44 For each simulated dataset, the proportion of patients susceptible to the event (un-

cured) was estimated. The p value was calculated as the proportion of times the observed

susceptible fraction estimate exceeded the simulated estimate.44We additionally tested for

the presence of a cured fraction by fitting a parametric MCM and the parametric survival

model and performing a boundary likelihood ratio test.44

We also need to have decisive evidence that there is sufficient follow-up44,46 to ensure

consistency of Kaplan-Meier estimates and to ensure that we can reliably detect whether
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a cured fraction exists. In other words, we need to test that we have followed all patients

long enough so that we would have observed the event times for all susceptible subjects.

We estimated the time when 95% of subjects should experience the event47 and compared

that estimate with ourmedian follow-up among patients relapse free and alive. We also per-

formed an inferential test examining whether there is sufficient follow-up.48

Pre-processing methods applied to the RNA-seq data are described in the supplemental

information. The dimensionality of the RNA-seq dataset was reduced by removing tran-

scripts with lower and less variable expression values and by retaining transcripts having

a mean log expression greater than 4 and standard deviation of logged expression values

greater than 0.4. The filtered expression values were then used as candidate covariates in

our penalized Weibull MCM.9 The final model was selected as that attaining the minimum

corrected Akaike information criterion. Thereafter, the linear predictor for the incidence

portion of the model was used to predict cured versus susceptible using zero as the cut-

point. Likewise, the linear predictor for the latency portion of the model was used to predict

higher versus lower risk of relapse or death using zero as the cutpoint. When comparing

whether there were significant differences with respect to baseline variables among the

three subgroups in the training set (cured, susceptible with lower risk, and susceptible

with higher risk), we used a Kruskal-Wallis test for continuous variables and Fisher’s exact

test for categorical variables.

To validate the relevance and importance of our identified RNA transcripts, we employed

an independent test set from the AMLCG (derived fromGEO: GSE37642).32,37,42,43 The GEO:

GSE37642 dataset includes clinical and gene expression data for 562 patientswith AML.We

restricted our analysis to the 75 patients with de novo AML aged <60 years who achieved a

CR andwere classified as having favorable genetic risk according to the 2022 ELNwith RFS

recorded. Because the gene expression levels were measured using the Affymetrix HG-

U133Plus2, HG-U133A, and HG-U133B GeneChips, we could not normalize these data

with our training set RNA-seq data. That is, differences between RNA-seq and Affymetrix

with respect to the dynamic range, the structure of the expression data (count data for
www.cell.com/the-innovation

http://ClinicalTrials.gov
ctgov:NCT00266136
http://www.thennovation.org
http://www.thennovation.org


REPORT
RNA-seq versus relative abundance for Affymetrix), sequencing versus fixed hybridized

probe design, and lack of a one-to-one transcript to probe set correspondence precluded

a direct comparison. Instead, we matched these GeneChips on probe set ID to form an in-

tegrated dataset. We then mapped the transcripts included in our training set MCM signa-

ture to their corresponding probe sets via gene symbols. Due to differences in the scale of

gene expression data between the training and test sets and the inability to completely

match all RNA-seq MCM signature transcripts to probe sets, we fit a penalized Weibull

MCM to the test set using available probe sets that matched transcripts in our training

set MCM signature. Again, the linear predictor for the incidence portion of the model was

used to predict cured versus susceptible using zero as the cutpoint. Likewise, the linear pre-

dictor for the latency portion of the model was used to predict higher versus lower risk of

relapse/death using zero as the cutpoint. The AUC and C-statistic designed for MCMs

were calculated to assess predictive performance.49 When comparing whether there

were significant differences with respect to baseline variables among the three subgroups

in the test set (cured, susceptiblewith lower risk, and susceptible with higher risk), we used a

Kruskal-Wallis test for continuous variables and Fisher’s exact test for categorical variables.
DATA AND CODE AVAILABILITY
The filtered gene expression data used for the training and test sets along with the

corresponding R code are provided at https://github.com/kelliejarcher/AML_2022_ELN_

Favorable. Data are further summarized in the supplemental information files. The full data-

set from which the test set was derived is available from GEO: GSE37642.
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