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Distant metastasis is the main cause of death in nasopharyngeal carcinoma

(NPC) patients. There is an urgent need to reveal the underlying mechanism of

NPC metastasis and identify novel therapeutic targets. The ferroptosis

resistance and survival ability of extracellular matrix (ECM)-detached tumor

cells are important factors in determining the success of distant metastasis. In

this study, we found that CAPRIN2 contributes to the ferroptosis resistance and

survival of ECM-detached NPC cells. Moreover, CAPRIN2 serves as a positive

regulator of NPC cell migration and invasion. HMGCR, the key metabolic

enzyme of the mevalonate pathway, was identified as the key downstream

molecule of CAPRIN2, which mediates its regulation of ferroptosis, survival,

migration and invasion of NPC cells. Lung colonization experiments showed

that downregulation of the CAPRIN2/HMGCR axis resulted in reduced lung

metastasis of NPC cells. Erastin treatment inhibited the ability of NPC cells to

colonize the lungs, which was further enhanced by CAPRIN2/HMGCR axis

downregulation. Regulated by upstream LINC00941, CAPRIN2 is abnormally

activated in NPC, and its high expression is associated with a poor prognosis. In

conclusion, CAPRIN2 is amolecular marker of a poor prognosis in NPC, and the

LINC00941/CAPRIN2/HMGCR axis provides a new target for the treatment of

NPC metastasis and ferroptosis resistance.
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Introduction

Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus

(EBV)-associated tumor, and the main pathological type is

undifferentiated carcinoma. It is characterized by high

aggressiveness and metastatic potential (1–6). At the time of

onset, 5% to 11% of patients have distal metastases (1). During

the course of treatment, 50% to 60% of patients develop distal

metastasis (1). Due to advances in radiotherapy techniques and

increases in the accuracy of disease staging, the overall prognosis

of NPC has improved significantly over the past three decades

(1–5). However, distal metastasis is still the main cause of death

in NPC patients (1–5). Therefore, there is an urgent need to

explore the potential mechanism of NPC metastasis and identify

specific biomarkers.

Ferroptosis is a type of iron-dependent cell death

characterized by lipid peroxidation mediated by reactive

oxygen species (ROS) (7–18). Until now, the role of ferroptosis

in the complex process of tumor cell metastasis has remained

poorly understood. To successfully metastasize from the primary

site to the distal organ, tumor cells must overcome several

obstacles, including long-term survival after extracellular

matrix (ECM) detachment and distal organ colonization (19–

28). Only tumor cells that are resistant to ECM detachment-

induced cell death and can adapt to the distal organ

microenvironment are likely to survive and successfully

colonize to form metastases (23–27). It is well known that

ECM-detached tumor cells undergo anoikis, a type of caspase-

dependent programmed cell death (19–21). However, as the

understanding of the complex changes in cells induced by ECM

detachment has deepened, studies have shown that resistance to

anoikis alone is not sufficient to maintain long-term cell survival

after ECM detachment, suggesting that other modes of death

may be involved (19–22). In 2017, Brown et al. reported that

ECM detachment is an important trigger factor for ferroptosis

(29). ECM detachment results in a dramatic increase in ROS and

leads to the ferroptosis of breast cancer cells (29). In addition,

metastatic tumor cells in the lung are exposed to a high oxygen

microenvironment. Only the cells that can successfully resist the

oxidative damage and ferroptosis induced by high oxygen levels

can colonize and form clones in the newmicroenvironment (30).

To date, the role of ferroptosis in NPC metastasis has not been

studied. The mechanism by which ECM-detached NPC cells

resist ferroptosis to maintain survival remains unknown.

Caprin family member 2 (CAPRIN2) is an RNA-binding

protein (RBP) that functions in the central osmotic defense

response and eye development (31–33). The function of

CAPRIN2 in tumors is still poorly understood. Jia et al.

identified gain-of-function CAPRIN2 mutations (R968H/

S969C) in hepatoblastoma that promote the growth of

hepatoblastoma cells (34). In addition, upregulation of

CAPRIN2 was found to promote oral squamous cell

carcinoma (OSCC) by activating the canonical WNT/b-
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catenin signaling pathway (35). Thus far, the role of CAPRIN2

in NPC remains unknown. Moreover, the functions of

CAPRIN2 in tumor ferroptosis have not been reported.

Here, we investigated the potential role of CAPRIN2 in NPC

ferroptosis and metastasis. Our results indicated that CAPRIN2

acts as a protector against NPC cell ferroptosis. Moreover, the

upregulation of CAPRIN2 promotes the survival, migration and

invasion of NPC cells. The 3-hydroxy-3-methylglutaryl-CoA

reductase (HMG-CoA reductase, HMGCR) functions as the

key downstream molecule of CAPRIN2. CAPRIN2/HMGCR

might be novel therapeutic targets for the development of

treatments for NPC.
Materials and methods

Cell cultures

The NPC cell lines involved in the study included the EBV-

negative cell lines 5-8F (poorly differentiated), 6-10B (poorly

differentiated) and HK-1 (well differentiated); the EBV-positive

cell line C666-1 (undifferentiated); and the immortalized normal

nasopharyngeal epithelial cell line NP69. C666-1, HK-1 and

NP69 cells were kindly provided by Dr. Saiwah Tsao (University

of Hong Kong, Hong Kong, P.R. China), and the 5-8F and 6-10B

cell lines were maintained by our laboratory. Cells were

maintained in DMEM or RPMI-1640 medium supplemented

with 10% fetal bovine serum, 100 units/mL penicillin, and 100

mg/mL streptomycin at 37°C in a 5% humidified CO2

atmosphere. The indicated cell lines were routinely detected

and ensured to be mycoplasma-free using a PCR-based method.
Reagents and antibodies

The ferroptosis inducer and cell death inhibitor were all

obtained from Selleck (Shanghai, China). The ferroptosis

activator used was erastin. In order to facilitate understanding

the effects of CAPRIN2 on ferroptosis, we chose the erastin doses

with a growth inhibition rate of 30-40% of the control group.

Otherwise, if the erastin dose is too low, the growth inhibition

effect will be too weak to study the effect of CAPRIN2 on

ferroptosis resistance. Similarly, it is not suitable to study the

effect of knockdown of CAPRIN2 on ferroptosis if the erastin

dose is too high. The ferroptosis inhibitor used was ferrostatin-1.

Ferrostatin-1 is a lipophilic antioxidant that acts through a

free radical trapping mechanism that can prevent the

accumulation of lipid peroxidation induced by erastin, thereby

inhibiting ferroptosis (9). MVA was obtained from Sigma

(Shanghai, China). Primary antibodies against CAPRIN2

(NBP1-88318, Novus), HMGCR (sc-271595, Santa Cruz) and

b-actin (66009-1-Ig, Proteintech, Wuhan, China) were

commercially obtained.
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Cells transfection

The siRNAs applied in the study were all products of Santa

Cruz (Shanghai, China) and are listed as follows: CAPRIN2

siRNA, HMGCR siRNA and negative control siRNA. The

pcDNA3.1 vector carrying the cDNA sequence of CAPRIN2

or HMGCR was constructed by Generay Biotech (Shanghai,

China). The cDNA sequence of CAPRIN2 or HMGCR was also

subcloned into the lentivirus vector pHBLV-CMV-MCS-EF1-

NEO. The obtained plasmids were named pHBLV-CAPRIN2 or

pHBLV-HMGCR. Lipofectamine 2000 (Thermo Fisher,

Shanghai, China) was used for transient transfection of the

indicated siRNA or plasmid.
Stable cell line construction

To construct stable cell lines with knockdown of CAPRIN2

or HMGCR, lentiviruses carrying CAPRIN2 shRNA, HMGCR

shRNA or scramble shRNA were purchased from Santa Cruz

(CA, USA) and used to infect the indicated NPC cell lines for 48

h. The sequence of human LINC00941 shRNA was 5′-
GAGACAGTTGATAGCCAAA -3′ (36), and the constructs

were cloned into pHBLV-U6-MCS-PGK-PURO, named

pHBLV-shLINC00941. pHBLV-shLINC00941 was transfected

into 293T cells along with the corresponding packaging vector

PMD2.G and pSPAX2. Cell supernatants were harvested at 48 h

after transfection and used to infect the indicated NPC cells.

The stably infected cells above were selected with puromycin (2

µg/mL) for two weeks.

To stably overexpress CAPRIN2 or HMGCR, the pHBLV-

CAPRIN2 or pHBLV-HMGCR plasmid was transfected into

293T cells along with the corresponding packaging vector

PMD2.G and pSPAX2, respectively. Cell supernatants were

harvested at 48 h after transfection and were subsequently

used to infect the indicated NPC cells. Stably infected cells

were selected with G418 (0.5 mg/mL) for two weeks.

For the above stable cell lines, the overexpression or

knockdown efficiency of the indicated genes or lncRNA was

validated by qRT-PCR and/or Western blot analysis.
RNA isolation and real-time reverse
transcription PCR

Total RNA was extracted from NPC cell lines or tissues

using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according

to the manufacturer’s instructions. A reverse transcriptase

system (Promega, Madison, WI, USA) was applied to

synthesize cDNA, and real-time PCR was performed using

SYBR green master mix (Invitrogen, CA, USA). The relative

expression of target genes was normalized to that of b-actin, and
quantified by the 2-DDCt method. All reactions were performed in
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triplicate in three independent experiments. The primers used

for the amplification of the indicated genes or lncRNA are listed

in Supplementary Table S1.
Western blotting

Cells were collected and total protein was extracted in a lysis

buffer containing protease inhibitors (Thermo Fisher, Shanghai,

China). Western blot analysis was performed as previously

described (37).
Cell viability analysis

Cell viability was evaluated using the AlamarBlue Cell

Viability Assay Kit (Thermo Fisher, IL, USA) according to the

manufacturer’s instructions. The growth inhibition rate

presented reflects the growth inhibitory effect of erastin

treatment on cells compared to the cells without erastin

treatment. The growth inhibitory rate is obtained as follows:

growth inhibition rate (%)=100%-(viability of the indicated

group with erastin treatment)/(viability of the control group

without erastin treatment) × 100%. For the control group

without erastin treatment, the inhibition rate is 0.
Malondialdehyde assay

The Lipid Peroxidation (MDA) Assay Kit was purchased

from Abcam (MA, USA). The MDA content was tested

according to the manufacturer’s instructions.
Reduced glutathione assay

The Reduced Glutathione Assay Reagent Kit purchased from

Solarbio (Beijing, China) was used to measure the cellular

GSH concentration.
Survival analysis of NPC cells under
ECM-detached culture conditions

The cells were inoculated on a 24-well ultralow attachment

plate with the optimal cell density (500 cells/well for 5-8F;

1000 cells/well for C666-1), and serum-free DMEM/F-12

culture medium (20 ng/ml bFGF, 20 ng/ml EGF, and 20 ng/ml

insulin) was used to study the survival of ECM-detached

NPC cells. Fresh serum-free DMEM/F12 medium containing

growth factors was supplemented every other day. The

culture medium and reagents were products of Cell Signaling

(Shanghai, China) and Thermo Fisher (IL, USA). After 72 h
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of culture, the viability of NPC cells was assessed by Alamar

Blue assay.
Transwell migration and invasion assay

Transwell assays were performed using 24-well Transwell

chambers (8-mm pore; BD Falcon) to evaluate the migration or

invasion properties of the indicated cells. For the 5-8F cells,

1.5×104 cells in serum-free 1640 medium were added into the

upper sides of the insert membrane with or without Matrigel,

while the bottom chamber was supplemented with 1640 medium

containing 10% FBS. After 16 h of incubation, the NPC cells that

did not migrate or invade the membrane were scraped off, and

cells on the bottom of the membrane were fixed with crystal

violet. For the C666-1 cell line, 5×104 cells suspended in

1640 medium containing 1% FBS were added to the upper

sides of the inserts coated with 20 mg/mL fibronectin (Cell

Signaling, Shanghai, China). Fibronectin was applied as a

chemoattractant at a final concentration of 50 mg/mL. After 24

h, cells on the bottom of the membrane were stained. The cells in

five independent fields were counted under a microscope at a

magnification of 10×. The experiments above were performed

in triplicate.
In vivo lung colonization models

The animal experiments in the study were conducted in

accordance with the NIH animal use guidelines and were

approved by the Sun Yat-sen University Institutional Animal

Care and Use Committee. Nude female BALB/c mice (4 weeks)

were purchased from the SLACCAS Experimental Animals Co.,

Ltd. (Shanghai, China), and were maintained under specific

pathogen-free conditions.

For the lung metastasis model, mice were randomly assigned

to four groups (n=6), and a total of 1×106 of the indicated cells in

100 mL PBS were injected into the tail vein of the mice. Three

weeks after the injection, the mice were euthanized, and the

lungs were harvested and stained with hematoxylin-eosin for

pathologic analysis. Metastatic nodules were observed using

a microscope.

To further explore the role of the CAPRIN2/HMGCR axis in

the lung colonization capacity of NPC cells treated with erastin,

the mice were divided into four groups (n=6) and injected with

1×106 of the indicated stable cell lines into the tail veins. From

day 0 of cell injection, the mice were intraperitoneally

administered erastin (40 mg/kg) or vehicle as control twice

every other day. After 21 days of cell injections, the mice were

sacrificed and the lungs were harvested for histological analysis.

The number of metastatic nodules was calculated under

a microscope.
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Patient tumor samples and
immunohistochemistry

NPC tumor tissues were collected from 104 patients

histologically diagnosed with NPC at Sun Yat-sen University

Cancer Center (SYSUCC) between 2007 and 2012. The

inflammatory nasopharynx tissues were collected via outpatient

biopsy. The TMA was generated from formalin-fixed, paraffin-

embedded NPC tissues. Informed consent forms were obtained,

and the study was approved by the Institutional Research Ethics

Committee of SYSUCC. No patient received treatment before biopsy.

The CAPRIN2 protein level was assessed according to

immunohistochemical staining intensity. Immunohistochemistry

was performed as previously described with the appropriate

modifications (38). A polyclonal anti-CAPRIN2 antibody was

obtained from Novus (1:500, NBP1-88318). The degree of staining

in the sections was observed and scored independently by two

observers who were not informed of the clinical data of the

patients evaluated the staining intensity. The expression intensity

was classified as negative = 0, weak = 1, moderate = 2, or strong = 3.

The final H score was calculated based on multiplying the intensity

score by the percentage of the staining area. A receiver operating

characteristic (ROC) curve analysis was applied to determine a cutoff

value for CAPRIN2 low expression and high expression. The

sensitivity and specificity for the H score was plotted, thus

generating a ROC curve. The score that was closest to the point

with both the maximum sensitivity and specificity was selected as the

cut-off value.
Statistical analysis

All statistical analyses were completed with SPSS statistical

software (version 17.0, SPSS Inc., Chicago, IL, USA). Student’s t-

test was applied to determine the difference between two groups.

Survival curves were plotted using the Kaplan-Meier method

and compared using the log-rank test. A two-tailed chi-square

test was used to analyze the correlation between CAPRIN2

expression and the clinicopathological characteristics.

Univariate and multivariate survival analyses were conducted

using Cox’s proportional hazard model. The relationship

between two independent variables was evaluated by the

Pearson correlation coefficients method. p < 0.05 was

considered to indicate a statistically significant difference.
Results

CAPRIN2 promotes the ferroptosis
resistance and survival of ECM-detached
NPC cells

The ability to survive the stress of ECM detachment is one of

the important factors to determine the successful metastasis of
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tumor cells. To evaluate the biological effects of CAPRIN2 on the

ferroptosis resistance and survival of ECM-detached NPC cells

both in vitro and in vivo, we constructed NPC cell lines with

stable CAPRIN2 knockdown or overexpression.

First, we determined the endogenous expression levels of

CAPRIN2 in NPC cells by qRT-PCR and Western blotting. The

results showed that CAPRIN2 was consistently highly expressed

in all NPC cell lines assessed compared to the nasopharyngeal

epithelial cell line NP69 (Supplementary Figures S1A, B). Then,

we selected 5-8F (a poorly differentiated NPC cell line with high

metastatic capacity) and C666-1 (an EBV-posit ive

undifferentiated NPC cell line) cells to construct NPC cell lines

with stable CAPRIN2 knockdown and overexpression,

respectively (Supplementary Figure S2).

Next, stable NPC cell lines were cultured using ultralow

attachment plates and treated with erastin to investigate the

ferroptosis of ECM-detached NPC cells. Twenty-four hours

later, the viability of cells was evaluated by Alamar Blue Assay.

The results showed that erastin inhibited the growth of NPC

cells, and this effect was attenuated by ferrostatin-1 (ferroptosis

inhibitor) (Figure 1A). The stable knockdown of CAPRIN2 in

NPC cells enhanced erastin induced ferroptosis, while the stable

overexpression of CAPRIN2 promoted ferroptosis resistance in

NPC cells (Figure 1A).

The survival of cells under ECM-detached culture conditions

was also evaluated by Alamar Blue Assay. As shown in

Figure 1B, in 5-8F or C666-1 cells, knockdown CAPRIN2

inhibited the survival of ECM-detached cells, whereas

overexpression of CAPRIN2 promoted cell survival.
CAPRIN2 promotes the migration and
invasion of NPC cells in vitro

Migration and invasion are also important factors affecting

NPC cell metastasis. We examined the migration and invasion

ability of NPC cells after knockdown or overexpression of

CAPRIN2. The results of the Transwell assay indicated that

downregulation of CAPRIN2 reduced the migration and

invasion capability of 5-8F cells, while overexpression of

CAPRIN2 significantly promoted cell migration and invasion

(Figure 1C). Consistent results were also obtained in C666-1

cells (Figure 1D).
CAPRIN2 activates HMGCR, a key
enzyme in the mevalonate pathway

The main ferroptosis suppression systems include the cyst(e)

ine/GSH/GPX4 axis, the NAD(P)H/FSP1/CoQ10 system and

the GCH1/BH4/DHFR system (9). In the 5-8F cell line with

stable CAPRIN2 knockdown, we evaluated key molecules

involved in the above inhibition systems. CAPRIN2
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significantly regulated HMGCR, and consistent regulation was

also detected in C666-1 cells (Supplementary Figure S3A).

However, no significant change in the expression level of the

remaining ferroptosis regulatory molecules was detected

(Supplementary Figure S3A). In addition, we examined key

molecules related to iron metabolism, but no significant

regulatory effect was found (Supplementary Figure S3A).

HMGCR is a key rate-limiting enzyme in the mevalonate

(MVA) pathway that catalyzes the conversion of HMG-CoA to

MVA (39–41). Next, MVA can be further transformed into IPP

and CoQ10, and these metabolites directly or indirectly promote

cell ferroptosis resistance through the GSH/GPX4 axis and

FSP1/CoQ10 axis (39–41). As shown, erastin inhibited the

growth of NPC cells, and its inhibitory effect was attenuated

by ferrostatin-1 (Supplementary Figure S4A). Knockdown of

HMGCR alleviated ferroptosis resistance in ECM-detached NPC

cells, while ectopic expression of HMGCR promoted ferroptosis

resistance in cells (Supplementary Figure S4A). Moreover, the

addition of MVA, whose production is catalyzed by HMGCR,

reversed the regulatory effect of CAPRIN2 on NPC cell

ferroptosis (Supplementary Figure S3B).
The CAPRIN2/HMGCR axis promotes the
ferroptosis resistance and survival of
ECM-detached NPC cells

To investigate whether HMGCR was involved in the

regulation of CAPRIN2 on NPC cell ferroptosis, we

constructed CAPRIN2/HMGCR double stable NPC cell lines

(Supplementary Figures S5A, B). The results indicated that

stable overexpression of HMGCR partially reversed the

regulatory effects of CAPRIN2 knockdown on ferroptosis

resistance (Figure 2A). In the indicated erastin-treated cells, we

evaluated the level of MDA, a lipid peroxidation product used as

a ferroptosis marker. The results showed that HMGCR

overexpression partially reversed the increase in MDA levels

resulting from CAPRIN2 knockdown (Figure 2B). Erastin

treatment inhibits cysteine uptake, resulting in decreased GSH

synthesis in cells. We measured GSH levels in the indicated NPC

stable cell lines after erastin administration. We found that

knockdown of CAPRIN2 further enhanced erastin-induced

GSH reduction in 5-8F cells, while overexpression of HMGCR

partially reversed this effect (Figure 2C). Consistent results were

also obtained in C666-1 cells (Figure 2C).

In addition, we investigated the regulatory effect of the

CAPRIN2/HMGCR axis on the survival of ECM-detached

NPC cells. Knockdown of HMGCR decreased the survival of

ECM-detached NPC cells, while ectopic expression of HMGCR

promoted survival (Supplementary Figure S4B). As shown in

Figure 2D, overexpression of HMGCR partially reversed the

inhibitory effects of CAPRIN2 knockdown on the survival of

ECM-detached cells.
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A

B

D

C

FIGURE 1

Effects of CAPRIN2 on the ferroptosis and survival of ECM-detached NPC cells and the migration and invasion of NPC cells. (A) Viability assay of
ECM-detached NPC cell lines treated with erastin (5 mM) and/or ferrostatin-1 (1 mM) for 24 h (B) Viability assay of the indicated stable 5-8F or
C666-1 cell lines cultured under ECM detachment conditions for 72 h For (A, B), the experiments were repeated three times, and the data are
shown as the mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001. (C, D) Migration and invasion assays of the indicated stable 5-8F (C) and
C666-1 (D) cell lines. These assays were conducted in triplicate. Representative images are displayed. The data are presented as the mean ± SD.
* p < 0.05, ** p < 0.01, *** p < 0.001.
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FIGURE 2

CAPRIN2 promotes the ferroptosis resistance, survival, migration and invasion of NPC cells through HMGCR. (A) Overexpression of HMGCR
partially reverses the effects of CAPRIN2 on the ferroptosis of ECM-detached 5-8F (left panel) and C666-1 (right panel) cells. The NPC cell lines
were treated with erastin (5 mM) for 24 h (B, C) MDA assay (B) and GSH assay (C) results of erastin-treated NPC stable cell lines as indicated.
(D) Ectopic expression of HMGCR partially rescues the effects of CAPRIN2 knockdown on ECM-detached NPC cell survival. For (A–C) and
(D), the experiments were conducted in triplicate, and the data are presented as the mean ± SEM. * p < 0.05, ** p < 0.01. (E, F) Stable
overexpression of HMGCR partially reverses the effects of CAPRIN2 knockdown on 5-8F (E) and C666-1 (F) cell migration and invasion.
Representative images of three independent experiments are shown. The data are expressed as the mean ± SD. * p < 0.05, ** p < 0.01,
*** p < 0.001.
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The effects of CAPRIN2 on promoting
metastasis of NPC cells were mediated
by HMGCR

Knockdown of HMGCR inhibited the migration and

invasion of NPC cells, while overexpression of HMGCR

promoted NPC cell migration and invasion (Supplementary

Figures S6A, B). Moreover, the inhibition of migration or

invasion caused by CAPRIN2 knockdown was partially

reversed by HMGCR overexpression in 5-8F stable cell lines

(Figure 2E). Similar results were obtained in C666-1 stable cell

lines (Figure 2F).
CAPRIN2 promotes the lung colonization
of NPC cells through HMGCR

We first examined the effect of erastin, a ferroptosis inducer,

on the lung colonization of NPC cells. The results showed that

erastin significantly inhibited the lung metastasis of NPC cells

(Figures 3A, B). Knockdown of CAPRIN2 promoted the

antimetastatic effect of erastin, which was partially reversed by

overexpression of HMGCR (Figures 3A, B).

ECM detachment alone is enough to be an important trigger

for ferroptosis. Tumor cells detached from primary foci must

survive ECM detachment stress in blood vessels to reach distal

organs and eventually form metastases. Our results showed that

knockdown of CAPRIN2 significantly reduced the lung

metastasis ability of NPC cells injected through the tail vein,

while overexpression of HMGCR partially reversed this effect

(Figures 3C, D).
LINC00941 induces CAPRIN2 expression,
thereby protecting NPC cells from
ferroptosis, maintaining cell survival and
promoting metastasis

It has been reported that CAPRIN2 is activated by

LINC00941 through DNA looping in OSCC, which is involved

in promoting cell proliferation and tumor formation (35). At

present, it is not clear whether CAPRIN2 is also regulated by

LINC00941 in NPC and whether the LINC00941/CAPRIN2 axis

is involved in regulating ferroptosis and metastasis of

tumor cells.

To investigate whether LINC00941 is the upstream regulator

of CAPRIN2 in NPC, LINC00941 was stably knocked down in

5-8F or C666-1 cells (Supplementary Figures S5C, D). As shown,

downregulation of LINC00941 led to a decrease in CAPRIN2

and HMGCR expression levels in NPC cells (Supplementary

Figures S5C, D).

Moreover, knockdown of LINC00941 weakened the

ferroptosis resistance and survival of ECM-detached NPC
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cells, while overexpression of CAPRIN2 partially rescued the

effects of LINC00941 (Figures 4A, B). Downregulation of

LINC00941 led to a decrease in the migration and invasion

capability of NPC cells, which could be partially reversed by

CAPRIN2 overexpression (Figures 4C, D).
CAPRIN2 predicts a poor outcome in
NPC patients

The expression level of CAPRIN2 was detected in NPC

tissues and nasopharynx tissues, and the results showed that

CAPRIN2 was highly expressed in NPC tissues (Figure 5A). We

also examined the pairwise correlations among the expression

levels of LINC00941, CAPRIN2, and HMGCR in the above NPC

tissues by qRT-PCR. The results indicated that positive

correlations between LINC00941 and CAPRIN2, CAPRIN2

and HMGCR, LINC00941 and HMGCR were detected in the

above NPC tissues (Figure 5B).

To further assess the clinical significance of CAPRIN2

expression in NPC patients, we performed immunohistochemistry

and Kaplan-Meier analysis. The results showed that CAPRIN2 was

overexpressed in NPC tissues, and high expression of CAPRIN2

indicated a shorter progression-free survival (PFS) and overall

survival (OS) time than low expression of CAPRIN2 (Figures 5C,

D). In addition, we also analyzed the association between CAPRIN2

expression and clinical characteristics. The results revealed that there

were significant correlations between CAPRIN2 expression and

clinicopathologic characteristics, including tumor-node-metastasis

(TNM) stage, tumor invasion depth, node metastasis, and distant

metastasis (Table 1). As shown in Table 2, multivariate Cox

proportional hazards regression analysis indicated that CAPRIN2

expression acted as an independent prognostic factor for OS in

NPC patients.
Discussion

Distant metastasis requires the adaptation of tumor cells to

the new microenvironment. To successfully form a lung

metastatic lesion, ECM-detached tumor cells need to survive

in the harsh oxidizing condition of the blood and then adapt to

the high oxygen tension in the pulmonary microenvironment

(30, 42). To date, little is known about the mechanisms that

protect ECM-detached tumor cells from ferroptosis and thus

survive. Brown et al. reported that a6b4 integrin promotes

resistance to ECM detachment induced ferroptosis (29). Our

study showed that CAPRIN2 can inhibit ferroptosis of ECM

detached tumor cells and promote cell survival. This is the first

time that CAPRIN2 has been reported to play a role in

promoting tumor metastasis at the stage of ECM detachment.

The high-oxygen lung environment also induces ferroptosis in

tumor cells, which is a hindering factor for the formation of lung
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FIGURE 3

Regulation of lung colonization capacity via the CAPRIN2/HMGCR axis in NPC cells. (A, B) The inhibitory effect of erastin on the lung metastasis
of NPC cells was enhanced by knockdown of the CAPRIN2/HMGCR axis. (C, D) CAPRIN2 promotes the lung colonization of NPC cells through
HMGCR. For (A, C), representative images of lungs and HE staining are shown. The location of lung metastatic nodules is indicated by the arrow.
For (B, D), the number of lung metastases (left panel) and the weight of the lungs (right panel) are given. * p < 0.05, ** p < 0.01.
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metastases (30, 42). Alvarez et al. reported that high expression

of cysteine desulfurase NFS1 in lung adenocarcinoma protects

against oxidative damage in high-oxygen environments (30).

Knocking down NFS1 sensitizes cells to glutathione biosynthesis

inhibition, which increases ROS and induces tumor cell

ferroptosis (30). In our study, the results revealed CAPRIN2

contributes to ferroptosis resistance and lung metastasis loci

establishment in NPC cells. In addition, we also found that

CAPRIN2 promotes NPC cell migration and invasion. This
Frontiers in Oncology 10
result is consistent with Zheng et al’s report in 2021 that

CAPRIN2 can promote the migration and invasion of

colorectal cancer cells (43). In conclusion, we believe that

CAPRIN2 can be used as a ferroptosis resistance marker and

therapeutic target in NPC. Selective inhibition of CAPRIN2 may

sensitize NPC cells to oxidative stress and inhibit lung

metastasis. In our research on the effects of ECM stiffness on

ROS levels, metastasis and ferroptosis of NPC cells (unpublished

data), we found that the expression level of CAPRIN2 was
A

B

D

C

FIGURE 4

LINC00941 acts as an upstream molecule to regulate the biological functions of CAPRIN2. (A) LINC00941 downregulation promoted the
ferroptosis of ECM-detached NPC cells, which was partially rescued by CAPRIN2 overexpression. The NPC cells were treated with erastin (5 mM)
for 24 h (B) Knockdown of LINC00941 decreased the survival of ECM-detached NPC cells, which could be partially reversed by CAPRIN2
overexpression. For (A) and (B), the assays were conducted in triplicate, and the data are presented as the mean ± SEM. * p < 0.05, ** p < 0.01.
(C, D) LINC00941 knockdown inhibited the migration and invasion of 5-8F (C) and C666-1 (D) cells, and overexpression of CAPRIN2 partially
reversed this effect. Representative images are shown. The data are provided as the mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001.
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FIGURE 5

CAPRIN2 is overactivated in NPC tissues and is associated with a poor prognosis in patients. (A) The expression level of CAPRIN2 in 20 NPC
tissues and 5 nasopharyngeal tissues. (B) The correlation between LINC00941/CAPRIN2, CAPRIN2/HMGCR or LINC00941/HMGCR in 20 NPC
tissues. For (A) and (B), the expression levels of CAPRIN2, HMGCR and LINC00941 were determined by qRT-PCR. The levels were normalized to
those of b-actin and shown as the mean ± SEM. * p < 0.05. (C) Representative immunohistochemical images of normal nasopharyngeal tissues
(left panel) and NPC tissues (middle panel). The boxes represent the magnified region. The representative image of negative stained control
(right panel, top) shows the negative staining result of NPC tissues incubated with antibody-free serum. The representative image of positive
stained control (right panel, bottom) shows the positive staining result of CAPRIN2 in NPC tissues incubated with the primary antibody of
CAPRIN2. (D) Kaplan-Meier survival analysis of the association between CAPRIN2 expression and the PFS or OS of NPC patients (log-rank test).
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upregulated along with increasing ECM stiffness. Whether

CAPRIN2 is involved in mediating the effects of ECM stiffness

on NPC cell metastasis and ferroptosis remains unknown. In this

study, our report on the biological function of CAPRIN2 may

provide clues to understand the mechanism by which ECM

stiffness affects NPC cell function.

Cells maintained ECM-detached when cultured with ultralow

attachment plates, and ECM-attached when cultured with

standard cell culture plates. In our preliminary experiments, we

also evaluated the effects of CAPRIN2 on proliferation and

ferroptosis of NPC cells under ECM-attached conditions. The

results showed that knockdown of CAPRIN2 inhibited the

proliferation of 5-8F cells at 72h in viability assays and

promoted erastin-induced ferroptosis (data not shown), which

suggested that CAPRIN2 might also be involved in the malignant

phenotype of NPC cells under ECM-attached conditions.
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In the process of searching for the mechanism how

CAPRIN2 regulates the antioxidant defense molecules

involved in cellular ferroptosis resistance, we focused on three

antioxidant axes, which mainly involved in regulating cell ROS

level and mediating ferroptosis resistance (9). Related core

molecules that associated with these regulatory axes were

selected for evaluation. For the GSH/GPX4 axis, SLC7A11

(one subunit of the anionic amino acid transport system that

is highly specific for cysteine and glutamate), GPX4 (antioxidant

selenium enzyme), HMGCR (the key rate-limiting enzyme of

MVA pathway) and GCLC (the first rate-limiting enzyme of

glutathione synthesis) were evaluated (9). For the FSP1/CoQ10

axis, we examined the level of FSP1, which acts as an

independent parallel system to protect cells from ferroptosis

(9). For the GCH1/DHFR axis, GCH1 (the rate-limiting enzyme

for BH4 synthesis) and dihydrofolate reductase DHFR were
TABLE 1 Correlations between CAPRIN2 expression and clinicopathological characteristics.

Variables N (%) Low CAPRIN2 High CAPRIN2 p values
expression (%) expression (%)

Total cases 104 44 (42.3%) 60 (57.7%)

Age(years)

<45 44 (42.3%) 19 (18.3%) 25 (24.0%) 1

≥45 60 (57.7%) 25 (24.0%) 35 (33.7%)

Sex

Male 71 (68.3%) 31 (29.8%) 40 (38.5%) 0.831

Female 33 (31.8%) 13 (12.5%) 20 (19.3%)

TNM stage

1–2 32 (30.8%) 23 (22.1%) 9 (8.7%) 0

3–4 72 (69.2%) 21 (20.2%) 51 (49.0%)

T stage

T1-T2 43 (41.3%) 26 (25.0%) 17 (16.3%) 0.002 a

T3-T4 61 (58.7%) 18 (17.3%) 43 (41.4%)

N stage

N<1 30 (28.8%) 20 (19.2%) 10 (9.6%) 0.002 a

N≥1 74 (71.2%) 24 (23.1%) 50 (48.1%)

Distant metastasis

No 95 (91.3%) 44 (42.3%) 51 (49.0%) 0.01 a

Yes 9 (8.7%) 0 (0%) 9 (8.7%)
fron
aStatistically significant.
TABLE 2 Univariate and multivariate analysis for OS.

Univariate Multivariate
Characteristic hazard ratio (95% CI) p value hazard ratio (95% CI) p value

Age (<45 vs. ≥45) 1.99 (0.723–5.476) 0.183

TNM stage (I, II vs. III, IV) 5.948 (1.375–25.738) 0.017 2.063 (0.301–14.140) 0.461

Tumor invasion depth (T1–2 vs. T3–4) 2.781 (1.008–7.676) 0.048 1.395 (0.382–5.085) 0.614

Lymph node status (0 vs. ≥1) 1.162 (0.446–3.028) 0.759

Distant metastasis (no vs. yes) 11.218 (4.230–29.747) <0.001 5.567 (1.923–16.115) 0.002

CAPRIN2 expression (low vs. high) 7.605 (2.203–26.249) 0.001 4.019 (1.055–15.313) 0.042
ti
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detected (9). Addtionally, we also evaluated several key

molecules involving in various stages of iron metabolism,

including Fe transport (TFRC), Fe storage (FTH1、FTL) and

ferritinophagy (NCOA4) (9). The results showed that HMGCR,

which mediates ferroptosis resistance through MVA pathway,

was activated by CAPRIN2. Therefore, our study uncovered one

of the mechanisms by which CAPRIN2 activates the cellular

antioxidant defense system in NPC cells.

In addition to being an RNA-binding protein, Caprin2 can

also bind to Wnt receptor LRP5/6. The Wnt pathway is one of

the carcinogenic pathways that are abnormally activated in NPC.

Aberrant activation of this pathway is associated with the

promoter methylation of Wnt inhibitors (DKK1, WIF1,

SFRP1, SFRP2, SFRP4, and SFRP5) (4). As an LRP5/6-binding

protein, Caprin2 is reported to activate the canonical Wnt

pathway by regulating LRP5/6 phosphorylation (44).

Therefore, the high level of CAPRIN2 may also be involved in

the activation of the Wnt pathway in NPC. It has been reported

that the Wnt pathway can act as an activator of the MVA

pathway (39). Therefore, the positive regulation of HMGCR by

CAPRIN2 found in this study might be mediated by the Wnt

pathway. It has been reported that products of the MVA

pathway can also act as activators to activate the Wnt pathway

(41). Therefore, there may be positive feedback regulation

between MVA pathway molecules and Wnt pathway molecules.

In summary, we found that CAPRIN2 is a novel regulator of

ferroptosis and metastasis in NPC and plays a role through

HMGCR, a key enzyme in the MVA pathway. Our study is

expected to provide a new marker of ferroptosis resistance and a

new therapeutic target for NPC.
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