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Abstract: The orientation of polymer composites is one way to increase the mechanical properties of
the material in a desired direction. In this study, the aim was to orient chitin nanocrystal (ChNC)-
reinforced poly(lactic acid) (PLA) nanocomposites by combining two techniques: calendering and
solid-state drawing. The effect of orientation on thermal properties, crystallinity, degree of orientation,
mechanical properties and microstructure was studied. The orientation affected the thermal and
structural behavior of the nanocomposites. The degree of crystallinity increased from 8% for the
isotropic compression-molded films to 53% for the nanocomposites drawn with the highest draw ratio.
The wide-angle X-ray scattering results confirmed an orientation factor of 0.9 for the solid-state drawn
nanocomposites. The mechanical properties of the oriented nanocomposite films were significantly
improved by the orientation, and the pre-orientation achieved by film calendering showed very
positive effects on solid-state drawn nanocomposites: The highest mechanical properties were
achieved for pre-oriented nanocomposites. The stiffness increased from 2.3 to 4 GPa, the strength
from 37 to 170 MPa, the elongation at break from 3 to 75%, and the work of fracture from 1 to
96 MJ/m3. This study demonstrates that the pre-orientation has positive effect on the orientation of
the nanocomposites structure and that it is an extremely efficient means to produce films with high
strength and toughness.

Keywords: PLA; chitin nanocrystals; nanocomposites; extrusion; compression molding; directional
orientation; X-ray; mechanical properties

1. Introduction

There is a growing worldwide interest in developing bio-based materials for sustain-
able development to mitigate the waste disposal problems created by petroleum-based
polymeric materials. In this context, poly(lactic acid) (PLA), which is derived from natural
resources (such as corn and sugar), has gained considerable attention because of its poten-
tial properties that are comparable to those of some petroleum-based polymers used for
packaging applications [1]. PLA is superior to many petroleum-based polymers because
of its bio-compostability, low energy consumption, and low CO2 emission. The easy pro-
duction of PLA at a large scale with a reasonable price expands its applications in many
areas, such as packaging, medical, electronic, and fiber materials [2]. However, PLA has
some limitations, such as inherent brittleness, poor elongation at break (2–5%), and very

Nanomaterials 2021, 11, 3308. https://doi.org/10.3390/nano11123308 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-6857-4110
https://orcid.org/0000-0003-1776-2725
https://orcid.org/0000-0002-2624-5693
https://orcid.org/0000-0003-0607-2059
https://orcid.org/0000-0002-4813-6412
https://orcid.org/0000-0003-4762-2854
https://doi.org/10.3390/nano11123308
https://doi.org/10.3390/nano11123308
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11123308
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano11123308?type=check_update&version=1


Nanomaterials 2021, 11, 3308 2 of 15

low toughness (1 MJ/m3), that make its practical use in packaging applications difficult [3].
PLA is brittle for the following reasons: (1) low glass transition temperature (Tg ≈ 55 ◦C),
which makes the polymer chain rigid and inflexible, and (2) slow crystal nucleation, which
leads to a large spherulite size [4]. To overcome these limitations, researchers have used
plasticizers [5], copolymers [6], and nucleating agents [7] to improve PLA crystallization
behavior. However, it has always been challenging to simultaneously fine-tune both ten-
sile strength and toughness. For example, by adding plasticizers to the PLA matrix, the
elongation at break increases but the tensile strength and modulus decrease [8].

The orientation of polymer films or tapes significantly improves the properties of
polymers, particularly properties such as tensile strength and toughness [9,10]. This
orientation can be achieved by two methods: (1) melt-state drawing [9] and (2) solid-state
drawing (SSD) [10]. The orientation of the polymer can be affected by processing factors
such as the drawing speed, drawing temperature, and draw ratio. Some studies have been
published on the effect of orientation produced by drawing PLA films [9–13], most of which
have focused on the effect of orientation on crystallization behavior. Mai et al. [10] studied
the influence of solid-state orientation on the morphology, mechanical properties, and
hydrolytic degradation of extruded PLA tapes. They found that the mechanical properties
are dependent on the draw ratio and drawing temperature and that the elongation to break
and toughness of the drawn tapes were substantially improved compared to those of the
extruded tapes and that the hydrolytic degradation was reduced with increased orientation.
Velazquez-Infante et al. [11] studied thermal and mechanical properties of PLA films that
were unidirectionally drawn at 22 ◦C at a speed of 100 mm/min and draw ratio of 4, and
they showed that the orientation markedly increased the tensile strength.

While many of these studies have been conducted on neat PLA polymer films, the
orientation of PLA nanocomposites has been investigated less. In previous studies from
our research group, the uniaxial orientation of PLA–nanocellulose nanocomposites was
performed using solid-state and melt-state drawing [14–17].

Singh et al. studied the effect of drawing conditions (drawing temperature, drawing
speed, and draw ratio) on the microstructure, mechanical properties, and thermal properties
of PLA–CNF (cellulose nanofiber) nanocomposites. It was found that the toughness of the
drawn nanocomposite was 60 times higher than that of undrawn ones. In addition, the
orientation also increased the thermal properties and degree of crystallinity [14].

Geng et al. further increased the draw ratio of the PLA–CNF nanocomposites to 8, and
showed superior mechanical properties: the tensile strength increased from 64 to 343 MPa,
and the toughness increased from 2 to 83 MJ/m3, when compared to the un-oriented
nanocomposites [15].

The same group showed also that these oriented nanocomposites have great potential
in structural applications as well as optical sensors because of their interesting strain-
responsive birefringence behavior [16].

Furthermore, a previous study on the melt spinning of PLA nanocomposite fibers
reinforced with modified and unmodified cellulose nanocrystals (CNCs) showed that
drawing in the melt stage can greatly affect the mechanical properties and that the addition
of CNCs (1 wt.%), particularly surface-modified ones, had a significant effect: the modulus
improved from 3.4 to 4.1 GPa, the strength increased from 82 to 171 MPa, and the strain
increased from 5% to 92% for the nanocomposites [17].

Singh et al. studied solid-state orientation of plasticized PLA-chitin nanocomposites
with different ChNC contents (0, 1, 5 wt%) and draw ratios of up to 3 [18]. The results
showed that the mechanical properties (strength and stiffness) increased with increasing
draw ratio for all materials, but the nanocomposite with a ChNC content of 5 wt% showed
superior properties compared to those of the nanocomposites with lower ChNC concentra-
tions. These results confirmed that it is not only the PLA molecular orientation that is the
reason for the improved mechanical properties, and this behavior was attributed to the
synergistic effect of the orientation of the ChNCs together with the molecular orientation
of PLA and crystal growth.
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For these reasons, the orientation of nanocomposite with 5 wt% ChNCs was further
studied in this work. The hypothesis was formed regarding the possibility of reaching
a higher orientation factor if the material is pre-oriented in the melt stage and how this
orientation will affect the properties. Therefore, film extrusion followed by calendering
was used to pre-orient the nanocomposites before the solid-state drawing (SSD). The
pre-orientation was performed by controlling and adjusting the speed of the calendering
rolls. These pre-oriented films were then subjected to SSD for further orientation and their
orientation index factor was evaluated. The novelty of this work is the combination of
these two orientation techniques and the evaluation of the orientation and not only the
orientation of the polymer but also the orientation of the ChNCs.

The objective of this study was to achieve highly oriented nanocomposite films by
combining film calendaring followed by SSD in uniaxial testing equipment in a temperature-
controlled chamber. The oriented nanocomposite films were compared to undrawn
compression-molded composite films. The effect of the orientation induced by the presence
of ChNCs and the increased degree of orientation on the properties and structure of the
nanocomposites were studied using wide-angle X-ray analysis, microscopy, thermal, and
mechanical testing.

2. Materials and Methods
2.1. Materials

Polylactic acid (PLA) was kindly provided by FUTERRO (Escanaffles, Belgium), and
used as a polymer matrix. The PLA had MFI of 8 g/10 min (measured at 190 ◦C and
2.16 kg).

Glycerol triacetate (GTA) was supplied by Sigma-Aldrich (Stockholm, Sweden) and
utilized as a plasticizer for the PLA matrix, as well as a dispersion agent, for the ChNCs in
the liquid suspension.

The raw chitin powder was provided by Antarctic Seafood SA (Coquimbo, Chile), the
detailed description of the isolation process of the chitin nanocrystals (ChNCs) is presented
elsewhere [19]. Briefly, the raw chitin was hydrolyzed with 3 M HCl at 100 ± 5 ◦C under
stirring for 90 min. Then, the suspension was diluted with distilled water and washed via
centrifugation and transferred to dialysis membranes for 3 days. Before use the suspension
was ultrasonicated for 10 min and vacuum filtered using a polyamide filter Sartolon type
250, 0.2 µm pore size (WVR International AB, Stockholm Sweden) to obtain a ChNC gel
with a solid content of 19.5 wt%. Ethanol (99.5%) was purchased from Solveco (Stockholm,
Sweden).

2.2. Methods

The nanocomposite was manufactured using liquid-assisted extrusion process using a
co-rotating twin-screw extruder ZSK-25 Coperion W&P (Stuttgart, Germany), the process
is explained in detail in previous publications [20,21]. The compositions of the polymer,
plasticizer, and ChNCs were in the following order: 75 wt%: 20 wt%: 5 wt%. The temper-
ature profile was ranging from 170 to 190 ◦C and the material was processed at a screw
speed of 250 rpm with a throughput of 15 kg/h. Atmospheric and vacuum venting systems
were used to remove liquid phase (steam) during the compounding process.

To prepare undrawn nanocomposite films, extruded PLA–GTA–ChNC pellets were
compression-molded in an LPC-300 Fontijne Grotnes press (Vlaardingen, The Netherlands).
Approximately 5 g of material was placed between two metallic sheets, heated to 190 ◦C,
and maintained at this temperature for 2 min in contact mode. Then, it was compression
molded for 1 min under a pressure of 2 MPa, and rapidly cooled to room temperature
using a water-cooling system to make the isotropic nanocomposite films with a thickness
approx. 160–180 µm.

The film calendering of PLA–GTA–ChNC nanocomposite was made using a single-
screw extruder with an L/D screw ratio of 30:1 (Lab Tech Engineering Company, Ltd.,
Samutprakan, Thailand). Photographs of the different steps of the FC process are shown in
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Figure 1. The molten polymer was extruded through a 100 mm slit die at a screw speed
of 65 rpm. The extruded films were quenched on a casting roll, accompanied by post
drawing on heated rollers at 60 ◦C (Lab Tech Engineering Company, Ltd., Thailand, type
LUMCR-50) to produce the pre-oriented films. The calendered films had thickness between
70–140 µm.
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Figure 1. Melt-state drawing process: (a) film calendering set-up; (b) pressing, stretching, and
calendering; and (c) film winding process.

Two processes were used to orient the nanocomposite films: (1) solid-state drawing of
compression molded (CM) films and (2) solid-state drawing of pre-oriented films prepared
with film calendering (FC). Schematic of the pre-orientation and orientation of the PLA–
GTA–ChNC nanocomposites is shown in Figure S1 in Supplementary Information. The
nanocomposites films were prepared in two ways in the film calendaring extrusion. First,
a similar speed for the stack rolls and wind-up unit was used (no tension applied); the film
produced using these parameters is denoted as FC. Second, the nanocomposite was drawn
by applying tension between the stripper and haul-off rolls by increasing the speed (2×)
of the wind-up unit; the film produced using these parameters is denoted as FC-2. The
draw ratio (DR) is defined as the ratio of the drawn film length to the original film length
produced in a specified period. The process settings for FC of the nanocomposite films are
shown in Table 1.

Table 1. Processing parameters used for calendering to produce pre-oriented nanocomposite films.

Materials Temperature (◦C) Speed (mm/min)

Extruder Die Stack Rolls Stack Rolls Wind-Up Rolls DR

FC * 190 200 60 18 18 –
FC-2 ** 190 200 60 18 36 2

* FC indicates film calendering, and ** FC-2 denotes film-calendered samples drawn at DR = 2.

The solid-state-orientation of films was made by uniaxial drawing using a Shimadzu
Autograph AG-X universal testing machine (Kyoto, Japan) equipped with a temperature
chamber and a load cell of 5 kN. The orientation of the compression-molded and film-
calendered pre-oriented nanocomposite films was conducted at a temperature of 60 ◦C and
a speed of 100 mm/min as described in our earlier study [14]. A gauge length of 10 mm
and a sample size of 40 × 6 × 0.1 mm3 was used for the drawing. Before drawing, the
sample was marked to calculate the DR using Equation (1).

Draw ratio (DR) =
Final length of the ink mark (l)

Original lenght of the ink mark (lo)
(1)
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A DR of 4 was achieved for the CM and FC nanocomposite films. However, this was
not possible for the pre-oriented nanocomposite FC-2; for this, the maximum DR was 2.5;
however, the total DR for this material was 5, including that from FC (2) and SSD (2.5).
Finally, depending on the process used for the orientation and achieved DR, the materials
were coded, as shown in Table 2. Nanocomposites processed with compression molding
and film calendering are referred to as CM and FC, respectively.

Table 2. Coding of the nanocomposites based on the different processing methods and obtained draw ratio (DR).

Codes Processing Drawing Total DR

CM Compression molding - -
CM-SSD-4 Compression molding Solid-state drawing 4

FC Film calendering - -
FC-2 Film calendering Calendering 2

FC-SSD-4 Film calendering Solid-state drawing 4
FC-2-SSD-2.5 Film calendering Calendering and solid-state drawing 5

2.3. Characterization

X-ray analyses were performed to better understand how the drawing processes
contributed to the crystal structure and orientation of the PLA–ChNC nanocomposites.
One-dimensional (1D) X-ray diffraction (XRD) patterns were collected using a PANalyt-
ical Empyrean X-ray diffractometer (Malvern, UK) with Cu Kα radiation (wavelength
0.15418 nm), in a 2θ angular range of 5◦ to 40◦ with a scan rate of 0.01◦/s. Two-dimensional
(2D) WAXS diffractograms were recorded on an SAXSpoint 2.0 (Anton Paar, Graz, Austria)
equipped with a Microsource X-ray source (Cu Kα radiation, wavelength 0.15418 nm) and
a Dectris 2D CMOS Eiger R 1M detector with a 75 × 75 µm2 pixel size. All measurements
were performed with a beam diameter of approximately 500 µm and a beam path pressure
of approximately 1 to 2 mbar. The sample-to-detector distance was 111 mm during the
measurements. Six frames with a duration of 5 min were read from the detector, giving
a total measurement time of 0.5 h per sample. The transmittance was determined and
used for scaling the intensities. The orientation indices (fc) of the PLA and chitin nanocrys-
tals were calculated according to the intensity distributions of the azimuthal angle using
Equation (2) [22]:

fc = (180◦ − FWHM)/180◦ (2)

where FWHM is the full width at half maximum of the azimuthal angle distribution.
The undrawn (CM) and partially drawn samples (FC, FC-2) were investigated using

thermogravimetric analysis (TGA, TGA-Q500, New Castle, DE, USA) to determine the
remaining plasticizer content. First, the material was heated from 0 to 150 ◦C; then, it was
held for 2 h to evaporate the GTA plasticizer until the residual weight reached a plateau.
The weight loss was due to the plasticizer remaining after the manufacturing process.

Differential scanning calorimetry (DSC) was conducted using a Mettler Toledo DSC
822e (Columbus, OH, USA) in the temperature range of −20 to 200 ◦C at a heating rate of
10 ◦C/min to investigate the thermal behavior of the samples. The degree of crystallinity
(%) of the samples was calculated using the following Equation (3) [23]:

Crystallinity(%) =
∆Hm − ∆Hc

∆H0
m

× 100
w

(3)

where ∆Hm and ∆Hcc are the melting and cold crystallization enthalpies, respectively.
∆H0

m is the melting enthalpy of 100% crystalline PLA (93 J/g), and w is the weight fraction
of PLA in the samples.

The mechanical properties of the undrawn and drawn nanocomposite films were
tested using a Shimadzu AG-X universal tensile tester (Kyoto, Japan) with a 5 kN load cell;
the length between the grips was 20 mm, and a crosshead speed of 2 mm/min was used.
The tensile strength, elongation at break, tensile modulus, and toughness of the materials
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were determined from the data, and the toughness (work of fracture) was calculated as the
area under the stress–strain curves. The results are the average of seven samples tested for
each material.

A Nikon Eclipse LV100NPOL (Kanagawa, Japan) polarized optical microscope (POM)
was used to analyze the effect of orientation on the microstructure of the nanocomposites
and observe the birefringence behavior. The nanocomposite films were tested under cross-
polarized conditions and polarized optical micrographs of the sample were recorded using
a charge-coupled device camera.

The percentage transmittance of the un-oriented, pre-oriented, and oriented nanocom-
posites was investigated using a UV–Vis spectrophotometer (GENESYS, 10UV, Thermo-
Scientific, Dreieich, Germany) at a constant wavelength of 220 nm, and three specimens of
each sample were tested to calculate the average values.

The surface morphology was investigated using scanning electron microscopy (SEM,
JEOL-IT 300, Tokyo, Japan). Tensile fracture surfaces and etched surfaces of undrawn
and drawn nanocomposite films were examined. The samples were etched using sodium
hydroxide and water (1:2 by volume) for 12 h. The surfaces of both the fractured and etched
samples were coated with platinum (Leica EM ACE 220, Wetzlar, Germany) to avoid the
charging effect.

Fourier transform infrared spectroscopy (FT-IR, VERTEX 80, Ettlingen, Germany) was
used to study whether the orientation had any effect on the molecular interaction between
the different components in the nanocomposites (PLA, GTA, and ChNCs). Scanning was
performed in the spectral range 400–4000 cm−1 with a resolution of 128 cm−1.

3. Results
3.1. Crystal Structure and Orientation of the PLA–ChNC Nanocomposite Films

The structure of the crystalline phases and the orientation in the PLA–ChNC nanocom-
posite films were analyzed using X-ray diffraction.

As shown in Figure 2a, the undrawn CM sample showed a large broad peak associated
with the amorphous phase of PLA, and small sharp peaks at 16.4◦ and 19.3◦ corresponding
to the (110)/(200) and (203) planes of PLA crystallites, respectively [24]. This indicates
that a small number of PLA crystals were generated during the CM process. Very small
peaks at 9.4◦, 12.5◦, and 25.1◦ also appeared in this pattern that could be attributed to
the 5 wt% of ChNCs in the nanocomposite; they were assigned to the (020), (021), and
(130) crystal planes of chitin [25], respectively. However, the peak at 19.3◦ associated with
the (110) chitin crystal plane overlaps with the (203) plane of PLA. In contrast, the FC
sample shown in Figure 2b, only demonstrated a broad amorphous peak, and no crystalline
peaks could be observed. After SSD, the CM-SSD-4 sample showed a much more intense
but slightly broadened diffraction peak at 16.4◦ in Figure 2b, which can be attributed to
the strain-induced crystallization behavior and decreased size of the PLA crystallites in
the nanocomposite resulting from the drawing process [26]. The FC-SSD-4 sample with
the same DR demonstrated a broader peak at the same 2θ angle, implying that the size
of the PLA crystallites in this sample was smaller than that in CM-SSD-4, which was
likely because the pre-orientation effect of the FC process resulted in more nucleation sites.
Moreover, the diffraction peak at 19.3◦ was almost invisible in these two drawn samples,
which was due to the limitation of the 1D XRD detector and confirms the orientation of the
crystalline phases in the nanocomposite. In addition, the FC-2 pattern in Figure 2b had
considerable stronger peaks at 9.4◦ and 19.3◦ compared to those of the FC film, probably
because the further stretching in the pre-orientation process led to a different degree of
orientation of the ChNCs in the nanocomposite. These features were maintained after
the subsequent SSD process up to a DR of 2.5, and the WAXS pattern of FC-2-SSD-2.5
exhibited a narrower diffraction peak of the (110)/(200) PLA crystal planes compared to
that of FC-SSD-4, revealing that larger and more complete PLA crystallites formed during
the combined drawing approach.
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Figure 3 shows 2D WAXS diffraction patterns and the related integration curves of
the CM, FC, CM-SSD-4, and FC-SSD-4 films. Like the 1D WAXS results, both CM and FC
exhibited broad diffraction peaks, indicating an amorphous structure. Relatively sharp
crystal diffraction peaks, as well as broad diffraction peaks, were observed in WAXS
diffractograms of the drawn nanocomposite films, indicating partial crystallization, see
Figure 3e,e’. The main peak at 16.4◦ is characteristic for PLA and can be used to quantify
the orientation of PLA crystalline phase in the nanocomposite films. By determining
the maximum and baseline intensities in the intensity distribution as a function of the
azimuthal angle of the 16.4◦ peak, the orientation index (fc) of PLA can be calculated
according to Eq 2. If all PLA crystals are aligned in the same direction, fc = 1, and if they are
randomly distributed, fc = 0. An isotropic diffraction ring was observed for the undrawn
samples CM and FC, indicating that the PLA polymers were randomly oriented in the film
plane, see Figure 3a,a’,c,c’. The orientation index for the CM-SSD-4 and FC-SSD-4 films
was determined to be 0.9, indicating that the PLA crystals in these samples had a preferred
orientation in the drawing direction, shown in Figure 3b,b’,c,c’. Interestingly, the peak at
26◦ which was assigned to the (130) plane of the ChNCs, is very distinct in the 2D WAXS
results. Thus, it is possible to analyze the orientation of the ChNCs. For the undrawn CM
sample, no clear maximum intensity can be observed in the azimuthal integration of the
ChNC scattering plane, indicating that the ChNCs were randomly oriented in the film
plane, shown Figure 3a,d. Surprisingly, the orientation index for ChNCs in the FC sample
was 0.8, indicating that ChNCs were efficiently partially oriented in the nanocomposite
film owing to the pre-orientation from the film calendering process. The ChNCs in both
drawn samples had an orientation index value of 0.9, demonstrating that ChNCs reached
a preferred orientation degree like that of the PLA crystalline phase in the film plane
(Figure 3b,b’,d,d’).

The orientation of PLA and ChNC in the film plane and on the film edge (cross section)
was also studied using 2D WAXS, as shown in Figure S2 in Supplementary Information.
In the drawn films (CM-SSD-4 and FC-SSD-4), PLA and ChNCs were partially oriented in
the drawing direction with a similar orientation index (fc = 0.9) in both the film plane and
cross section. However, the undrawn CM and FC films exhibited different behaviors. The
PLA crystals were randomly oriented in the plane of the CM and FC films, whereas in the
CM and FC film cross sections, a minor part of the PLA crystals was partially oriented, as
shown in Figure S2(A3 and C3). This can be attributed to the restriction effect caused by
the relatively small film thickness. The ChNCs were randomly oriented in the CM film,
both in the film plane and on the cross section, whereas in the FC film, the ChNCs were
partially oriented, as shown in Figure S2(A4 and C4).
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Figure 3. 2D WAXS analysis of PLA and ChNC orientation in the nanocomposite films. (a,a’) 2D
WAXS diffractograms of the undrawn nanocomposite films. The scale bar represents 2θ = 5◦. (b,b’)
2D WAXS diffractograms of the drawn nanocomposite films. (c,c’) Azimuthal integration of the
crystalline PLA scattering plane, 2θ = 16.4 ± 0.3◦. (d,d’) Azimuthal integration of the ChNC scattering
plane, 2θ = 26 ± 0.4◦. (e,e’) Radial integration of the diffractograms. An offset has been added to the
magenta-colored radial integration diffractograms to avoid overlapping curves.

3.2. Effect of Orientation on Transparency

Photographs of the undrawn, calendered, and solid-state drawn nanocomposite films
are shown in Figure 4. It can be clearly seen that the films were transparent before the
SSD process Figure 4a–c some spots are visible in the compression molded film which
might be associated to ChNCs Figure 4a. The films are transparent before the drawing and
opaque/white after the orientation shown in Figure 4a’,b’,c’. It is also possible to see that
the FC-2 film have horizontal marks in the draw direction and these marks are also visible
after SSD (Figure 4c,c’).
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Figure 4. Visual appearance and optical micrographs of compression molded and film calendered
nanocomposites before and after solid-state drawing. (a) compression molded film (CM); (a’) com-
pression molded and solid-state drawn CM-SSD-4; (b) Film calendered film (FC); (b’) Film-calendered
and solid-state drawn film FC-SSD-4; (c) Film calendered film with DR2 (FC-2); (c’) film-calendered
and solid-state drawn film (FC-2-SSF-2.5). (All micrographs are taken with same magnification).

3.3. Effect of Orientation on Thermal Properties

Before characterizing the properties of the nanocomposites, TGA was performed to
study whether the CM and FC processes had different effects on the plasticizer content
present in the obtained nanocomposite films. The TGA results are presented in the Sup-
plementary Information in Table S1. These results show that the processing techniques
used, and the additional drawing step had no significant effect on the remaining plasticizer
content; approximately 7% weight loss due to GTA evaporation was detected in all the CM,
FC, and FC-2 samples. This confirms that all samples maintained the same composition.
Therefore, it did not influence the properties of the nanocomposites.

The thermal properties of the nanocomposites were studied using DSC. The results are
shown in Table 3, and the DSC thermograms are provided in Figure S3 in Supplementary
Information. Compared to that of the undrawn CM film, the FC film demonstrated a
similar glass transition temperature (Tg) and melting temperature (Tm) and a slightly
lower cold crystallization temperature (Tcc, 94 ◦C vs. 100 ◦C). The crystallinity of PLA
in FC (13%) was slightly higher than that in CM (8%). This indicates that the FC process
helped to pack the PLA chains in a more ordered state in the nanocomposite (i.e., the
pre-orientation effect), which led to a small increase in crystallinity during the fast-cooling
step in the manufacturing processes and a lower Tcc in the DSC heating run. For FC-2,
the crystallinity drastically increased to 35% owing to the strain-induced crystallization,
and the Tcc further decreased to 67 ◦C because the remaining ordered amorphous PLA
chains could rapidly arrange to form a new crystalline phase with much lower thermal
energy compared to that of those in the FC film. The Tg of FC-2 was also lower than that
of FC, which could be attributed to the higher crystallinity leading to localization of the
plasticizer in the amorphous region in the nanocomposite, as reported in our previous
study [27]. For the solid-state drawn samples, the crystallinity increased to 46–53% because
of the considerably higher degree of orientation caused by the higher draw ratios, and their
Tg was not detected. Only very small Tcc peaks were observed, as shown in Figure S3,
which were at almost the same temperature as that of FC-2. Like the undrawn samples,
FC-SSD-4 had a slightly higher crystallinity than that of the CM-SSD-4, which was likely
caused by the pre-orientation effect from the film calendering process, and FC-2-SSD-2.5
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reached the highest crystallinity (53%). In addition, it is clear from Figure S3(A1) that FC-2
and all solid-state drawn samples showed asymmetric melting peaks, implying that large
quantities of small PLA crystals were generated during the drawing process owing to the
strain-induced crystallization effect.

Table 3. Thermal properties determined from the first heating scans of undrawn, pre-drawn and
drawn nanocomposite films drawn at 60 ◦C.

Materials Tg (◦C) Tcc (◦C) Tm (◦C) Crystallinity (%)

CM 55 100 169 8
CM-SSD-4 — 65 170 46

FC 54 94 170 13
FC-2 48 67 171 35

FC-SSD-4 — 66 173 51
FC-2-SSD-2.5 — 63 171 53

3.4. Effect of Orientation on Mechanical Properties

The mechanical properties of the undrawn films (CM) compared with those of the
oriented films with different orientation degrees are presented in Table 4. The results
confirm that the orientation significantly affects all the mechanical properties, which is
unusual behavior. An increase in stiffness and strength typically results in decreased
elongation and toughness (work of fracture). In this study, FC increased the elongation at
break from 3% to 24% and the work of fracture from 0.6 to 9 MJ/m3, while the stiffness
and strength were only marginally improved.

Table 4. Mechanical properties of the undrawn (CM), calendered pre-oriented films (FC), and
solid-state drawn nanocomposites (SSD) with three different draw ratios.

Materials
Tensile

Modulus
(GPa)

Tensile
Strength

(MPa)

Elongation at
Break

(%)

Work of
Fracture
(MJ/m3)

CM 2.3 (±0.1) 37 (±3) 3 (±1) 1 (±0)
CM-SSD-4 2.6 (±0.1) 135 (±3) 46 (±2) 47 (±3)

FC 2.5 (±0.2) 41 (±2) 24 (±6) 9 (±1)
FC-2 2.9 (±0.2) 58 (±3) 143 (±5) 59 (±2)

FC-SSD-4 3.9 (±0.2) 140 (±7) 75 (±9) 78 (±9)
FC-2-SSD-2.5 4.0 (±0.2) 170 (±10) 75 (±9) 96 (±12)

When comparing nanocomposites oriented by SSD (CM-SSD-4) with pre-oriented
nanocomposites (FC-SSD-4), it is seen that the strength was similar (135 and 140 MPa), but
the modulus was higher for the pre-oriented ones, and the elongation at break and work
of fracture increased substantially from 46% to 75% (63% increase) and 47 to 78 MJ/m3

(66% increase), respectively.
The highest mechanical properties were achieved for pre-oriented (FC-2-SSD-2.5)

nanocomposites with the highest DR: a stiffness of 4 GPa, a strength of 170 MPa, an elonga-
tion at break of 75%, and a work of fracture of 96 MJ/m3. The percentage improvement
compared to the undrawn composites was 74% for the stiffness, 360% for the strength,
2400% for the elongation, and 9500% for the work of fracture.

The marked improvement was due to the high orientation degree of the polymer
chain as well as the strain-induced crystallization of PLA and the oriented ChNCs. The
results indicate that the pre-orientation step not only oriented the polymer but also the
ChNCs, which led to an overall increase in the mechanical properties.

The effect of the pre-orientation of FC-2 on the mechanical properties of the nanocom-
posites was investigated, and the results are shown in Table 4. As expected, pre-orientation
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of the nanocomposites affected the orientation and dramatically increased the mechanical
properties compared to the undrawn materials. The mechanical properties of the PLA
nanocomposites depend on several factors: (i) the adhesion between the PLA matrix and
reinforcement phase, (ii) the aspect ratio of the reinforcement phase, (iii) the orientation
and of the reinforcement and its ability to nucleate, (iv) the stress-transfer efficiency of the
interface, and (v) the degree of crystallinity of the matrix [28–30].

The orientation of the undrawn film (CM) via SSD increased the overall mechanical
properties. For example, the tensile modulus, tensile strength, elongation at break, and
toughness of CM-SSD-4 increased by 13%, 266%, 1433%, and 7733%, respectively, compared
to those of CM. This increase in the mechanical properties, particularly the tensile strength,
elongation at break, and toughness, was due to the better stress-transfer efficiency that
developed between the interface of plasticized PLA and ChNCs. As mentioned previously,
a photograph of CM-SSD-4 showed opaque behavior, which further confirmed that the
orientation of the PLA molecular chains caused by strain-induced crystallization resulted
in a higher degree of crystallinity in the CM-SSD-4 nanocomposites. Noticeably, a small dif-
ference in standard deviations, particularly in the modulus and strength values, indicated
that the ChNCs were well dispersed and distributed.

Furthermore, FC had a positive effect on the orientation and led to superior me-
chanical properties compared to those of CM-SSD-4, even at the same draw ratio (DR4).
Consequently, the tensile modulus, tensile strength, and elongation at break of FC-SSD-4
increased by 50%, 4%, 63%, and 66%, respectively, with respect to those of CM-SSD-4. This
increase in the tensile strength was due to the higher crystallinity and orientation obtained
by FC. Further, the improvement in the elongation at break contributed to the toughness of
the aligned PLA nanocomposites. Pre-orientation caused significant further improvement
to the drawing ability and, hence, the mechanical properties of FC-2-SSD-2.5, for which a
higher tensile strength and toughness were obtained as compared to those of FC-SSD-4.
However, the tensile modulus and elongation at break remained the same. This could be
due to crystallinity. As mentioned in the DSC results, there was no significant difference in
the degree of crystallinity of FC-SSD-4 and FC-2-SSD-2.5 (51% for FC-SSD-4 and 53% for
FC-2-SSD-2.5).

As expected, compared to the undrawn (CM) nanocomposites, highly drawn (FC-
2-SSD-2.5) nanocomposites (i.e., highest total DR) showed the highest tensile modulus,
strength, elongation at break, and toughness, which increased by 74%, 360%, 2400%, and
9500%, respectively. This was because of the better orientation of the ChNCs, and PLA
molecular chains obtained by a combination of melt-state drawing and SSD, resulting
in superior mechanical properties. It has been well documented in the literature that
increasing the DR of the materials causes the mechanical properties to increase [14–18].
We can also compare the mechanical properties reached in this study with the previous
study where TEC plasticized PLA and its nanocomposites with ChNCs were drawn with
different draw ratios, reaching a maximum DR 3. The modulus of the SSD matrix (PLA-
20TEC) was 0.76 GPa, strength 56 MPa and strain 92% compared with the nanocomposite
PLA-20TEC-5ChNC, in which the modulus was 1.72 GPa, strength 72 MPa, and strain
59% [18]. The previous study clearly showed the influence of the ChNCs. It can be
concluded that by combining these two techniques, the overall mechanical properties of the
nanocomposites have massively improved as compared to the previous studies reported in
the literature.

3.5. Effect of Orientation on Morphology

To better understand and visualize how different processing routes and draw ratios
induced the orientation in the nanocomposites, polarized optical micrographs of undrawn
and drawn films were compared and these are shown in the Figure 5. Generally, orientation
of the PLA results in strain-induced birefringence. The color produced during drawing
depends on the degree of orientation of the molecular chains of the polymer. In this study,
undrawn samples showed either no color or a single color (shown in Figure 5 CM, FC). The
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CM-SSD-4 nanocomposite exhibited a gray shade due to strain hardening effect, which
resulted from larger spherulites that developed during stretching that prohibited light from
passing through the samples as seen in the CM-SSD-4 on bottom row in Figure 5. However,
the pre-oriented film-calendered materials, at the same DR 4, demonstrated very bright
birefringence, which were induced by the synergistic effect of ChNCs, and orientation
PLA achieved by FC combined with SSD. Additionally, the drawn samples (FC-2-SSD-2.5)
exhibited a very homogenous orientation, which can be attributed to the good dispersion
and distribution of the ChNCs in the PLA.
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Furthermore, surface morphologies of the compression molded (CM) and film calen-
dered solid state drawn nanocomposites were examined. The film surfaces were etched to
better obtain the surface morphology, the materials studied in polarized microscopy and
electron microscopy are shown in Figure 6.
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As seen in the Figure 6a,b,a’,b’, the CM shows no orientation lines (patterns) on the
surface, either before or after etching. In contrast, the highest drawn nanocomposite (FC-
2-SSD-2.5) exhibited a highly aligned morphology, seen in Figure 6c,d,c’,d’. Noticeably,
in the FC-2-SSD-2.5 films, a significant crazing effect was also visible perpendicular to
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the drawing direction. In addition, after etching, a cross-patterned morphology was
observed, which is attributed to etching of the amorphous regions of the polymer. It is
worth mentioning that the development of this cross-patterned structure in the drawn
nanocomposites is due to the known shish-kebab morphology, which forms by folding of
polymer chains [14,15].

FT-IR was also conducted to understand the influence of orientation on the structure
of the nanocomposites. The spectra of CM and FC-2-SSD-2.5 are presented in Figure S4
in Supplementary Information. The drawn nanocomposites exhibited a reduced intensity
compared to that of the undrawn nanocomposites. The main difference was observed in the
fingerprint region, particularly in the range 1200–1000 cm−1. The undrawn (CM) nanocom-
posites showed peaks at 1082 and 1180 cm−1, which shifted to higher wavenumbers in the
drawn nanocomposites (1089 and 1184 cm−1, respectively). This can be attributed to the
intermolecular interactions developed by PLA with ChNCs and GTA.

It was shown that the orientation of the structure greatly influenced the properties of
the PLA nanocomposites. A schematic of the ordering of the molecular chains during the
orientation is shown in Figure S5 in Supplementary Information. Semicrystalline polymers
exhibit two regions: amorphous and crystalline. Generally, the amorphous region plays an
important role during stretching or stress. In this study, during melt-state drawing, the PLA
chain must have folded together and formed some spherulites, as depicted in Figure S5.
SSD was performed at 60 ◦C; therefore, during stretching, some tie molecules must have
developed in the PLA nanocomposites, particularly in the amorphous region. Owing to
the formation of tie molecules in the amorphous region of the polymer, the mechanical
properties of the drawn nanocomposites increased, particularly the toughness and strength.
These tie molecules can attach to the crystalline lamellae and facilitate the flexibility of the
nanocomposites. The reason for the formation of the tie molecules could be the presence of
–NH2–CO– groups in the molecular structure of chitin, which can form hydrogen bonds
with the polymer (PLA) and plasticizer (GTA).

4. Conclusions

Oriented PLA–GTA–ChNC nanocomposite films were produced by combining FC
and SSD. The two-step orientation procedure influenced the overall properties of the
nanocomposites. Furthermore, the pre-orientation of the polymer chains achieved by
FC enhanced the flexibility of the polymeric chains and ChNCs, resulting in improved
properties.

The effect of orientation on the thermal properties, mechanical properties, surface
morphology, and structural behavior of the nanocomposite was studied. The results
confirmed that pre-orienting the nanocomposites with calendering had a pronounced
effect on the thermal properties. This was due to the orientation of the ChNCs and PLA
molecular chains, as well as strain-induced crystallization, which together led to improved
mechanical properties.

Multifold increments were observed in the tensile modulus (2-fold), tensile strength
(5-fold), elongation at break (25-fold), and toughness (96-fold) of the nanocomposites with
the highest orientation degree.

Furthermore, the surfaces of the un-oriented and oriented nanocomposite films were
observed using polarized microscopy. The oriented films exhibited more homogenous
colors owing to the strain-induced birefringence of the PLA developed by drawing. It was
clear that highly drawn films showed more colors owing to the alignments of the molecular
chains.

The XRD study showed a reduction in the crystallite size due to the orientation of
the nanocomposite films. The results demonstrate that increasing the orientation of the
nanocomposite structure is an extremely efficient way to produce films with high strength
and toughness, which is a potential path for the development of sustainable materials for
packaging applications.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11123308/s1, Figure S1: Schematic representation of (a) melt-state drawing and (b)
SSD of PLA nanocomposite films conducted on extrusion and film calendaring and uniaxial tensile
tester with a temperature chamber, respectively. Figure S2: 2D WAXS analysis of PLA and ChNC
orientation in the nanocomposite films. Column (1) 2D WAXS diffractograms of the X-ray beam
through the film plane. The white scale bar represents 2θ = 5◦. Column (2) 2D WAXS diffractograms
of the X-ray beam through the film edge (cross-section). Column (3) Azimuthal integration of the
crystalline PLA scattering plane, 2θ = 16.4 ± 0.3◦. Column (4) Azimuthal integration of the ChNC
scattering plane, 2θ = 26 ± 0.4◦. (Row A) Undrawn compression molded nanocomposite films. (Row
B) Drawn compression molded nanocomposite films. (Row C) Film-calendared nanocomposite
films. (Row D) Drawn calendared nanocomposite films. DSC thermograms of the nanocomposite
films taken from the first heating run. Figure S3: DSC thermograms of the nanocomposite films
taken from the first heating run. Figure S4: ATR-FTIR of undrawn CM and drawn FC-2-SSD-2.5
nanocomposite films. Figure print region of the spectra showing that bands of drawn nanocomposite
are shifting towards the higher wave number. Figure S5: Schematics representing the ordering of the
polymer chains during the orientation of the nanocomposites (a) arrangement of the polymer chains
to form the ordered lamella (b) shows the amorphous and crystalline part of the PLA (c) formation
of tie molecules in the amorphous part of PLA due to the orientation. Table S1: Thermal properties
obtained from TGA data of the nanocomposite films from compression molding and film calendaring
to measure the remaining plasticizer content in the films.
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